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Effective range from tetramer-dissociation data for cesium atoms
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The shifts in the four-body recombination peaks, due to an effective range correction to the zero-range model
close to the unitary limit, are obtained and used to extract the corresponding effective range of a given atomic
system. The approach is applied to an ultracold gas of cesium atoms close to broad Feshbach resonances,
where deviations of experimental values from universal model predictions are associated with effective range
corrections. The effective range correction is extracted with a weighted average given by 3.9 ± 0.8RvdW, where
RvdW is the van der Waals length scale, which is consistent with the van der Waals potential tail for the Cs2 system.
The method can be generally applied to other cold atom experimental setups to determine the contribution of the
effective range to the tetramer dissociation position.
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I. INTRODUCTION

The fundamental quantum properties of atomic systems are
under intense investigation in recent cold-atom experiments,
in which long-time predicted universal aspects of few-body
physics can be probed. In this regard, the increasing number of
three-body bound states (trimers), emerging when the absolute
value of the two-body scattering length is moved to infinity,
known as the Efimov effect [1], was confirmed in different
cold-atom laboratories [2–5].

Actually, by extending to more than three particles the
search for fundamental quantum behavior in the realm of
four-body physics, it is of interest to test the positions of
four-atom resonant recombination peaks [6–9], which appear
as the two-body scattering length is tuned close to an s-wave
Feshbach resonance (see, e.g., [10]).

On the theoretical side, the model independence of tetramer
properties, when few physical scales are fixed, was recently
numerically established by our group [11,12] through the anal-
ysis of observed correlations between tetramer observables
by considering a renormalized zero-range (RZR) approach.
These correlations were realized through appropriate scaling
functions, from where one can verify that the RZR results are
consistent with several other model calculations [13–16].

Despite the success of the model independence of the
tetramer scaling functions, the experimental data for cesium
atoms [6,8,9] are shifted with respect to the correlation
function relating the peaks of successive tetramer resonances
for a zero-range force [11]. Among the possible effects
to explain such a deviation from the results obtained with
zero-range two-body interaction, it is natural to think in a way
to introduce the correction due to a finite effective range in the
model, as suggested in Ref. [17].

The experimental data for three-body cold-atom reactions
show that Efimov resonances and recombination minima
survive in the intermediate regime when the scattering length
a exceeds the characteristic interaction range by a relatively
small factor [18]. But the positions are shifted away from the
naive predictions based on the universal theory [14,15] and
finite range potentials have been used [19,20] to address such

issues. On the other hand, the quantitative reproduction of the
experimental findings for the positions of the peaks of the
tetramer resonances has not yet been addressed in detail.

Within our aim of clarifying the shift in the experimental
data with respect to the zero-range predictions for the positions
of the tetramer resonances at the dissociation point, we
present an approach on how to introduce the effective range
correction in lowest order in the zero-range four-body theory.
We obtain the correction to the correlation of the positions of
two successive resonant four-boson recombination peaks. The
associated scaling function is not fully determined by the
trimer properties and requires a four-boson scale [11]. Fur-
thermore, we are showing by our calculations that the effective
range correction is not completely parametrized by the trimer
and tetramer short-range scales, as one could naively expect.
The contribution of a nonzero effective range affects the
observed scaling plots by moving the corresponding positions
in relation to the zero-ranged ones (see, e.g., Refs. [19,21]
in the case of trimers). Here it will be shown quantitatively
how the effective range affects the scaling between negative
scattering length ratios, corresponding to the dissociation
positions of a trimer and related tetramers (for two nearby
tetramer states, associated with a given trimer state).

Relevant to the understanding of the effective range
contribution to the resonance positions, we should recall the
valuable discussion by Chin et al. [10] on the role of broad
(entrance-channel dominated) and narrow (closed-channel
dominated) Feshbach resonances. As discussed, a Feshbach
resonance strongly dominated by the entrance channel allows
a description of a two-atom system in terms of a single-channel
short-ranged model with a van der Waals tail. The broad s-wave
Feshbach resonance of cesium [6,8,9], where tetramer disso-
ciations at the four-body continuum threshold were observed,
is dominated by an entrance channel. In this case, when the
strength parameter is very large (sres � 1), the single-channel
description is applicable [10] and consequently, the effective
range should be found around the values obtained for van
der Waals–like potentials, tuned to the scattering length of the
resonance. Indeed, as we are going to detail in the present work,
the estimated values we have obtained for the effective ranges,
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from the positions of tetramer resonances, are somewhat close
to the corresponding effective range of that class of potentials.
Within our approach to extract the effective range, we have
considered broad Feshbach resonances appearing in ultracold
gas of cesium atoms, leading to positive effective ranges.
In contrast, narrow resonances, as discussed by Petrov [22],
should lead to negative effective ranges. In the case of systems
with narrow resonances and denser spectrums, we should also
mention the recent work by Sørensen et al. [23].

The present work is organized as follows. In Sec. II the
formalism for two, three, and four-boson systems is presented,
where we address the effective range expansion of the two-
body scattering amplitude, the subtracted Skorniakov and
Ter-Martirosian (STM) equation, and Faddeev-Yakubovsky
(FY) equations. In Sec. III the shifts in the position of
four-body resonant loss peaks from the solution of the STM
and FY equations with the effective range correction are given.
In Sec. IV we performed an analysis of the positions of
the four-boson resonance peaks for the cesium data close to
wide Feshbach resonances. The effective range, shown to be
compatible with experiments, is compared to the one obtained
from van der Waals–like potentials for the Cs2 system. In
Sec. V we present our conclusions and perspectives.

II. FORMALISM FOR TWO, THREE,
AND FOUR-BOSON SYSTEMS

A. Two-body scattering amplitude
with effective range correction

The s-wave two-boson scattering amplitude input to the
subtracted forms of the trimer Skorniakov and Ter-Martirosian
equation [24] and the tetramer coupled Faddeev-Yakubovsky
equations [25] for negative energies ε, with the on-shell
momentum given by k = i

√−ε, can be written as

τ (ε) ≈ 1/(2π2)

−√−ε ± √−ε2

[
1 + r0

2
(
√−ε ± √−ε2)

]
, (1)

in the lowest order of the effective range r0. In the above, the
pole of the scattering amplitude is fixed by the bound (+) or
virtual state (−) energy, k2 = ε = −|ε2|. The inverse of the
scattering length, up to the same order, is

1

a
= ±

√
|ε2| − r0

2
|ε2| . (2)

The two-body amplitude (1) provides a correction to the STM
and FY equations in leading order in r0, and as we verified,
the subtracted forms of these equations are able to provide
finite results dealing with the extra power of momentum in the
amplitude.

In the following, we present some details on the formalism
for the subtracted equations we have used together with our
approach to find the effective range correction for the position
of the tetramer resonances.

B. Subtracted STM equation

The Faddeev components for three-boson bound states for
the zero-range potential can be rewritten in terms of spectator
functions, which are solutions of a subtracted STM integral

equation given by [24]

|Kij,k 〉 = 2 τ (εij,k)G(3)
ij ;ik |Kik,j 〉, (3)

where εij,k is the (ij ) subsystem energy in the three-body
system. Note that we are going to introduce the two-boson
amplitude (1) carrying the effective range correction in (3).
The subtraction of the free three-body resolvent regulates the
STM equation and the projected operator G(3) is

G(3)
ij ;ik = 〈χij |

(
[E − H0]−1 − [ − μ2

3 − H0
]−1)|χik〉, (4)

where H0 is the three-body free Hamiltonian and −μ2
3 is

the subtraction energy scale. The form factor appearing in
the two-body T matrix of the pair (ij ), in the relative
momentum pij is given by 〈pij |χij 〉 = 1. The three-body
regularization parameter μ3 keeps under control the Thomas
collapse and determines the three-boson observables, and
can be parametrized by one s-wave physical quantity (see,
e.g., [26]). The subtracted STM equations were also used to
calculate the position of triatomic continuum resonances for
large negative scattering lengths [27], which were observed by
the Innsbruck group [2] through a three-atom recombination
peak in a cold cesium gas close to a Feshbach resonance.

C. Subtracted FY equations

The tetramer energies are found by solving the FY equations
properly regulated in the limit of the zero-range interaction,
which are written as a set of coupled subtracted integral
equations [11,12,25] given by∣∣Kl

ij,k

〉 = 2τ
(
εl
ij,k

)[
G(3)

ij ;ik

∣∣Kl
ik,j

〉 + G(4)
ij ;ik

(∣∣Kj

ik,l

〉 + |Hik,j l〉
)]

,

(5)

|Hij,kl〉 = τ (εij,kl)G(4)
ij ;kl

[
2
∣∣Kj

kl,i

〉 + |Hkl,ij 〉
]
. (6)

The subtractions in the kernel come at the level of the free
four-body propagators in Eqs. (5) and (6), which are used
to regulate the FY equations for the contact potential. The
two-boson scattering amplitude (1), which is introduced in the
FY equations above, carries the effective range correction in
the calculations that are presented in the next section.

The projected four-body free resolvent G(4) is subtracted at
an energy −μ2

4:

G(4)
ij ;ik = 〈χij |

(
[E − H0]−1 − [ − μ2

4 − H0
]−1)|χik〉, (7)

where H0 is now the free four-body Hamiltonian. Notice that
when introducing G(3)

ij ;ik [Eq. (4)] in the FY equations, the free
three-body Hamiltonian should be substituted by the four-body
one. The energy of the two-body subsystem (ij ), appearing as
arguments of the two-boson scattering amplitude in Eqs. (5)
and (6), are εl

ij,k and εij,kl , associated with a virtual pair in the
3 + 1 partition and in the 2 + 2 partition, respectively.

The subtraction scale −μ2
3 in G(3)

ij ;ik , the right-hand side of
Eq. (5), fix the trimer properties consistently with the STM
equation but independently on the scale μ4. Looking closer
to this term and taking into account the left-hand side, the
position of the trimer pole is guaranteed to be the same as the
bound state energy obtained by solving the subtracted STM
equation. The other terms in the FY equations, in (5) and (6),
are regularized with an independent subtraction scale −μ2

4.

013620-2



EFFECTIVE RANGE FROM TETRAMER-DISSOCIATION . . . PHYSICAL REVIEW A 87, 013620 (2013)

This method ensures that the three-body subtraction scale fixes
the three-body properties consistently with the subtracted STM
equation, whereas the regularization parameter μ4 fixes the
four-body observables [25].

III. POSITION OF FOUR-BODY RESONANT LOSS PEAKS

The four-atom recombination resonates when the tetramer
has zero energy and is placed at the four-body continuum
threshold. In cold atom traps the resonance is reached by tuning
the negative scattering length close to a Feshbach resonance
(see, e.g., [18]). The theoretical description of the scaling
function, which correlates the values of the negative scattering
lengths where successive tetramers reach the continuum,
introduced in [11], is now extended to include the effective
range, as

aT
N3,N+1 = a−

N3
A

(
aT

N3,N

a−
N3

,
r0

a−
N3

)
, (8)

where a−
N3

is the position of the peak of the three-atom resonant
recombination for a < 0, and aT

N3,N
is the scattering length

for which the excited N th tetramer dissociates and meets the
four-body continuum. The solutions of the subtracted STM
(3) and FY equations (5) and (6) depend only on a, r0, and on
the three- and four-body scale parameters. Then for the zero
energy tetramer, the value of the negative scattering length
depends only on r0 and the short-range three- and four-body
momentum scales at the subtraction points. The three-body
scale can be parametrized by a−

N3
, while the four-body one

by aT
N3,N

in the determination of aT
N3,N+1. In this way (8) can

be built. Furthermore, the scaling functionA is calculated with
the two-boson scattering amplitude (1) and the solutions of the
FY equations, as well as of the STM equation, expanded up to
first order in r0.

The dimensionless function A is determined by solving the
subtracted STM [24] and FY [25] equations considering the
expansion of the atom-atom s-wave amplitude up to order k2

as given by (1) and the corresponding relation between the
scattering length and virtual state energy (2). The solutions
of the subtracted FY equations depend only on a, r0, and
on the three- and four-body scale parameters. Then, for the
zero energy tetramer, the value of the negative scattering
length depends only on r0 and the short-range three- and
four-body momentum scales at the subtraction points. The
three-body scale can be parametrized by a−

N3
, when solving

the STM equation with r0 included, while the four-body scale
is correlated to aT

N3,N
in the determination of aT

N3,N+1. Then
the scaling function (8) is built without reference to the scale
ratio by eliminating this dependence in the ratio aT

N3,2
/a−

N3
in

terms of aT
N3,1

/a−
N3

.
In our calculations we have only obtained results for

tetramers below the ground-state trimer, which should be
enough for our study, as the values of the scattering length are
much larger than the short-range length scales corresponding
to the three- and four-body subtraction points. The scaling
function A(aT

1,1/a
−
1 ,r0/a

−
1 ), which provides the correction to

the position of the four-atom resonance, is shown in the three-
dimensional (3D) plot of Fig. 1. We have presented results
up to r0/a

−
1 ∼ 0.5, for 0.40 � aT

1,1/a
−
1 � 0.51, considering
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FIG. 1. (Color online) The scaling function A expressing the
dependence of aT

1,2/a
−
1 in aT

1,1/a
−
1 and r0/a

−
1 . Calculations are

performed in a leading-order expansion of the solutions of the FY
equations with the two-body amplitude (1). (See text for further
explanation.)

the relevant region where recombination data for cesium have
been measured. In this case, r0 ∼ aT

1,1, and for the validity of
the expansion in the effective range one should have r0 � aT

1,1,
and the expansion of the scattering length (2) is questionable.
Fortunately, we found that the coefficients for the effective
range correction are fairly small, allowing extension of the
validity of the expansion to the region where data are found.

Within the region of the plot given in Fig. 1, the surface can
be parametrized by

aT
1,2

a−
1

= A(x,y) =
∑

0�m+n�2

cmn (x − 0.45)myn, (9)

where x ≡ aT
1,1/a

−
1 , y ≡ r0/|a−

1 | and (m,n) � 0. The coeffi-
cients are given in Table I.

Although the expansion (9) contains nonlinear terms in r0,
it is built in linear order in the solutions of the subtracted STM
and FY equations. The second-order terms are induced by the
curvature of A(x,y) in x and y. In our case the calculation
is performed for the ground-state trimer and two successive
tetramer states.

The coefficients for the effective range correction are
expected to be smaller than the ones associated with the
variation of aT

1,1/a
−
1 . Indeed, the expansion around aT

1,1/a
−
1 =

0.45 shows that the linear coefficient for r0/a
−
1 correction

gives c01/c00 = −0.15, while c10/c00 = 0.78 is 5 times larger.
The amazing smallness of c01 and c02 with respect to the
other coefficients reflects that a fraction of the effect from the
effective range is absorbed by the variation of the short-range
four-body scale, but not all. Given that, it is quite obvious that

TABLE I. Coefficients for the parametrization (9).

c00 c10 c01 c11 c20 c02

0.932 0.724 –0.144 0.347 –0.645 0.001
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FIG. 2. (Color online) Lower-order effective range correction
for the scaling plot aT

1,2/a
−
1 = A(aT

1,1/a
−
1 , r0/a

−
1 ) for the correlation

between the positions of the peaks for successive tetramer resonances
at the continuum threshold, compared to other theoretical results and
experimental data. We present our results for different r0 intervals (the
upper solid line is from [11]) compared to a few recent calculations
as indicated inside the frame [Refs. [13] (triangles), [16] (diamonds),
and [30] (square)]. The experimental data of Refs. [6,8,9] are also
indicated inside the figure. The lowest band (gray) corresponds to r0

for the van der Waals–like potential for cesium atoms with values
within the interval 0.4 � −r0/a

−
1 � 0.5 for a reference value of

a−
1 
 −9 RvdW (see Table II).

the correction coefficients for the effective range contribution,
shown in Table I, should be somewhat smaller than the
coefficients associated with the expansion parameter aT

1,1/a
−
1 .

The negative value of c01 decreases the function A for
positive effective ranges, which suggests that the region where
the two-body amplitude (1) increases with respect to the zero-
range one, for a < 0 and positive effective ranges, is important
for the tetramers. In this case, larger variations of the scattering
length toward negative values, compared to the trimer value of
a−

1 , are required to tune the tetramers to zero energy.
Two theoretical results are used for comparison with the

results of the scaling function A, using the plot of Fig. 2,
the first one by Deltuva [16] (0.443 5, 0.884 1), which quotes
r0/|a−

1 | = 0.33 [28] compared to 0.29 extracted from the plot,
and another one by von Stecher et al. [13], (0.45, 0.88),
with r0/|a−

1 | = 0.38 [29] compared to 0.36 obtained from the
plot. This comparison with completely different models, the
separable potential model [16] and local Gaussian potential

[13], gives us confidence on the universality and utility of the
function A to analyze the data. This comparison suggests a
lower bound of |r0/a

−
1 | > 0.02 in our extraction method.

In Fig. 2, the two-dimensional (2D) plot of our results for
the surface A(x,y), corresponding to the scaling function (8),
is shown. The bands in the plot give the shift of the scaling
function due to the finite values of r0/|a−

N3
| in the intervals

depicted in the figure. For our reference we also plot the
theoretical results from [13,16], and the experimental values
from Refs. [6,8,9]. The data from Ref. [7] have large error bars
and suggest r0 ranging from negative to positive values.

IV. ANALYSIS OF THE CESIUM DATA

The effective range extracted from the experimental data is
shown in Table II. They were obtained just by inspection of
Fig. 2, by comparing the experimental values with the scaling
curve including the effective range correction. The shift of the
data yields values of r0/a

−
1 larger than the lower bound for the

theoretical extraction. We did not present results for [7] as it has
larger errors. We just notice that the effective ranges from these
data vary from negative to positive values. The extraction of r0

from the data for cesium atoms close to Feshbach resonances
are within consistent errors. The extracted values of r0 vary
from 2 to 5 times the van der Waals length (RvdW), which for
the Cs2 system is R

Cs2
vdW = 101.0 a0 [10].

The effective range of potentials with van der Waals tail
−C6/r6 at large distances has the approximate formula given
by [31–33]

r0 = 2

3

�(1/4)4

(2π )2
ā ϑ and ϑ =

(
ā

a

)2

+
(

ā

a
− 1

)2

, (10)

where ā = 2π/�(1/4)2 RvdW 
 0.955 978 RvdW is the aver-
age scattering length of van der Waals potentials [33], with the
van der Waals length RvdW = 1

2 (mC6/h̄)1/4. Considering the
van der Waals length one gets that ā = 96.5 a0 and

r0 
 2.789 4 RvdW ϑ = 2.917 9 ā ϑ 
 281.7 ϑ a0. (11)

In the actual cold cesium experiments listed in Table II, the
factor ϑ varies from 1.26 (for the second tetramer resonance)
to 1.55 (for the first tetramer resonance), which gives r0 within
3.5–4.3 RvdW. The corresponding interval of 0.4 � r0/|a−

1 | �
0.5 for a reference value of a−

1 
 −9 RvdW can be identified
with the lowest band (gray) shown in Fig. 2.

The estimated values of r0 extracted from the shift of
the data with respect to the zero-range calculations, shown
in Fig. 2, are given in Table II. The values for the effective
range are found between 2 RvdW and ∼ 5 RvdW, while Eq. (11)

TABLE II. Extracted effective ranges from the shift of the experimental peaks of the four-atom losses for a gas of
cold cesium atoms close to a Feshbach resonance using the scaling plot shown in Fig. 2. The errors in the extracted
values of r0 are estimated from the figure as well.

Ref. aT
1,1/a

−
1 aT

1,2/a
−
1 a−

1 [units of RvdW] r0 [units of RvdW]

[6] 0.47 0.84 –8.7(1) >5
[8] 0.465(34) 0.903(31) –9.54(28) 2.5 ± 1.7
[9] 0.47(1) 0.87(1) –8.71 4.8 ± 1.0
[9] 0.46(2) 0.91(3) –9.64 2 ± 2
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applied to the set of cesium data suggests the interval
3.5–4.3 RvdW represented by the lowest (gray) band in the
figure. The present experimental errors overlap the cesium
data, as one can verify in Fig. 2. By performing the error-
weighted average of the extracted effective range values from
the data given in Refs. [8,9] we obtain 3.9 ± 0.8 RvdW. In
particular, the data set {0.47(1),0.87(1)} provides an effective
range of about 4.8 RvdW, which within 1σ is consistent with the
values of the van der Waals potential. The data set {0.47,0.84}
[6] with no quoted errors suggests a large value of r0 > 5 RvdW.

It is noticeable that the dissociation points of the cesium
ground-state Efimov trimers for negative scattering lengths are
found in a narrow band [8], independent of which Feshbach
resonance the system is tuned (see Table II). Theoretical works
[23,34–37] addressed the interesting issue of the physical
mechanism for the dominance of the two-body properties
on the position of the first Efimov resonance for a < 0,
when the trimer meets the continuum. The results in Table II
show a range of values for r0 extracted from the tetramer
and trimer resonances, which within errors (excepting one
data set) are consistent with the effective range values from
the van der Waals–type potential. The numerical analysis
of Wang et al. [34] has shown that two-body interactions,
which suppress efficiently the wave function for separation
distances less than r0, have a−

1 ∼ −9 RvdW, determined by
two-body properties, with this class of systems closely related
to entrance-channel-dominated Feshbach resonances. The
dominance of the single-channel potential with the van der
Waals tail in the three-cesium reactions, with suppression
of the short-distance wave function, put forward the narrow
band where the trimer dissociation position is found. It also
suggests that the effective range, seen through the shift of the
position of the four-atom recombination peak with respect to
the zero-range results, should be given by the van der Waals
tail of the potential, as well.

It is worthwhile to address the validity of the correction
due the effective range, considering the main results presented
in Fig. 2 and Table II. In view of the expansion given in
Eq. (1), which at a first glance would be doubtful, when
r0/|a−

1 | ∼ aT
12/a

−
1 , we found consistency between the present

calculations with the results obtained with short-range sepa-
rable [28] and local [29] interactions. The leading coefficient
for the expansion in r0/|a−

1 | is one fifth of the corresponding
coefficient for the dependence of the scaling function in aT

11/a
−
1

(see Table I), which shows that the extracted values of r0

using the scaling plot come from small corrections to the
zero-range scaling function. Therefore, as observed in Fig. 2,
the agreement of the expansion we have considered can be
extended also to cases near aT

12/a
−
1 ∼ r0/|a−

1 |.

V. CONCLUSION AND OUTLOOK

In this work we present an approach to extract the effective
range of a given atomic system from the shifts in the four-body

recombination peaks, at the tetramer-dissociation threshold,
with respect to the zero-range results. We solved the trimer and
tetramer subtracted zero-range integral equations with two-
body amplitudes carrying the effective range in lowest order.
Besides the trimer and tetramer subtracting scales, no further
parameters are introduced in the calculations. The correlation
between the negative scattering lengths where successive
tetramers dissociate at the four-body continuum is extended
to include the correction due to the effective range, which is
model independent when checked against different short-range
potential model calculations. We found that the effective
range correction of the on-shell two-body amplitude in the
calculation of the trimer and tetramer-dissociation points,
when presented as a correlation plot of the successive positions
of the tetramer resonances, is not completely parametrized
by the trimer and tetramer short-range scales, as one could
naively expect. This unexpected property turned out to be
essential to single out the effective range from the shift in the
positions of the four-atom recombination peaks with respect
to the zero-range theory.

We applied our proposal to the cesium data measured at
broad s-wave Feshbach resonances [6,8,9]. In our analysis
we considered the shifts of the observed recombination peaks
at the tetramer-dissociation positions with respect to the
zero-range results. The effective ranges were found within
the interval 2 RvdW � r0 � 5 RvdW, with a reference value of
3.9 ± 0.8 RvdW, obtained by the error-weighted average of the
r0s extracted from the data of Refs. [8,9]. These values are
consistent with the van der Waals potential tail for the broad
s-wave Feshbach resonances of the Cs2 system, providing
r0 within the interval of 3.5–4.3 RvdW for the scattering
lengths where the resonances were found. Our results provide
strong evidence regarding the prevalence of entrance-channel
dominance in the physics of the universal tetramers formed
with broad Feshbach resonances.

The question regarding how the effective range is sensitive
to Feshbach resonance manipulations in the scattering length
as suggested by (11) has to be considered. Once improved
experimental data are available, it will be possible to verify
in more detail how Feshbach resonances from different
setups affect the r0 values extracted from the trimer and
tetramer-dissociation points. The present analysis, based on
the universality of effective range correction to the position
of tetramer resonances, can be generally applied to any other
cold-atom bosonic system close to Feshbach resonances.
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H.-C. Nägerl, and R. Grimm, Phys. Rev. Lett. 102, 140401
(2009).

[7] S. E. Pollack, D. Dries, and R. G. Hulet, Science 326, 1683
(2009).

[8] M. Berninger, A. Zenesini, B. Huang, W. Harm, H.-C. Nagerl,
F. Ferlaino, R. Grimm, P. S. Julienne, and J. M. Hutson, Phys.
Rev. Lett. 107, 120401 (2011).

[9] F. Ferlaino, A. Zenesini, M. Berninger, B. Huang, H.-C. Nägerl,
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