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It is generally believed that the BCS-BEC evolution in fermionic systems with s-wave pairing is a smooth
crossover. However, for nonzero orbital-angular-momentum pairing such as p- or d-wave pairing, the system
undergoes a quantum phase transition at the point where the chemical potential μ vanishes. In this paper, we
study the BCS-BEC quantum phase transition and the collective excitations associated with the order-parameter
fluctuations in two-dimensional fermionic systems with p- and d-wave pairings. We show that the quantum phase
transition in such systems can be generically traced back to the infrared behavior of the fermionic excitation at
μ = 0: Ek ∼ kl , where l = 1,2 is the quantum number of the orbital angular momentum. The nonanalyticity of
the thermodynamic quantities is due to the infrared divergence caused by the fermionic excitation at μ = 0. As
a result, the evolution of the Anderson-Bogoliubov mode is not smooth: Its velocity is nonanalytical across the
quantum phase transition.
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I. INTRODUCTION

It was proposed by Eagles [1] and Leggett [2] several
decades ago that by tuning the strength of the attractive
interaction in a many-fermion system, one can realize an
evolution from the Bardeen-Cooper-Schrieffer (BCS) super-
fluidity to Bose-Einstein condensation (BEC) of difermion
molecules. For s-wave interaction, it is generally believed that
the BCS-BEC evolution is a smooth crossover [3–10]. One
of the most interesting systems is the dilute spin- 1

2 Fermi
gas in three dimensions with short-range s-wave attraction.
The system is characterized by a dimensionless parameter
1/(kFas), where as is the s-wave scattering length of the
short-range interaction and kF is the Fermi momentum in
the absence of interaction. For such a system, one finds a
smooth BCS-BEC crossover when the parameter 1/(kFas)
goes from −∞ to ∞. In addition, the Anderson-Bogoliubov
collective mode of fermionic superfluidity with weak attraction
evolves smoothly to the Bogoliubov excitation of weakly
repulsive Bose condensate with strong attraction [5,11,12].
The smooth BCS-BEC crossover with s-wave interaction
has been experimentally studied by using ultracold fermionic
atoms [13], where the s-wave scattering length was tuned by
means of the Feshbach resonance.

On the other hand, for nonzero orbital-angular-momentum
pairing, such as p- or d-wave pairing [14–19], it is generally
accepted that the BCS-BEC evolution is not smooth but associ-
ated with some quantum phase transition. Such quantum phase
transition cannot be characterized by a change of symmetry
or the associated order parameter. Instead, different quantum
phases can be distinguished topologically [14]. The quantum
phase transitions and the finite temperature phase diagrams of
single-species polarized Fermi gases tuned across a p-wave
Feshbach resonance were studied by Gurarie, Radzihovsky,
and Andreev [17] (for an extensive study, see Ref. [10]).
In three dimensions, they showed that across the p-wave
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Feshbach resonance, the system would undergo a quantum
phase transition from a px-wave to a px + ipy-wave superfluid.
Furthermore, the latter state undergoes a topological transition
at zero chemical potential μ.

In this paper, we explore some generic aspects of the BCS-
BEC quantum phase transition in two-dimensional (2D) p- and
d-wave paired Fermi superfluids, which is expected to occur
at the point where the chemical potential μ vanishes [14–16].
While for nonzero orbital-angular-momentum pairing it is
important to explore the order parameter symmetry, in this
paper we show that the generic nature of the BCS-BEC quan-
tum phase transition at μ = 0 in two-dimensional fermionic
systems is independent of the order parameter symmetry but
depends on the infrared behavior of the order parameter.

In general, the superfluid order parameter or the gap
function �(k) is momentum dependent for nonzero orbital-
angular-momentum pairing. The crucial observation in this
paper is that the infrared behavior of the order parameter �(k)
depends only on the quantum number l of the orbital angular
momentum. For lth-wave pairing, we have

�(k) ∼ kl, k → 0. (1)

For instance, the order parameter of p-wave pairing can
be expressed as �(k) = �0kg(ϕ), where ϕ is the polar
angle in two dimensions. The anisotropic px (py) pairing
corresponds to g(ϕ) = cos ϕ (sin ϕ) and the complex px + ipy

pairing corresponds to g(ϕ) = eiϕ . For any case, we find that
the infrared behavior of the order parameter is �(k) ∼ k,
independent of the order parameter symmetry.

The single-particle excitation spectrum in the superfluid
state reads Ek = [ξ 2

k + |�(k)|2]1/2, where ξk = k2/(2M) − μ,
with M being the fermion mass. Therefore, for p-wave (l = 1)
and d-wave (l = 2) pairings, the infrared behavior of the
single-particle spectrum at the quantum phase transition point
μ = 0 is solely determined by the order parameter, that is,

Ek(μ = 0) ∼ kl, k → 0. (2)
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Note that the above behavior applies only to l = 1 and l = 2.
For l > 2, the infrared behavior becomes dominated by the
kinetic term ξk. In this paper, we show that the type of 2D
momentum integral (m,n integer)

I(μ) =
∫ ∞

0
kdk

kn

Em
k

(3)

appears in the expressions of various physical quantities.
This integral is divergent in infrared at μ = 0 if lm � n + 2.
Therefore, for a 2D system with nonzero orbital-angular-
momentum pairing, nonanalyticities generally appear due to
the infrared divergence at the quantum critical point μ = 0.

The nonanalyticities of the thermodynamic quantities at
vanishing chemical potential which signal the quantum phase
transitions in 2D p- and d-wave paired superfluids were
first studied by Botelho and Sa de Melo using Nozieres–
Schmitt-Rink (NSR) type potentials [15,16]. In this paper,
we extend their conclusions significantly. We show that the
nonanalyticities are essentially related to the infrared behavior
of the interaction potential. Therefore, the quantum phase
transition at vanishing chemical potential is independent of
the details of the interaction potential as well as the order
parameter symmetry, which can be intuitively understood
by the integral (3). We also show that the evolution of the
Anderson-Bogoliubov mode is also not smooth; that is, the
sound velocity goes nonanalytically across the quantum phase
transition.

In the rest of this paper, we study the BCS-BEC quantum
phase transition and the behavior of Anderson-Bogoliubov
mode across the phase transition for two typical cases: p-wave
pairing in spinless Fermi gases in Sec. II and d-wave pairing
in spin- 1

2 Fermi gases in Sec. III.

II. p-WAVE PAIRING IN SPINLESS FERMI GASES

For a 2D interaction potential V (r), the momentum-space
matrix element V (k,k′) can be expressed as [15]

V (k,k′) =
∞∑

n=−∞
einθkk′ V (n)(k,k′), (4)

where θkk′ is the angle between k and k′ and the coefficients
V (n)(k,k′) are given by

V (n)(k,k′) = 2π

∫ ∞

0
drrJn(kr)Jn(k′r)V (r). (5)

Here Jn(x) is the Bessel function of order n. The n = ±l

components correspond to the lth angular momentum channel.
It is possible to retain only the n = ±l terms, by assuming

that the dominant contribution to the scattering processes be-
tween fermions occurs in the lth angular momentum channel.
This assumption may be experimentally relevant since atom-
atom dipole interactions split different angular momentum
channels such that they may be tuned independently.

Using the properties of the Bessel function, in the low
energy limit k → 0 and k′ → 0 we have

V (±l)(k,k′) ∼ kl(k′)l . (6)

Therefore, the potential becomes separable in the low energy
limit. While it is certainly not separable for general values

of k and k′, in the following we use separable potential for
the lth wave interaction to simplify our formulation. Since the
generic features of the BCS-BEC quantum phase transition
with nonzero orbital-angular-momentum pairing are related
solely to the infrared behavior of the interaction potential, the
use of a separable potential is without loss of generality.

The many-body Hamiltonian of 2D spinless fermions can
be written as H = H0 + Hint, where the single-particle part
reads H0 = ∑

k ξkψ
†
kψk and the p-wave interaction part can

be written as

Hint =
∑

k,k′,q

Vp(k,k′)ψ†
k+q/2ψ

†
−k+q/2ψ−k′+q/2ψk′+q/2. (7)

The generic infrared behavior of the p-wave interaction
potential is Vp(k,k′) ∼ kk′ for k,k′ → 0. Without loss of
generality, we consider a separable potential for the p-wave
interaction, Vp(k,k′) = −λp	p(k)	∗

p(k′), where λp is the
coupling constant and the function 	p(k) characterizes the p-
wave pairing symmetry. The infrared behavior of the function
	p(k) is

	p(k) ∼ k, k → 0. (8)

In the functional path integral formalism, the partition
function of the system at finite temperature T is given by
Z = ∫

DψDψ† exp{−S[ψ,ψ†]}, where the action reads

S[ψ,ψ†] =
∫ 1/T

0
dτ

[∑
k

ψ
†
k(τ )∂τψk(τ ) + H (ψ,ψ†)

]
. (9)

To decouple the interaction term we introduce an auxil-
iary complex pairing field �q(τ ), which couples to ψ†ψ†,
and apply the Hubbard-Stratonovich transformation. Using
the Nambu-Gor’kov basis k = (ψk,ψ

†
k)T and integrating

out the fermionic degrees of freedom, we obtain Z =∫
D�D�∗ exp{−Seff[�,�∗]}, with the effective action given

by

Seff =
∫ 1/T

0
dτ

[∑
q

|�q(τ )|2
λp

+ 1

2

∑
k,k′

(
ξkδk,k′ − TrlnG−1

k,k′
)]

, (10)

where the inverse single-particle Green’s function G−1
k,k′ is

given by

G−1
k,k′ =

(
−(∂τ + ξk)δk,k′ �k−k′(τ )	p

( k+k′
2

)
�∗

k−k′(τ )	∗
p

( k+k′
2

) −(∂τ − ξk)δk,k′

)
. (11)

The effective action Seff[�,�∗] cannot be evaluated pre-
cisely. In this work, we consider mainly the zero-temperature
case. Therefore, we follow the conventional approach to
the BCS-BEC crossover problem; that is, we first consider
the superfluid ground state which corresponds to the saddle
point of the effective action and then study the Gaussian
fluctuation around the saddle point. The Gaussian-fluctuation
part corresponds to the collective modes, including the gapless
Goldstone mode or the Anderson-Bogoliubov mode. This
Goldstone mode appears as a resonance in the spectrum of
the density-density correlation function [20]. Therefore, it
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can be experimentally probed by many techniques, including
two-photon Bragg scattering [21,22].

In the superfluid ground state, the pairing field � acquires
a nonzero expectation value �0, which can be set to be real
without loss of generality. Then we decompose the pairing
field as �q(τ ) = �0δq,0 + φq(τ ), where φ is the fluctuation
around the mean field. The effective action Seff[�,�∗] can be
expanded in powers of the fluctuation φ, that is,

Seff[�,�∗] = S (0)
eff (�0) + S (2)

eff [φ,φ∗] + · · · , (12)

where S (0)
eff (�0) is the saddle point or mean-field effective

action with �0 determined by the saddle point condition
∂S (0)

eff /∂�0 = 0.

A. Quantum phase transition

Neglecting the beyond-mean-field contribution, which is
generally thought to be small, we obtain the effective potential

V(�0,μ) = �2
0

λp

+ 1

2

∑
k

(ξk − Ek) (13)

at zero temperature, where the single-particle excitation
spectrum Ek is given by

Ek =
√

ξ 2
k + |�(k)|2. (14)

Here �(k) = �0	p(k) is the gap function for p-wave pairing.
The order parameter �0 is determined by minimizing the
effective potential, which gives the gap equation

1

λp

=
∑

k

|	p(k)|2
4Ek

. (15)

To study the nature of the quantum phase transition, we
focus on the thermodynamic potential �(μ) ≡ V(�0(μ),μ).
Note that the thermodynamic variable here is the chemical
potential μ. The order parameter �0 should be solved as
an implicit function of μ through the gap equation. The first
derivative of the thermodynamic potential with respect to μ

gives the number equation,

n(μ,�0) = −∂�(μ)

∂μ
= 1

2

∑
k

(
1 − ξk

Ek

)
. (16)

Then we consider the second derivative

α(μ) = −∂2�(μ)

∂μ2
. (17)

Considering the fact that �0 is an implicit function of μ, we
obtain

α(μ) = ∂n(μ,�0)

∂μ
+ ∂n(μ,�0)

∂�0

∂�0

∂μ
. (18)

The derivative of �0 with respect to μ can be obtained from
the gap equation. We have

∂�0

∂μ
= ∂n(μ,�0)

∂�0

(
∂2V(�0,μ)

∂�2
0

)−1

. (19)

Therefore, α(μ) can be expressed as

α(μ) = ∂n(μ,�0)

∂μ
+

(
∂n(μ,�0)

∂�0

)2 (
∂2V(�0,μ)

∂�2
0

)−1

. (20)

We note that the second term was missing in the previous
study [15]. However, the nonanalytical behavior is dominated
by the first term. Therefore, the conclusions in Ref. [15] are still
reliable. The derivatives in Eq. (20) can be explicitly evaluated
as

∂n(μ,�0)

∂μ
= �2

0

2

∑
k

|	p(k)|2
E3

k

,

∂n(μ,�0)

∂�0
= �0

2

∑
k

ξk|	p(k)|2
E3

k

, (21)

∂2V(�0,μ)

∂�2
0

= �2
0

2

∑
k

|	p(k)|4
E3

k

.

By using an NSR-type potential, Botelho and Sa de Melo
found that the quantity α (proportional to the isothermal
compressibility) is nonanalytical at μ = 0 [15]. Here we
show that this nonanalyticity generally appears due to infrared
divergence at μ = 0. Actually, for k → 0, we have 	p(k) ∼ k

and Ek ∼ k at μ = 0. Therefore the momentum integrals in
Eq. (18) are infrared safe at μ = 0. Then we further consider
the derivatives of α(μ) with respect to μ. Actually, without
explicit calculations, we find that the following momentum
integral

I1(μ) =
∑

k

|	p(k)|2
E5

k

(22)

appears in the expression of ∂2α(μ)/∂μ2. At vanishing
chemical potential μ = 0, the infrared behavior of the integral
is

I1(0) ∼
∫ ε

0
kdk

k2

k5
∼

∫ ε

0

dk

k2
. (23)

Therefore, this integral is infrared divergent. As a result, the
derivative ∂2α(μ)/∂μ2 is divergent at the point μ = 0, which
indicates that ∂α(μ)/∂μ is discontinuous at μ = 0. Thus the
quantity α(μ) itself is nonanalytical across the quantum critical
point μ = 0.

The above discussion shows that a quantum phase transition
occurs at μ = 0, indicated by the nonanalyticity of the
thermodynamic potential. The nonanalyticity is caused solely
by the infrared behavior of the p-wave pairing potential and is
independent of the details of the interaction as well as the order
parameter symmetry (i.e., the angle dependence of the gap
function). Therefore, the BCS-BEC quantum phase transition
is quite generic in two-dimensional systems, driven by the
infrared divergence at μ = 0.

In Fig. 1, we show the numerical results of α(μ) for two
typical p-wave pairings: the complex and isotropic px + ipy

pairing and the anisotropic px pairing. For the px + ipy

pairing, the superfluid state is fully gapped for both μ > 0
and μ < 0, and it is only gapless at μ = 0. For px pairing, the
superfluid state is gapped for μ < 0 and gapless for μ > 0.
In the calculation we have adopted a NSR-type potential
to regularize the ultraviolet divergence in the gap equation.
However, as we have argued above, the nonanalytical behavior
at μ = 0 does not depend on this specific choice. The results
in Fig. 1 show that the nonanalytical behavior appears for
both isotropic and anisotropic pairings, consistent with our
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FIG. 1. The second derivative of the thermodynamic potential
�(μ) with respect to μ as a function of the density n for the isotropic
px + ipy pairing (upper panel) and the anisotropic px pairing (lower
panel). The inserts show the chemical potential μ as a function of
n. In this calculation, we employ the NSR-type potential [3] for the
2D case, 	(k) = (k/k1)g(ϕ)/(1 + k/k0)3/2 [15]. Here g(ϕ) = eiϕ for
px + ipy pairing and g(ϕ) = cos ϕ for px pairing. In this potential
model, k0 ∼ r−1

0 , where r0 plays the role of the interaction range. k0

and k1 set the momentum scales in the short and long wavelength
limits, respectively. The density n has been normalized such that
n = 1 at μ = 0. All quantities are shown in proper units.

conclusion that the nonanalytical behavior is solely due to the
infrared behavior of the pairing interaction.

B. Collective modes

To study the behavior of the collective modes across
the BCS-BEC quantum phase transition, we consider the
Gaussian-fluctuation part S (2)

eff [φ,φ∗]. It can be written in the
bilinear form

S (2)
eff = 1

2

∑
Q

�†(Q)M(Q)�(Q), (24)

where Q = (iνn,q) with νn being the boson Matsubara
frequency, �(Q) = [φ(Q),φ∗(−Q)]T, and the 2 × 2 matrix
M(Q) is the inverse of the collective-mode propagator. The
matrix elements of M(Q) are constructed by using the mean-
field fermion propagator G(K), which is obtained from the
expression of Gk,k′(τ ). Here K = (iωn,k), with ωn being the
fermion Matsubara frequency. We have

G−1(K) =
(

iωn − ξk �0	p(k)

�0	
∗
p(k) iωn + ξk

)
. (25)

Then the matrix elements of M(Q) can be expressed as

M11(Q) = 1

λp

+ 1

4

∑
K

|	p(k)|2Tr [G11(K+)G22(K−)] ,

M12(Q) = 1

4

∑
K

|	p(k)|2Tr [G12(K+)G12(K−)] , (26)

where K± = K ± Q/2. In addition, we have M22(Q) =
M11(−Q) and M21(Q) = M12(Q). Completing the summation
over the boson Matsubara frequency, we obtain at zero
temperature

M11(Q) = 1

λp

+
∑

k

|	p(k)|2
2

×
(

u2
+u2

−
iνn − E+ − E−

− υ2
+υ2

−
iνn + E+ + E−

)
,

M12(Q) = −
∑

k

|	p(k)|2
2

×
(

u+υ+u−υ−
iνn − E+ − E−

− u+υ+u−υ−
iνn + E+ + E−

)
. (27)

Here + and − denote the momenta k + q/2 and k − q/2,
respectively. u2

k and υ2
k are the BCS distribution functions

defined as u2
k = 1 − υ2

k = (1/2)(1 + ξk/Ek).
Taking the analytical continuation iνn → ω + i0+, the

dispersions ω(q) of the collective modes are determined
by the equation det M[ω(q),q] = 0. It is usual to decom-
pose M11(ω,q) as M11(ω,q) = M+

11(ω,q) + M−
11(ω,q), where

M+
11(ω,q) and M−

11(ω,q) are even and odd functions of ω,
respectively. Meanwhile M12(ω,q) and M21(ω,q) are even
functions of ω automatically. Then we separate the complex
field φ(Q) into its amplitude part λ(Q) and phase part θ (Q),
φ(Q) = λ(Q) + i�0θ (Q). The effective action S (2)

eff becomes

S (2)
eff = 1

2

∑
Q

(λ∗(Q) θ∗(Q))N(Q)

(
λ(Q)

θ (Q)

)
, (28)

where the matrix elements of N(Q) read N11(Q) = 2(M+
11 +

M12), N22(Q) = 2�2
0(M+

11 − M12), N12(Q) = 2i�0M−
11, and

N21(Q) = −2i�0M−
11. Since M−

11(0,q) = 0, the amplitude and
phase modes decouple completely at ω = 0. At the saddle
point we have precisely M+

11(0,0) = M12(0,0). Therefore, the
phase mode at q = 0 is gapless, that is, the Goldstone mode
or the Anderson-Bogoliubov mode for fermionic superfluids.

To study the low-energy behavior of the collective modes,
we make a small q and ω expansion of N(Q) at zero
temperature. In general, the expansion takes the form N11 =
A + Cq2 − Dω2 + · · · , N22 = Jq2 − Rω2 + · · · , and N12 =
−N21 = −iBω + · · · . The explicit forms of the expansion
parameters A,B,D, and R can be evaluated as

A = �2
0

2

∑
k

|	p(k)|4
E3

k

, B = �0

4

∑
k

ξk|	p(k)|2
E3

k

,

(29)

D = 1

8

∑
k

ξ 2
k |	p(k)|2

E5
k

, R = �2
0

8

∑
k

|	p(k)|2
E3

k

.

The phase stiffness J is related to the superfluid density ns by
J = ns/(4M). The superfluid density ns can also be obtained
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from its standard definition [23]. When the superfluid moves
with a uniform velocity υs , the pair field transforms as � →
�e2iMυ s ·r. The superfluid density ns is defined as the response
of the thermodynamic potential � to an infinitesimal velocity
υs ; that is, �(υs) = �(0) + 1

2nsυ
2
s + O(υ4

s ). For the present
system, the superfluid density equals the total fermion density
n at zero temperature, guaranteed by the Galilean invariance.

The dispersion of the gapless Anderson-Bogoliubov mode
is given by

ω(q) = cs |q|, (30)

where the sound velocity cs reads

cs =
√

J

R + B2/A
. (31)

By comparing the expansion parameters A,B, and R with the
expressions in Eq. (21), we find that

R = 1

4

∂n(μ,�0)

∂μ
,

B = 1

2

∂n(μ,�0)

∂�0
, (32)

A = ∂2V(�0,μ)

∂�2
0

.

Therefore, we have

cs =
√

n

Mα
. (33)

We note that this relation is quite generic. It also applies to
s-wave fermionic superfluids. Since n goes smoothly with μ

we conclude that the sound velocity behaves nonanalytically
across the quantum phase transition point μ = 0. In Fig. 2,
we show the behavior of the sound velocity cs around the
BCS-BEC quantum phase transition, using the same potential
model as employed in Fig. 1. It shows obviously that the
evolution of the Anderson-Bogoliubov mode is not smooth,
corresponding to the BCS-BEC quantum phase transition.

III. d-WAVE PAIRING IN SPIN- 1
2 FERMI GASES

The many-body Hamiltonian of 2D spin- 1
2 fermions can

be written as H = H0 + Hint, where the single-particle part
reads H0 = ∑

k ξk(ψ†
↑,kψ↑,k + ψ

†
↓,kψ↓,k) and the d-wave in-

teraction part is

Hint =
∑

k,k′,q

Vd (k,k′)ψ†
↑,k+q/2ψ

†
↓,−k+q/2ψ↓,−k′+q/2ψ↑,k′+q/2.

(34)

The generic infrared behavior of the d-wave interaction
potential is Vd (k,k′) ∼ k2(k′)2 for k,k′ → 0. Here we also con-
sider a separable potential for d-wave interaction, Vd (k,k′) =
−λd	d (k)	∗

d (k′), where λd is the d-wave coupling constant
and the function 	d (k) characterizes the d-wave pairing
symmetry. The infrared behavior of the function 	d (k) is

	d (k) ∼ k2, k → 0. (35)

As a result, the infrared divergence at μ = 0 is more pro-
nounced for d-wave pairing.

0.9 0.95 1 1.05 1.1
0.21

0.22

0.23

n

c s
0.9 0.95 1 1.05 1.1

0.17

0.18

0.19

n
c s

FIG. 2. The velocity of the Anderson-Bogoliubov mode as a
function of the density n for the isotropic px + ipy pairing (upper
panel) and the anisotropic px pairing (lower panel). In the calculation
we employ the same potential model as used in Fig. 1. All quantities
are shown in proper units.

The partition function of the system is given by Z =∫
DψDψ† exp{−S[ψ,ψ†]}, where the action reads

S[ψ,ψ†] =
∫ 1/T

0
dτ

[∑
k,σ

ψ
†
σ,k(τ )∂τψσ,k(τ ) + H (ψ,ψ†)

]
.

(36)

Again, we introduce the auxiliary complex pairing field
�q(τ ), which couples to ψ

†
↑ψ

†
↓, and apply the Hubbard-

Stratonovich transformation. With the help of the Nambu-
Gor’kov basis defined as k = (ψ↑,k,ψ

†
↓,k)T we obtain

Z = ∫
D�D�∗ exp{−Seff[�,�∗]}, where

Seff =
∫ 1/T

0
dτ

[∑
q

|�q(τ )|2
λd

+
∑
k,k′

(
ξkδk,k′ − TrlnG−1

k,k′
)]

.

(37)

Here the inverse single-particle Green’s function G−1
k,k′ takes a

similar form:

G−1
k,k′ =

(
−(∂τ + ξk)δk,k′ �k−k′(τ )	d

( k+k′
2

)
�∗

k−k′(τ )	∗
d

( k+k′
2

) −(∂τ − ξk)δk,k′

)
. (38)

Following the same method used in the previous section,
we decompose the pairing field as �q(τ ) = �0δq,0 + φq(τ ),
where φ is the fluctuation around the mean field. The
effective action Seff[�,�∗] can be expanded in powers of
the fluctuation φ, Seff[�,�∗] = S (0)

eff (�0) + S (2)
eff [φ,φ∗] + · · · ,
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where S (0)
eff (�0) is the saddle point or mean-field effective

action with �0 determined by the saddle point condition
∂S (0)

eff /∂�0 = 0.

A. Quantum phase transition

The effective potential for d-wave pairing at zero tempera-
ture is given by

V(�0,μ) = �2
0

λd

+
∑

k

(ξk − Ek) . (39)

Note that the factor 1/2 in Eq. (10) is replaced by 1 here due to
the appearance of spin degree of freedom. The single-particle
excitation spectrum Ek is also given by

Ek =
√

ξ 2
k + |�(k)|2, (40)

where �(k) = �0	d (k) is the gap function for d-wave pairing.
The order parameter �0 is determined by the d-wave gap
equation

1

λd

=
∑

k

|	d (k)|2
2Ek

. (41)

To study the nature of the quantum phase transition, we also
focus on the thermodynamic potential �(μ) ≡ V(�0(μ),μ).
The first derivative of the thermodynamic potential with
respect to μ gives the number equation,

n(μ,�0) = −∂�(μ)

∂μ
=

∑
k

(
1 − ξk

Ek

)
. (42)

Then we consider the second derivative

α(μ) = −∂2�(μ)

∂μ2
. (43)

Again, this quantity can be expressed as

α(μ) = ∂n(μ,�0)

∂μ

+
(

∂n(μ,�0)

∂�0

)2 (
∂2V(�0,μ)

∂�2
0

)−1

. (44)

We note that the second term was missing in the previous
study [16]. However, the divergent behavior of α is governed
by the first term. Therefore, the results in Ref. [16] are still
reliable. The derivatives in Eq. (44) can be explicitly evaluated
as

∂n(μ,�0)

∂μ
= �2

0

∑
k

|	d (k)|2
E3

k

,

∂n(μ,�0)

∂�0
= �0

∑
k

ξk|	d (k)|2
E3

k

, (45)

∂2V(�0,μ)

∂�2
0

= �2
0

∑
k

|	d (k)|4
E3

k

.

By using a NSR-type potential, Botelho and Sa de Melo
showed that α is divergent at μ = 0 [16]. Here we show that
this divergence generally appears due to an infrared divergence

at μ = 0. For k → 0, we have 	d (k) ∼ k2 and therefore Ek ∼
k2 at μ = 0. As a result, the momentum integral

I2(μ) =
∑

k

|	d (k)|2
E3

k

(46)

is infrared divergent at μ = 0. Actually, at μ = 0, the infrared
behavior of the above integral is

I2(0) ∼
∫ ε

0
kdk

k4

k6
∼

∫ ε

0

dk

k
. (47)

Therefore, the quantity α(μ) itself is divergent at μ = 0, which
indicates a quantum phase transition. This is not surprising,
because the infrared divergence should be more pronounced
for d-wave pairing.

The above discussion shows that a quantum phase tran-
sition occurs at μ = 0 for d-wave pairing, indicated by the
divergence of the quantity α(μ). The divergence is also caused
solely by the infrared behavior of the d-wave pairing potential
and is independent of the details of the interaction as well as
the order parameter symmetry (i.e., the angle dependence of
the gap function).

In Fig. 3, we show the numerical results of α(μ) for two
typical d-wave pairings: the complex and isotropic dx2−y2 +
2idxy pairing and the anisotropic dx2−y2 pairing. For dx2−y2 +
2idxy pairing, the superfluid state is fully gapped for both
μ > 0 and μ < 0, and it is only gapless at μ = 0. For dx2−y2
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FIG. 3. The second derivative of the thermodynamic potential
�(μ) with respect to μ as a function of the density n for the isotropic
dx2−y2 + 2idxy pairing (upper panel) and the anisotropic dx2−y2

pairing (lower panel). The inserts show the chemical potential μ as a
function of n. In this calculation, we employ the NSR-type potential
for d-wave interaction, 	(k) = (k/k1)2g(ϕ)/(1 + k/k0)5/2 [16]. Here
g(ϕ) = cos 2ϕ for dx2−y2 pairing and g(ϕ) = e2iϕ for dx2−y2 + 2idxy

pairing. The density n has been normalized such that n = 1 at μ = 0.
All quantities are shown in proper units.
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pairing, the superfluid state is gapped for μ < 0 and gapless for
μ > 0. In the calculation we have also adopted a NSR-type
potential to regularize the ultraviolet divergence in the gap
equation. However, as we mentioned above, the divergence at
μ = 0 does not depend on this specific choice. The results in
Fig. 3 show that the divergence appears for both isotropic and
anisotropic pairings, consistent with our conclusion that the
divergence is solely due to the infrared behavior of the d-wave
pairing interaction.

B. Collective modes

To study the behavior of the collective modes across the
BCS-BEC quantum phase transition for d-wave pairing, we
also consider the Gaussian-fluctuation part S (2)

eff [φ,φ∗], which
can also be written as

S (2)
eff = 1

2

∑
Q

�†(Q)M(Q)�(Q). (48)

The matrix elements of M(Q) are also constructed using the
mean-field fermion propagator G(K) given by

G−1(K) =
(

iωn − ξk �0	d (k)

�0	
∗
d (k) iωn + ξk

)
. (49)

We have

M11(Q) = 1

λd

+ 1

2

∑
K

|	d (k)|2Tr [G11(K+)G22(K−)] ,

M12(Q) = 1

2

∑
K

|	d (k)|2Tr [G12(K+)G12(K−)] . (50)

The relations M22(Q) = M11(−Q) and M21(Q) = M12(Q)
also hold here. By completing the summation over the boson
Matsubara frequency, we obtain at zero temperature

M11(Q) = 1

λd

+
∑

k

|	d (k)|2

×
(

u2
+u2

−
iνn − E+ − E−

− υ2
+υ2

−
iνn + E+ + E−

)
,

M12(Q) = −
∑

k

|	d (k)|2

×
(

u+υ+u−υ−
iνn − E+ − E−

− u+υ+u−υ−
iνn + E+ + E−

)
. (51)

Here the notations are the same as in the last section.
The dispersions ω(q) of the collective modes are also

determined by the equation det M[ω(q),q] = 0. Again, we
decompose M11(ω,q) as M11(ω,q) = M+

11(ω,q) + M−
11(ω,q),

where M+
11(ω,q) and M−

11(ω,q) are even and odd functions
of ω, respectively. Then we separate the complex field φ(Q)
into its amplitude part λ(Q) and phase part θ (Q), φ(Q) =
λ(Q) + i�0θ (Q). The effective action S (2)

eff becomes

S (2)
eff = 1

2

∑
Q

(λ∗(Q) θ∗(Q))N(Q)

(
λ(Q)

θ (Q)

)
, (52)

where the matrix elements of N(Q) read N11(Q) = 2(M+
11 +

M12), N22(Q) = 2�2
0(M+

11 − M12), N12(Q) = 2i�0M−
11, and

N21(Q) = −2i�0M−
11. At the saddle point we also have

precisely M+
11(0,0) = M12(0,0) for d-wave pairing. Therefore,

the phase mode at q = 0 is gapless, corresponding to the
Anderson-Bogoliubov mode for d-wave pairing.

The small q and ω expansion of N(Q) also takes the form
N11 = A + Cq2 − Dω2 + · · · , N22 = Jq2 − Rω2 + · · · , and
N12 = −N21 = −iBω + · · · . The explicit forms of the expan-
sion parameters A,B,D, and R here are given by

A = �2
0

∑
k

|	d (k)|4
E3

k

, B = �0

2

∑
k

ξk|	d (k)|2
E3

k

,

(53)

D = 1

4

∑
k

ξ 2
k |	d (k)|2

E5
k

, R = �2
0

4

∑
k

|	d (k)|2
E3

k

.

The phase stiffness J is also related to the superfluid density
ns by J = ns/(4M) with ns = n at zero temperature.

The dispersion of the gapless Anderson-Bogoliubov mode
is given by ω(q) = cs |q|, where the sound velocity cs reads

cs =
√

J

R + B2/A
. (54)

Comparing the expansion parameters A,B, and R with the
expressions in Eq. (45), we also obtain the following relations
for d-wave pairing:

R = 1

4

∂n(μ,�0)

∂μ
,

B = 1

2

∂n(μ,�0)

∂�0
, (55)

A = ∂2V(�0,μ)

∂�2
0

.

Therefore, for d-wave pairing we also have

cs =
√

n

Mα
. (56)

Since the quantity α is divergent at the quantum phase transi-
tion point μ = 0, the sound velocity cs goes nonanalytically
across the quantum phase transition and vanishes at μ = 0. In
Fig. 4, we show the behavior of the sound velocity cs around the
BCS-BEC quantum phase transition, using the same potential
model for d-wave pairing as employed in Fig. 3. It shows that
the evolution of the Anderson-Bogoliubov mode for d wave is
also not smooth. The vanishing of the sound velocity cs may
bring interesting thermodynamic consequences. For instance,
the low-temperature specific heat caused by the Goldstone
mode can be given by

Cv = 2π2

15c3
s

T 4. (57)

Therefore, the low-temperature specific heat of the fermionic
superfluids near μ = 0 should be very large for d-wave pairing.

On the other hand, the expansion parameter D, which
is related to the massive amplitude mode or the so-called
Anderson-Higgs mode, is divergent at the quantum phase tran-
sition point μ = 0. A rough estimation of the mass gap of the
amplitude mode can be given by MAH =

√
(A + B2/R)/D,

which vanishes at μ = 0. This indicates that the amplitude
mode gets softened around the quantum phase transition point,
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FIG. 4. The velocity of the Anderson-Bogoliubov mode as a
function of the density n for the isotropic dx2−y2 + 2idxy pairing
(upper panel) and the anisotropic dx2−y2 pairing (lower panel). In the
calculation we employ the same potential model as used in Fig. 3. All
quantities are shown in proper units.

which could be interesting for future identification of the
massive Anderson-Higgs mode in fermionic superfluids.

IV. SUMMARY

While it is generally accepted that the BCS-BEC evolu-
tion in fermionic systems with s-wave pairing is a smooth

crossover, for nonzero orbital-angular-momentum pairing
such as p- or d-wave pairing, the BCS-BEC evolution is
associated with a quantum phase transition at vanishing
chemical potential μ. In this paper, we have studied some
generic features of the BCS-BEC quantum phase transition
and the collective excitations in two-dimensional fermionic
systems with p- and d-wave pairings. Our generic conclusions
can be summarized as follows:

(1) The quantum phase transition in two-dimensional
fermionic systems is essentially related to the infrared behavior
of the pairing interaction, which causes the infrared behavior
of the fermionic excitation at μ = 0: Ek ∼ kl , where l = 1
for p-wave pairing and l = 2 for d-wave pairing. The
nonanalyticities of the thermodynamic quantities are due to
the infrared divergence caused by the fermionic excitation at
μ = 0.

(2) The evolution of the Anderson-Bogoliubov mode is
not smooth: Its velocity is nonanalytical across the quantum
phase transition, due to the infrared divergence caused by the
fermionic excitation at μ = 0.

(3) The BCS-BEC quantum phase transition and nonsmooth
evolution of the collective modes in 2D systems with nonzero
orbital-angular-momentum pairing are solely related to the
infrared behavior of the pairing interaction and are independent
of the details of the interaction potential as well as the pairing
symmetry.

Finally, we point out that while we have studied the 2D
continuum models, the generic features of the BCS-BEC
quantum phase transition summarized above also apply to
fermions in a 2D square lattice [12,22] since the infrared
behavior of the fermionic quasiparticles remains. Therefore, it
is interesting to extend our studies to lattice systems.
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[16] S. S. Botelho and C. A. R. Sá de Melo, Phys. Rev. B 71, 134507
(2005).

[17] V. Gurarie, L. Radzihovsky, and A. V. Andreev, Phys. Rev. Lett.
94, 230403 (2005).

[18] C.-H. Cheng and S.-K. Yip, Phys. Rev. Lett. 95, 070404 (2005).
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