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We present an extension of Nagaoka’s theorem in the SU(n) generalization of the infinite-U Hubbard model.
It is shown that, when there is exactly one hole, the fully polarized states analogous to the ferromagnetic states in
the SU(2) Hubbard model are ground states. For a restricted class of models satisfying the connectivity condition,
these fully polarized states are the unique ground states up to the trivial degeneracy due to the SU(n) symmetry.
We also give examples of lattices in which the connectivity condition can be verified explicitly. The examples
include the triangular, Kagomé, and hypercubic lattices in d (�2) dimensions, among which the cases of d = 2
and 3 are experimentally realizable in ultracold atomic gases loaded into optical lattices.
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I. INTRODUCTION

The (fermionic) Hubbard model has attracted considerable
attention as a model for describing correlated electrons in
solids. Despite its apparent simplicity, it is difficult to analyze
the model in a consistent way, and exact and/or rigorous results
are very limited [1–3]. A number of approximate treatments
have been developed to understand the model. A systematic
approach from the large-n limit of the SU(n) Hubbard model
was initiated by Affleck and Marston in the context of high-
temperature superconductivity [4]. In this approach, the SU(n)
symmetry used is just a theoretical tool rather than a physical
reality. Therefore, the model at finite n did not attract much
attention and was much less studied. However, a realization of
the SU(n) Hubbard model [5] and its two-orbital generalization
[6] have recently been proposed theoretically in the context of
ultracold fermionic atoms. These systems were later realized
experimentally using ultracold Yb atoms [7,8]. The enlarged
symmetry of the system results from the hyperfine spin degrees
of freedom. In the large-U limit, these models with m(<n)
atoms per site reduce to SU(n) spin Hamiltonians in which a
variety of exotic states including chiral spin liquids are found
to be ground states [9,10].

In this paper, we present an extension of Nagaoka’s theorem
[11]. The original theorem is the first rigorous result about
the ferromagnetism in the Hubbard model. Nagaoka proved
that when there is exactly one hole, the ferromagnetic state
is the ground state of the infinite-U Hubbard model if the
lattice satisfies certain connectivity conditions. A generalized
version of this theorem with a simplified proof was given by
Tasaki [12]. A natural analog of the Nagaoka ferromagnetic
state in a system with SU(n) symmetry is a fully polarized
state characterized by the Young tableau having one row with
Nf boxes, where Nf is the total number of fermions. In this
paper, we show that an analog of Nagaoka’s theorem holds
in the SU(n) Hubbard model and those fully polarized states
are indeed the ground states if certain conditions are satisfied.
Note that the analog of the Nagaoka state in the SU(4) Hubbard
model on small clusters was studied in Ref. [13] and, very
recently, the existence of a fully polarized phase in the SU(3)
case at certain fillings was indicated in Ref. [14].

The rest of the paper is organized as follows. In Sec. II,
we give a precise definition of the model and describe the

symmetries of the Hamiltonian. Our main results are then
presented as theorems. In Sec. III, we first construct a basis in
which all of the off-diagonal elements of the Hamiltonian are
nonpositive. Then we give the definition of the connectivity
condition and give proofs of the theorems. In Sec. IV, we
give several examples of lattices that satisfy the connectivity
condition. We conclude with a summary and outlook in
Sec. V.

II. THE MODEL AND THE RESULTS

A. The Hamiltonian

We begin with the definition of the SU(n) Hubbard model.
Let � be a finite lattice of Ns sites. The model is described by
the following Hamiltonian:

H =
∑

x,y∈�

n∑
α=1

tx,yc
†
x,αcy,α + V ({nx}) + U

2

∑
x∈�

nx(nx − 1),

(1)

where c
†
x,α (cx,α) creates (annihilates) a fermion with flavor

α at site x, and the number of fermions at site x is defined
by nx = ∑n

α=1 nx,α with nx,α = c
†
x,αcx,α . The hopping matrix

elements are arbitrary as long as they are real, tx,x = 0, and
tx,y = ty,x � 0. Although this requirement might look odd,
tx,y � 0 can be achieved, in the case of bipartite lattices, by
local gauge transformations (c(†)

x,α → −c
(†)
x,α) for one sublattice.

Furthermore, it has recently been proposed that a sign change
of the hopping matrix elements can be achieved by shaking
optical lattices [15,16]. The second term V ({nx}) is an arbitrary
real-valued function of the number operators nx . Typical
examples are on-site potentials and charge-charge interactions
between any pair of sites. In cold-atom systems, an external
harmonic trap is usually unavoidable. Such a confinement term
can be taken into account by setting

V ({nx}) =
∑
x∈V

1

2
mω2|Rx |2nx, (2)

where m is the mass of atoms, ω is the trapping frequency,
and Rx is the position vector for the site x. Since we are
concerned with the model on finite lattices, the expectation
value of V ({nx}) in Eq. (2) in any state is finite provided that
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mω2 < ∞. The third term in Eq. (1) represents the on-site
Coulomb repulsion (U > 0).

B. Symmetries of the Hamiltonian

Let us first consider symmetries of the Hamiltonian H .
In addition to the trivial conservation of the total number
of fermions, the Hamiltonian exhibits U(n) = U(1) × SU(n)
symmetry. To see this, we define a set of number operators and
flavor-raising and -lowering operators as

Fα,α =
∑
x∈�

nx,α, F α,β =
∑
x∈�

c†x,αcx,β . (3)

They satisfy the commutation relation [Fα,β,F γ,δ] =
δβ,γ F α,δ − δδ,αF γ,β , which follows from the relation

[c†x,αcx,β,c†y,γ cy,δ] = δx,y(δβ,γ c†x,αcx,δ − δα,δc
†
x,γ cx,β ). (4)

Using a similar relation, one can confirm that [Fα,β,nx] = 0
and [Fα,β,

∑n
γ=1 c

†
x,γ cy,γ ] = 0, and thus the Hamiltonian H

commutes with Fα,β , i.e., [H,Fα,β] = 0. From the operators
Fα,β , one can construct new operators that also commute with
the Hamiltonian:

N =
∑
x∈�

nx, (5)

T a =
∑
x∈�

∑
α,β

c†x,αT a
α,βcx,β (a = 1, . . . ,n2 − 1), (6)

whereT a
α,β are the generators of SU(n) Lie algebra. Therefore it

is concluded that the Hamiltonian has a global U(n) = U(1) ×
SU(n) symmetry. As a side remark, we note that the restriction
of the Hamiltonian to the subspace where each site is occupied
by at most two fermions has an enhanced symmetry [17].
Moreover, this projected model in one dimension is exactly
solvable by means of the Bethe ansatz [18–20].

C. Fully polarized states

In this section, we introduce the notion of fully polarized
states in the SU(n) Hubbard model. Since the numbers of
α fermions, Fα,α , are conserved, the eigenstates of H are
separated into disconnected sectors labeled by the eigenvalues
of Fα,α (α = 1, . . . ,n). In what follows, we shall denote
eigenvalues of Fα,α by Nα . The off-diagonal operators Fα,β

(α �= β) play a role in connecting degenerate eigenstates
in different subspaces. For instance, starting from a fully
polarized state �1 that is an eigenstate of H in the subspace
N1 = Nf, N2 = · · · = Nn = 0, one can obtain degenerate
states with the same energy by applying Fα,β repeatedly:

�
(N1,...,Nn)
1 = (Fn,1)Nn · · · (F 3,1)N3 (F 2,1)N2�1, (7)

where N1 = Nf − ∑n
α=2 Nα . Note that we have assumed that∑n

α=2 Nα � Nf , where Nf is the total number of fermions.
To show that the above state is indeed the eigenstate, we

shall prove by induction that the squared norm of �
(N1,...,Nn)
1

is nonvanishing. We first set N2 = · · · = Nn = 0. Then the
statement is trivial because |�1|2 > 0. Next, we suppose that
the squared norm of the state

�
(N1,...,Nk )
1 = (Fk,1)Nk · · · (F 3,1)N3 (F 2,1)N2�1 (8)

is nonvanishing. Then from the commutation rela-
tion [F 1,k+1,F k+1,1] = F 1,1 − Fk+1,k+1 and the fact that
F 1,k+1�

(N1,...,Nk )
1 = 0, we have

F 1,k+1(Fk+1,1)m�
(N1,...,Nk )
1

= m(N1 − m + 1)(Fk+1,1)m−1�
(N1,...,Nk)
1 (9)

for m = 1,2, . . . ,Nk+1. Using the above chain of relations, we
obtain ∣∣�(N1,...,Nk,Nk+1)

1

∣∣2 = ∣∣(Fk+1,1)Nk+1�
(N1,...,Nk )
1

∣∣2

= N1!Nk+1!

(N1 − Nk+1)!

∣∣�(N1,...,Nk )
1

∣∣2
, (10)

and find that the squared norm of �
(N1,...,Nk+1)
1 is nonvanishing

when Nk+1 � N1. The desired result |�(N1,...,Nn)
1 |2 > 0 then

follows by induction.
The above argument ensures that the number of the states

with the same energy as �1 is at least

ddeg =
(

Nf + n − 1
Nf

)
= (Nf + n − 1)!

Nf!(n − 1)!
. (11)

This number coincides with the number of standard Young
tableaux having one row with Nf boxes. When n = 2, ddeg =
Nf + 1, which is the number of ferromagnetic states in the
SU(2) Hubbard model with Nf fermions. In this paper, we will
henceforth refer to states of the form Eq. (7) as fully polarized
states.

D. Theorems

We prove two generalizations of Nagaoka’s theorem in the
SU(n) Hubbard model. The first one is weaker and does not
require the connectivity condition. However, this version of the
theorem does not establish that the fully polarized states are
the unique ground states. The second one is a strict extension
of the original theorem in the SU(2) Hubbard model, which
ensures the uniqueness of the ground states.

Theorem 1. Consider the SU(n) Hubbard Hamiltonian (1)
with tx,y � 0, V arbitrary, U = ∞, and Nf = Ns − 1. Then
among the ground states, there are ddeg states [see Eq. (11)]
that are the fully polarized states.

Theorem 2. Consider the SU(n) Hubbard Hamiltonian
(1) with tx,y � 0, V arbitrary, U = ∞, and Nf = Ns − 1.
We further assume that the model satisfies the connectivity
condition. Then the ground states are fully polarized states and
are nondegenerate apart from the trivial ddeg-fold degeneracy
due to the SU(n) symmetry.

III. PROOF

In this section we shall prove the theorems. We first define
the basis we work with and clarify the connectivity condition
under which Theorem 2 holds. Then we prove Theorem 1
by using the variational principle. Theorem 2 is proved as a
consequence of the Perron-Frobenius theorem.

A. Basis states

In the limit U → ∞, a state with a site occupied by two or
more fermions has infinite energy. We are interested only in
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the finite-energy states and hence consider the Hilbert space
H which is spanned by states of the form

	
 = sgn[x]

⎛
⎝ ∏

y∈�\{x}
c†y,αy

⎞
⎠ �vac, (12)

where �vac is the vacuum (no-particle) state, and the index

 = (x,α) represents a position x of the hole (the site without a
fermion) and a flavor configuration α = (αy)y∈�\{x} with αy =
1,2, . . . ,n. Here, we have assumed that the product is ordered
according to an arbitrary order introduced in �, and sgn[x]
takes −1 if x is an odd-numbered position and 1 otherwise.
More explicitly, the states (12) can be written as

	
 = cx,β

⎛
⎝∏

y∈�

c
†
y,α̃y

⎞
⎠ �vac, (13)

where the flavor configuration α̃ = (αy)y∈� is defined by α̃x =
β for the site x and α̃y = αy for all y ∈ �\{x}. It is noted
that the collection of the states (12) as well as (13) form an
orthonormal basis.

Since each number Nα of fermions with flavor α is a con-
served quantity, the Hilbert spaceH can be further decomposed
into subspaces labeled by (Nα)nα=1 with

∑n
α=1 Nα = Ns − 1.

Note that Ns denotes the number of sites in �. In the following,
we denote by H[(Nα)] the subspace with fixed (Nα)nα=1.

B. Connectivity condition

Consider the matrix representation of H in the basis defined
by Eq. (12). We say that two states labeled by 
 and 
′ are
directly connected if 〈	
′ ,H	
〉 �= 0, and express this fact
by writing 
 ↔ 
′. Let αy→x be the flavor configuration on
�\{y} obtained from α on �\{x} by moving αy from y to x.
One can easily see that 
 = (x,α) and 
′ = (y,α′) are directly
connected if tx,y �= 0 and α′ = αy→x , since we have〈

	
′ ,

(
n∑

α=1

tx,yc
†
x,αcy,α

)
	


〉
= −tx,y . (14)

Here, we note that the negative sign is attributed to the sign
factor in the definition of basis states (12). We also note that
an off-diagonal matrix element of H , i.e.,

〈	(y,α′),H	(x,α)〉 = −tx,y(�0), (15)

comes solely from the hopping term and is nonvanishing only
if (y,α′) ↔ (x,α).

For two indices 
 and 
′, if there is a sequence of � =
(
1,
2, . . . ,
l) such that 
 = 
1 ↔ 
2 ↔ · · · ↔ 
l = 
′,
we say 
 and 
′ are connected and write 
 ← � → 
′. Then
the model is said to satisfy the connectivity condition if all
indices corresponding to the basis states with common (Nα)nα=1
are connected with each other.

Remarks. The direct connectivity (x,α) ↔ (y,αy→x) im-
plies that the hopping term of the Hamiltonian H transfers
the hole from site x to site y, and vice versa. Similarly, the
connectivity (x,α) and (y,α′) implies that there is a hopping
process by which the hole is exchanged between x and y.

A simple sufficient condition for the connectivity condition
in the SU(2) case was found in Ref. [12]. In the SU(n) case,

however, it is more difficult to examine the connectivity con-
dition for given hopping matrix tx,y and the number of flavors
n. This is because the connectivity condition of our model
depends not only on tx,y but also on n. It may even happen
that the model with n less than a certain integer n0 satisfies
the connectivity condition but the one with n � n0 does not
(e.g., see Ref. [13]). In Sec. IV, we will give several examples
where we can verify the connectivity condition explicitly.

C. Proof of Theorem 1

Let �G be a ground state of H , which is expanded as
�G = ∑


 ψ
	
 with certain coefficients ψ
 . Let us write
	(x,1) for the basis states of H[(Nα)] with N1 = Nf and N2 =
· · · = Nn = 0, i.e.,

	(x,1) = cx,1

⎛
⎝∏

y∈�

c
†
y,1

⎞
⎠�vac. (16)

Then, consider the trial state �1 = ∑
x∈� φx	(x,1) with φx =

(
∑

α |ψ(x,α)|2)1/2 where the sum is taken over all flavor
configurations.

Let us consider the expectation value of H in �1. We
first find that 〈�1,�1〉 = ∑

x |φx |2 = ∑
x

∑
α |ψ(x,α)|2 =

〈�G,�G〉. Next, noting that 〈	(x,1),V ({nx})	(x,1)〉 =
〈	(x,α),V ({nx})	(x,α)〉, which follows from

nx	(y,α) =
{

0 if x = y,

	(y,α) otherwise, (17)

for any flavor configuration α, we get

〈�1,V ({nx})�1〉 =
∑

x

|φx |2〈	(x,1),V ({nx})	(x,1)〉

=
∑

x

∑
α

|ψ(x,α)|2〈	(x,α),V ({nx})	(x,α)〉

= 〈�G,V ({nx})�G〉. (18)

For the hopping term, we have〈
�1,

(
n∑

α=1

tx,yc
†
x,αcy,α

)
�1

〉

= −tx,yφyφx � −tx,y

∑
α

ψ∗
(y,αy→x )ψ(x,α)

=
〈
�G,

(
n∑

α=1

tx,yc
†
x,αcy,α

)
�G

〉
. (19)

Here, we have used the Schwarz inequality

∑
α

ψ∗
(y,αy→x )ψ(x,α) �

(∑
α

|ψ(y,αy→x )|2
)1/2 (∑

α

|ψ(x,α)|2
)1/2

= φyφx. (20)

As a consequence of the relations obtained above, we find

〈�1,H�1〉
〈�1,�1〉 � 〈�G,H�G〉

〈�G,�G〉 , (21)

which shows that �1 is also a ground state. Then the theorem
follows by taking �1 as one of the ground states and using the
global SU(n) symmetry discussed in Sec. II C.
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D. Proof of Theorem 2

Let us fix (Nα)nα=1 and consider the matrix representation of
H for the basis states 	
 in H[(Nα)]. Then, as we noted below
(14), all the off-diagonal matrix elements are nonpositive.
Furthermore, the connectivity condition ensures that the matrix
is not decomposable. Therefore, the Perron-Frobenius theorem
is applicable to the present matrix, implying that the lowest-
energy state in the subspace H[(Nα)] is unique.

This fact together with the statement of Theorem 1 will
complete the proof of Theorem 2. However, we give here
a simple proof which relies only on the Perron-Frobenius
theorem. We use another consequence of the Perron-Frobenius
theorem: the lowest-energy state in each subspace is given by a
certain linear combination of all 	
 with positive coefficients.

Let �1,G be the lowest-energy state with energy E in the
subspace where all fermions have flavor 1. Using the operators
Fα,β in Eq. (3), one can construct the state with the same energy
E in the subspace H[(Nα)] as

(Fn,1)Nn · · · (F 3,1)N3 (F 2,1)N2�1,G. (22)

Here note that the state (22) can be expanded in terms of
	
 with positive coefficients. Since the lowest-energy state in
H[(Nα)] also has positive coefficients, it is not orthogonal to
the state (22). Therefore, the state (22) is exactly the lowest-
energy state in the subspace H[(Nα)]. This implies that the
ground state is unique apart from the degeneracy due to the
SU(n) symmetry.

IV. EXAMPLES

In this section we give three examples where the connec-
tivity condition can be verified explicitly. Before proceeding,
let us introduce some terminology. A pair {x,y} of sites in �

is called a bond if tx,y �= 0. By a path from x to y, we mean an
ordered set {x1,x2, . . . ,xl} of l sites such that x1 = x, xl = y,
and {xm,xm+1} is a bond for all m = 1, . . . ,l − 1. A path
{x1,x2, . . . ,xl} is called a loop if {x1,xl} is a bond. A lattice
� is said to be connected if one can find a path for any two
sites x and y in �. A connected lattice � is said to be twofold
connected, if one cannot make it disconnected by removing a
single site.

The connectivity of � implies that one can bring the hole to
any site in � by successive hops. It should be noted, however,
that the connectivity of � itself does not necessarily mean the
connectivity of the model. This is because the motion of the
hole around the lattice may not generate all the configurations

 = (x,α) with common (Nα)nα=1.

A. Closed chain with one next nearest neighbor bond

The first example is the SU(n) Hubbard Hamiltonian
on a closed chain, i.e., the one-dimensional lattice � =
{0,1, . . . ,L} with bonds {l,l + 1} (l = 0,1, . . . ,L − 1) and
{L,0}. It is, furthermore, assumed that there is one next-
nearest-neighbor bond, say {0,2}. Let us take a fixed (Nα)nα=1
and examine the connectivity of indices 
 = (x,α) in this
subspace. Since the lattice � is obviously twofold connected,
one can bring the hole to any site. Thus, one can fix the location
of the hole, say 0, and see whether the motion of the hole
generates all the flavor configurations (0,α) in the subspace.

FIG. 1. By letting the hole move around the chain in the clockwise
direction l − 1 times, one can bring the fermions from sites l and l + 1
to sites 1 and 2, respectively.

For this purpose, we show below that, for any bond {x,y},
(0,α) and (0,αx↔y) are connected, where αx↔y is the flavor
configuration obtained from α by switching αx and αy . This
property implies that one can generate any flavor configuration
α′ from α by successively switching the flavors on a pair of
neighboring sites in an appropriate way. Let us assume that
αl = α and αl+1 = β. By letting the hole move around the
closed chain in the clockwise direction l − 1 times, we first
obtain the flavor configuration α′ in which α′

1 = α and α′
2 = β

(see Fig. 1). Next we let the hole move around the triangle loop
{0,1,2} in the clockwise direction once, by which the flavor
α′

1 is exchanged with α′
2 (see Fig. 2). Finally, by letting the

hole move along the chain in the opposite (counterclockwise)
direction l − 1 times, we get the flavor configuration α′′ with
α′′

l = β,α′′
l+1 = α without changing the flavor configuration

outside {l,l + 1}. This proves that the model satisfies the
connectivity condition.

A few comments are in order: The presence of the single
next-nearest-neighbor bond changes drastically the nature of
ground states. In fact, in the purely one-dimensional chain in
which the connectivity condition is not satisfied, all the flavor
configurations become degenerate at U = ∞ in the same way
as in the standard SU(2) case [21]. This degeneracy is removed
if U < ∞ and the ground states form a unique antisymmetric
multiplet, which can be proved using the Perron-Frobenius
argument [22]. In particular, the ground state is a unique SU(n)
singlet if the number of fermions is a multiple of n.

B. Twofold connected lattice with triangle loops

The second example is a class of models defined on twofold
connected lattices containing at least one triangle loop. Typical

FIG. 2. The flavors at sites 1 and 2 are exchanged when the hole
hops around the loop {0,1,2} in the clockwise direction once.
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examples are the triangular and Kagomé lattices. Let us show
that the model of this class satisfies the connectivity condition.
Let {u,v,w} be a triangle loop, and let {x,y} be an arbitrary
bond in the lattice �. Since � is connected, we can find a
path from x to u and another path from y to v. Suppose
that these two paths share the same site z and one cannot
find other paths that do not intersect. Then, the removal of
the site z makes � disconnected. This contradicts the fact
that � is twofold connected. Thus one can always find two
nonintersecting paths, one from x to u and the other from
y to v. It follows from this that there is a loop containing
two bonds {u,v} and {x,y} in �. Noting that {u,v} belongs
to the triangle loop, we can repeat the same argument as in
the previous example, which gives the conclusion that the
connectivity condition is satisfied in the model.

C. Lattice consisting of loops of four sites

In the previous two examples, the existence of a loop
of three sites plays an important role in establishing the
connectivity condition. It is then natural to ask whether the
connectivity condition is satisfied or not in a model on a lattice
without any triangle. However, it seems difficult to answer this
question in a general setting. Here, we instead give a concrete
example: the model on a lattice consisting only of loops of
length 4. Our lattice � can be constructed as follows. Let
C1 be a loop of four sites having four bonds. Let Cl with
l = 2, . . . ,L be identical copies of C1. We construct �2 by
adding C2 to �1 = C1 in such a way that �1 and C2 share
one bond. Similarly, we construct �l by adding Cl to �l−1

in such a way that Cl shares at least one bond with �l−1 and
shares at most one bond with each Cl′ (l′ = 1, . . . ,l − 1) that
forms �l−1. Our lattice is then obtained as � = �L. Typical
examples are square and cubic lattices.

In the following, we shall prove that the model on � with
Ns � n + 2 satisfies the connectivity condition, i.e., any pair
of indices 
 = (z,α) and 
′ = (z′,α′) with common (Nα)nα=1
are connected. To see this, let us consider the subspace with
fixed (Nα)nα=1. Since we have assumed that Ns � n + 2, the
fermion number Nf satisfies Nf = Ns − 1 � n + 1. It is thus
ensured that there is a flavor σ such that Nσ � 2. The presence
of two fermions with flavor σ plays an important role in the

FIG. 3. Three fermions and the hole in a loop Cl . The motion
of the hole does not change the order of flavors in the clockwise
(counterclockwise) direction.

FIG. 4. A pair of the hole and a fermion with flavor σ in loop Cl

can be moved to any other loop Cl′ through shared bonds emphasized
by thick lines.

proof below. As in the previous examples, it suffices to show
that (z,α) and (z,αx↔y) are connected for any bond {x,y} since
the lattice � is obviously twofold connected.

Before proceeding, we give two remarks on the connectivity
and the motion of the hole: (i) In a loop Cl containing
three fermions and the hole, the motion of the hole does not
change the order of flavors in the clockwise (counterclockwise)
direction (see Fig. 3). (ii) One can bring a pair of the hole and a
fermion with a fixed flavor from a loop Cl to any other loop Cl′ .
This is confirmed by the first property (i) and the construction
of �. In fact, there is a sequence of Cl = Cl1 ,Cl2 , . . . ,Clk = Cl′

such that Cli and Cli+1 share a bond, and, by occupying these
shared bonds, a pair of the hole and a fermion can move from
Cl to Cl′ (see Fig. 4).

Let us prove the connectivity of (z,α) and (z,αx↔y) for
an arbitrary bond {x,y} by explicitly constructing a sequence
� such that (z,α) ← � → (z,αx↔y). Here we assume that
αx = α and αy = β. From the construction of �, it is possible
to find a loop Cl = {x,y,u,v} and a path from z to v that
contains neither x nor y. This means that we have �(1) such
that (z,α) ← �(1) → (z(1),α(1)) where z(1) ( �= x,y) is a site in
Cl and α(1) is a certain flavor configuration. We recall that
there is a flavor σ with Nσ � 2. By using two fermions with
flavor σ , we will construct a process in which αx and αy are
switched.

Now suppose that one of the fermions with flavor σ is in
Cl′ . We can find a sequence of shared bonds from Cl to Cl′ ,
as mentioned above. If x or y ∈ Cl (or both of them) touches
the shared bond we transfer the two fermions on {x,y} to the
sites on {u,v}. Then we can bring the hole in Cl to Cl′ through
sites touching the shared bonds, and from (ii) we can bring
back the pair of the hole and the fermion with flavor σ from
Cl′ to Cl . Thus we can find �(2) which connects (z(1),α(1)) to
(z(2),α(2)), where z(2) is a site in Cl = {x,y,u,v}, and α(2) is a
certain flavor configuration. We note that now there are three
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FIG. 5. �(3) connecting (z(2),α(2)) to (z(2),α(3)). It is assumed that {y,u} is a shared bond, so that fermions with flavor α and β were transferred
in the process �(2). In (z(2),α(2)), the position of the hole is z(2) = y, and the local flavor configuration is α(2)

x = β, α(2)
v = α, and α(2)

u = σ , while,
in (z(2),α(3)), the local flavor configuration is changed to α(3)

x = α, α(3)
v = β, and α(3)

u = σ . �(3) exchanges the flavors on the bond {v,x} without
changing the configuration outside {v,x}

fermions with flavors α, β, and σ in Cl . [See Fig. 5 for an
example of a local flavor configuration (α(2)

x ,α(2)
y ,α(2)

u ,α(2)
v ).]

If α or β equals σ , as depicted in Fig. 5, we can find the
sequence �(3) which connects (z(2),α(2)) to (z(2),α(3)), where
α(3) is obtained from α(2) by switching two flavors α and β on
a bond in Cl . Then, by tracing the motion of the pair of the hole
and the fermion with flavor σ backwards, we find the sequence
�(2) such that (z(2),α(3)) ← �(2) → (z(1),α(1)

x↔y). Similarly, we

can find the sequence (z(1),α(1)
x↔y) ← �(1) → (z,αx↔y) by

tracing the hole motion backwards. A desired sequence � is
then obtained by setting � = (�(1),�(2),�(3),�(2),�(1)).

If neither α nor β equals σ , we have to find another fermion
with flavor σ in a certain loop. Repeating the above argument,
we can find �(4) which connects (z(2),α(2)) to (z(2),α(4)) where
the local flavor configuration of α(4) is indicated in Fig. 6. Then,
as shown in Fig. 7, we have (z(2),α(4)) ← �(5) → (z(2),α(5)),
where α(5) is obtained from α(4) by switching two flavors α

and β on a bond in Cl . By introducing �(4) in the same manner
as above, we find

(z(2),α(5)) ← (�(4),�(2)) → (
z(1),α(1)

x↔y

)
← �(1) → (z,αx↔y),

which gives the desired sequence

� = (�(1),�(2),�(4),�(5),�(4),�(2),�(1)).

V. CONCLUSION AND OUTLOOK

We have presented an extension of Nagaoka’s theorem
to the infinite-U Hubbard model with SU(n) symmetry. As
in the SU(2) case, for the model with one hole, we found
that (i) the fully polarized (Nagaoka) states analogous to the
ferromagnetic states are ground states; (ii) these Nagaoka
states are the only possible ground states if the connectivity
condition is satisfied. However, unlike the SU(2) case, here
it is not easy to verify the connectivity condition for given
n and lattice structure. A simple sufficient condition for the
connectivity condition is that the lattice contains at least one
triangle loop. We also found a class of lattices consisting of
loops of length 4 that satisfy the connectivity condition when
the total number of sites Ns is large enough (Ns � n + 2).
Examples include hypercubic lattices in d � 2 dimensions.

An interesting question is whether the Nagaoka states
discussed in the present paper can be detected experimentally.
For the SU(2) case, a controllable scheme to detect Nagaoka
ferromagnetism in optical superlattices has been proposed
[23]. In this scheme, we need to prepare an array of isolated
plaquettes each of which consists of four lattice sites with
three fermions. The Nagaoka transition and the variation of
the total spin in the ground state can then be probed using a
band mapping analysis [24] after switching off the superlattice
potential.

We now extend the above scheme to the SU(n) case with
n > 2. Since positive hopping amplitudes are more difficult
to achieve experimentally, we focus on the case where the
lattice is bipartite and is formed by loops of length 4 (see
Sec. IV C). In this case, one needs to prepare an array of clusters

FIG. 6. �(4) connecting (z(2),α(2)) to (z(2),α(4)). The thick lines represent shared bonds.
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FIG. 7. �(5) connecting (z(2),α(4)) to (z(2),α(5)).

each of which consists of more than n + 2 sites. A simple
choice is to take each cluster as a cube with eight lattice sites,
which implies that n � 6. Fortunately, preparation of the SU(6)
Hubbard system is feasible in current experiments with 173Yb
atoms [7]. Furthermore, an array of cubes can be easily created
by superimposing optical lattices with different periodicities.
We thus expect that the onset of the Nagaoka states in the SU(n)
Hubbard model can be studied experimentally with currently
available techniques.

Finally, we remark on the instability of the Nagaoka states.
In the standard SU(2) case, one can prove that the Nagaoka
states are not the ground states for large enough densities of
holes by constructing a variational state with one overturned
spin which has a lower energy than the Nagaoka states [25–27].
For the model on a square lattice, for example, an extension

of the earlier work yields the best estimate of the critical hole
density δcr = 0.251, above which the Nagaoka state is unstable
[28]. The same variational argument applies to the SU(n)
case, because the model in the subspace with N1 + N2 = Nf

and N3 = · · · = Nn = 0 is described by the SU(2) Hubbard
Hamiltonian. Thus we see that the SU(n) Nagaoka states are
also unstable with respect to the finite concentration of holes,
implying the importance of the precise control of hole densities
in a possible realization of the fully polarized states.
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