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A two-body correlated basis set is used to develop a many-body theory which is valid for any number of
bosons in the trap. The formalism incorporates the van der Waals interaction and two-body correlations in an
exact way. The theory has successfully been applied to Bose-Einstein condensates—dilute weakly interacting
and also dilute but having a large scattering length. Even in the extreme dilute condition, we observe the
breakdown of the shape-independent approximation and the interatomic correlation plays an important role in the
large particle-number limit. This correlated many-body calculation can handle, within the two-body correlation
approximation, the entire range of atom number of experimentally achieved condensates. Next we successfully
push the basis function for large scattering lengths where the mean-field results are manifestly bad. The sharp
increase in correlation energy clearly shows the beyond-mean-field effect. We also calculate one-particle densities
for various scattering lengths and particle numbers. Our many-body calculation exhibits the finite-size effect in
the one-body density.
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I. INTRODUCTION

Since the first experimental observation of Bose-Einstein
condensation (BEC) in trapped ultracold atomic vapors, there
has been a renewed interest in a theoretical description of the
phenomenon [1]. In dilute Bose gases at low temperatures,
the effective atomic interactions have a range much smaller
than the interparticle separation. The number of condensed
atoms (A) in the experimental trap varies from a few to several
million. The most commonly used approach to describe such a
dilute gas of a large number of atoms is the mean-field theory
[2]. At T = 0, as the interatomic interaction is described by the
zero-range contact potential, the mean-field equation takes the
form of the time-independent Gross-Pitaveskii (GP) equation
[2]. In the GP mean-field description of the condensate
properties, the atomic interaction is solely determined by
the mean-field potential which is proportional to the s-wave
scattering length (as). Despite the success of the GP equation
in the weakly interacting regime, the shape-independent
approximation is one of the weak points of the GP equation. It
also does not include particle-particle correlation. In contrast,
a full quantum many-body calculation by the essentially exact
diffusion Monte Carlo (DMC) method keeps all many-body
correlations [3–5]. This method has already been applied to
describe the ground-state properties of dilute BEC [3] for A up
to 100 particles in the trap and the numerical results confirm the
need for quantum corrections not included in the mean-field
equation. However, due to computational difficulties, the
extension of DMC to the entire range of atom number of
experimentally achieved BEC is not possible. Thus the key
role played by the actual finite-range interatomic potential and
the effect of particle-particle correlation for a large A limit
needs additional study.

*Permanent address: Nuclear Division, Aveng Africa Limited, 204
Rivonia Road, Morningside 2057, South Africa.

The main motivation of our work is to employ a many-
body method which can treat quite a large number of atoms
(A � 106) in the trap, take the two-body correlations among
bosons in the dilute regime into account, and use a realistic
(van der Waals) potential. At T = 0, as the Bose gas is
extremely dilute, only two-body collisions become important
and one can safely ignore the three- and higher-body collisions.
Thus the interatomic correlation in the two-body level and the
use of a two-body correlated basis function in the description
of dilute BEC is absolutely justified. Our numerical analysis
also verifies its truth as the correlation function properly
reproduces the dimer wave function. Thus our correlated
many-body calculation offers a good testing ground for
the shape-independent approximation and for the correlation
properties for a wide range of particle numbers. The first
part of our work considers the dilute and weakly interacting
regime, when the diluteness condition n|as |3 � 1 is valid,
with n being the number density of atoms in the trap. The
comparison with the mean-field and Thomas-Fermi results
at large particle number will exhibit the role played by the
shape-dependent two-body interaction potential even in the
extreme dilute condition.

In present-day experiments, a magnetic field under proper
condition is used to tune the interatomic potential and a phys-
ically dilute but strongly interacting condensate is produced
near the Feshbach resonance [6–8]. Thus in the second part
of our work, we are interested to push our correlated basis
functions for dilute (n|as |3 < 1) but large scattering lengths.
The natural 87Rb scattering length is 100a0, with a0 being the
Bohr radius. We also choose a few other scattering lengths, viz.
200a0, 400a0, 600a0, 800a0, and 1000a0, for the same system
of A trapped atoms. In this regime, the shape-independent
approximation fails and the mean-field theory becomes mea-
surably bad. We observe strong dependence of the correlation
energy, both on the number of atoms and on the scattering
length. This definitely shows the importance of many-body
physics beyond the mean-field approach. The calculated
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one-body density also shows very strong dependence on both
the particle number and the scattering length. The one-body
aspects of zero-temperature BEC reveals the finite-size effect
where the quantum fluctuation is very important.

The paper is organized as follows. In Sec. II, we briefly
describe the correlated potential harmonic basis and the
technique to push it for particle numbers of the order of
millions. In Sec. III, we present our numerical procedure and
the results. In Sec. IV, we draw our conclusions.

II. METHODOLOGY

A. Correlated potential harmonic basis

The Schrödinger equation for a system of A = N + 1
identical bosons of mass m, confined by an externally applied
trapping potential Vtrap and interacting via a two-body potential
V (�ri − �rj ), is⎡

⎣− h̄2

2m

A∑
i=1

∇2
i +

A∑
i=1

Vtrap(�ri)

+
A∑

i,j>i

V (�ri − �rj ) − E

⎤
⎦ �(�r1, . . . ,�rA) = 0, (1)

where E is the total energy of the system and �ri is the
position vector of the ith particle. Introducing N Jacobi vectors
(�ζi, i = 1, . . . ,N ), the center-of-mass motion is separated and
the relative motion is described by[

−h̄2

m

N∑
i=1

∇2
ζi

+ Vtrap + Vint(�ζ1, . . . ,�ζN )

− ER

]
�(�ζ1, . . . ,�ζN ) = 0, (2)

where Vint is the sum of all pairwise interactions. ER is the
relative energy of the system, i.e., E = ER + 3/2h̄ω, where
ω is the trap frequency. We choose the relative separation �rij

of the (ij )-interacting pair as �ζN , whose polar coordinates are
(ϑ,ϕ), and define the hyperradius (r) of the set of A particles
as r2 = ∑N

i=1 ζ 2
i . Next, introducing the hyperangles (�N ) as

in Ref. [9], the Schrödinger equation for the relative motion
is expressed in terms of the hyperspherical variables. In the
hyperspherical harmonic expansion method (HHEM) [9], the
relative wave function is expanded in the complete set of
hyperspherical harmonics (HH), which are a 3N -dimensional
generalization of spherical harmonics. The HH basis keeps
all possible correlations. However, as already mentioned, due
to large degeneracy in the HH basis, which increases very
rapidly with A, the HHEM becomes impractical for A > 3.
For dilute BEC, only two-body correlations are important, as
the possibility of depletion of the condensate due to three-body
recombination is negligible. Thus, instead of choosing the
full HH basis, we can choose a subset, called the potential
harmonics (PH) subset [10,11], which involves two-body
correlations only. The PH basis was introduced by Fabre long
ago to treat nuclear systems, where disregard of higher-body
correlations was doubtful. However, in the context of dilute
BEC, the choice of two-body correlation is meaningful and

the PH basis set may be a good correlated basis set for
the description of various properties of the dilute BEC.
It implies that when an (ij ) pair interacts, the remaining
particles are noninteracting spectators. This picture is true
for all possible (ij ) pairs. We define the hyperradius for the
(N − 1) noninteracting particles as ρ2

ij =
∑N−1

i=1 ζ 2
i , so that r2 =

ρ2
ij + r2

ij , since �rij = �ζN . Then, the hyperangle φ is introduced
such that rij = r cos φ and ρij = r sin φ. The BEC many-body
wave function � is then written as a sum of two-body Faddeev
components � =∑A

i,j>i φij , where φij =φij (�rij ,r). Since only
two-body correlations are relevant, the Faddeev component
φij is independent of the coordinates of all the particles other
than the interacting pair. Thus the angular and hyperangular
momenta for the (ij ) partition of the system are contributed
by the interacting pair only. φij is then expanded in the PH
basis {P
m

2K+
(�ij

N )}, which is the subset of HH necessary for
the expansion of V (�rij ), as

φij = r−(3N−1)/2
∑
K

P lm
2K+l

(
�

ij

N

)
ul

K (r). (3)

Note that {P
m
2K+
(�ij

N )} depends only on �rij , i.e., �ζN , and is

independent of (�ζ1, . . . ,�ζN−1), and �
(ij )
N denotes the full set

of hyperangles in 3N -dimensional space for the choice �ζN =
�rij . Substitution of this in the Faddeev equation for the (ij )
partition and projection on the PH corresponding to the (ij )
partition gives a set of coupled differential equations (CDE),{

− h̄2

m

d2

dr2
+ h̄2[L(L + 1) + 4K(K + α + β + 1)]

mr2
− ER

+Vtrap(r)

}
UK
(r) +

∑
K ′

V KK ′ (r)UK ′
(r) = 0, (4)

where V K,K ′ (r) = fK
VKK ′ (r)fK ′
, UK
(r) = fK
u


K (r),L =


 + (3A − 6)/2, α = (3A − 8)/2, and β = 
 + 1/2, with 


being the orbital angular momentum contributed by the
interacting pair; f 2

K
 is a constant representing the overlap
of the PH for interacting partition with the sum of PHs
of all partitions [10], while VKK ′ (r) is the potential matrix
element [11] and is given by

VKK ′ (r) =
∫

P lm∗
2K+l

(
�

ij

N

)
V (rij )P lm

2K ′+1

(
�

ij

N

)
d�

ij

N . (5)

One can, in principle, solve Eq. (4) exactly or by adiabatic
approximation to obtain the energy and wave function of the
condensate.

B. Short-range correlation for a finite-range potential

In the dilute laboratory BEC, the average interparticle
separation is much larger than the actual range of the two-body
interatomic interaction, irrespective of the numerical value of
as . This is indeed necessary to prevent molecule formation
via three-body recombination and external depletion of the
condensate. Due to this and also the fact that the energy of the
interacting pair is negligibly small compared to the energy
scale of the interatomic interaction, the effective two-body
interaction is characterized by the zero-energy scattering. Thus
the effective interaction is described by the s-wave scattering
length as . However, this is strictly true only for small |as | in
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the low-density regime, n|as |3 � 1, with n being the number
density. The assumption of a zero-range contact interaction
makes its strength proportional to as . This assumption in
the mean-field theory gives rise to the GP equation. Thus,
for positive as , the condensate is called repulsive, whereas
negative as corresponds to the attractive condensate. Hence,
the GP equation presents a good description in the low-
density limit. But, for larger |as |, for which n|as |3 becomes
comparable with 1, the two-body interaction strength depends
on the energy scales involved and is no more proportional
to as . Thus for larger values of |as |, the GP equation is less
reliable. For intermediate values, the Lee-Huang-Yang (LHY)
correction [12] accounts for the deviations. For very large
values of as close to the Feshbach resonance, the GP equation
breaks down. Besides this, the finite range of the realistic
two-body interaction introduces corrections, which are shape
dependent and not universal. Uniform condensates of dense
Bose gases, having large positive as and interacting through
an attractive short-range interaction, were studied by Cowell
et al. [13] and by Song and Zhou [14]. It was observed that the
mean-field result including the LHY correction differs greatly
from the more exact calculations. Furthermore, the energy per
particle, chemical potential, etc. approach a saturation value
as as increases beyond the average interparticle separation.
It was also observed that the energy of the Bose gas is
related to that of the Fermi gas near the Feshbach resonance.
These results are strikingly different from those using the GP
equation.

Thus it is interesting to study the behavior of trapped
Bose gases approaching the Feshbach resonance by an ab
initio approach. Inclusion of a finite-range realistic two-body
interaction is also important. Note that a realistic interatomic
interaction is always attractive at larger separations, and has a
strong short-range repulsion. The latter produces a short-range
correlation that forbids the interacting pair to come too
close together. To account for the strong repulsion between
the bosons at short separations, we include an additional
short-range correlation function η(rij ) in the expansion of
φij [15]. This η(rij ) is obtained as the zero-energy solution
of the two-body Schrödinger equation with V (rij ),

[
−h̄2

m

1

r2
ij

d

drij

(
r2
ij

d

drij

)
+ V (rij )

]
η(rij ) = 0. (6)

Its asymptotic form quickly attains η(rij ) ∼ C(1 − as/rij ),
from which as is obtained [16]. In our earlier calculation [15],
we have verified that η(rij ) correctly reproduces the dimer
wave function. Inclusion of η(rij ) in the PH basis dramatically
enhances the rate of convergence of the expansion (since
it correctly follows the short-separation behavior), but at
the same time it makes the expansion basis nonorthogonal.
Standard procedure can handle this, but the process becomes
quite involved and slow in the numerical procedure. Actual
calculation shows that η(rij ) is different from a constant only
in a very narrow interval near the origin, in the BEC length
scale. This makes the overlap matrix close to a constant matrix.
Its effect is then approximately taken through the empirically
obtained asymptotic constant C. The corresponding correlated

potential matrix element is given by [15]

VKK ′ (r) = 1√[
h

α,β

K h
α,β

K ′
]

∫ +1

−1
P

α,β

K (z)V [r
√

(1 + z)/2]

×P
α,β

K ′ (z)η[r
√

(1 + z)/2]W
(z)dz. (7)

Here h
α,β

K and W
(z) are, respectively, the norm and weight
function [17] of the Jacobi polynomial P

α,β

K (z). As a realistic
interatomic potential, we choose the van der Waals potential.
The short-range behavior is modeled by a hard core of radius
rc, which is adjusted to give experimental as [16]. For the
hard-core potential, the lower limit of integration in Eq. (7) is
replaced by zmin = 2( rc

r
)2 − 1.

We tested the correlated potential harmonic expansion
(CPHE) method for both repulsive and attractive BECs:
for attractive BEC, the experimental stability factor is very
accurately reproduced compared to mean-field results, while
properties of repulsive BECs have been extensively reproduced
for A � 15 000 [11,15,18–20]. Although these were in good
agreement with other theoretical results obtained in that
range, still the number of particles is quite far from the
real experimental situation for repulsive BECs. Extending
this for the A → ∞ limit is a very challenging problem.
There is no unique many-body calculation which can describe
accurately the properties of interacting bosons for the entire
range of atoms—from a few tens to several millions. For such
a unique description, interatomic correlations and the realistic
interatomic interaction are essential. CPHE may be an ideal
starting point in this direction. In the CPHE approach used
so far, the potential matrix involves integration containing
Jacobi polynomial P

α,β

K (z) and its weight function Wl(z). In
the A → ∞ limit, both of them change very rapidly with
z, which generates severe numerical problems. With careful
numerical handling [15], we pushed the CPHE limit to A =
15 000 atoms. This method for moderately large A is referred
to as the CPHEM. However, for A > 15 000, the calculation
of VKK ′ (r) is already beyond the limit of a computer. It needs
further theoretical analysis such that one can push the CPHE
to the A → ∞ limit.

C. Extension of CPHE to the A → ∞ limit

In the present work, we utilize a mathematical trans-
formation, employed in Refs. [21,22], to deal with the
aforementioned problems. Within this transformation, the
Jacobi polynomial P

α,β

K (z) transforms for large α (i.e., for
large A) to the associated Laguerre polynomial L

β

K (ζ 2), where
ζ 2 = α(1 + z)/2, in the limit α → ∞. In the same limit,
the weight function of the Jacobi polynomial goes over
to the weight function ζ 2βe−ζ 2

of the associated Laguerre
polynomial. Both are smooth functions of their arguments
and thus the difficulties with the Jacobi polynomials can be
bypassed. The potential matrix VKK ′ (r), in the transformed
correlated potential harmonic expansion method for large
number of particles (CPHEL), takes the form

VK,K ′ (r) = Ac

∫ α

xmin

L
β

K (x)V

(
r

√
x

α

)
η

(
r

√
x

α

)

×L
β

K ′(x)xβ exp(−x)dx, (8)
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where Ac is a constant given by

Ac = (−1)K+K ′

αβ

{ (
2K + α + β + 1

α

) (
2K ′ + α + β + 1

α

)

×
[

�(K + 1)

�(K + β + 1)

] [
�(K ′ + 1)

�(K ′ + β + 1)

]

×
[
�(K + α + β + 1)

�(K + α + 1)

�(K ′ + α + β + 1)

�(K ′ + α + 1)

] }1/2

, (9)

and xmin = (rc/r)2α, with rc being the hard-core radius of our
chosen realistic van der Waals potential.

III. NUMERICAL PROCEDURE AND RESULTS

A. Solution of coupled differential equation

Restricting the K sum in Eq. (3) to an upper limit of Kmax

(which is determined from the requirement of convergence),

we solve the set of coupled differential equations (CDE)
[Eq. (4)] by hyperspherical adiabatic approximation (HAA)
[23]. Assuming that the hyperradial motion is slow compared
to the hyperangular motion, the latter is separated adiabatically
and solved for a fixed value of r . This is achieved by
diagonalizing the potential matrix together with the hyper-
centrifugal repulsion for a fixed r . The lowest eigenvalue
ω0(r) gives the effective potential (as a parametric function
of r) in which the condensate moves [11]. In the uncoupled
adiabatic approximation (UAA), an overbinding correction
term is also included with ω0(r) [23]. Although Eq. (4)
can be solved by an exact numerical algorithm, e.g., the
renormalized Numerov method [24], we employ here the
extreme adiabatic approximation, neglecting the overbinding
correction term of the UAA. Thus in HAA, the approximate
solution (the energy and wave function) of the conden-
sate is obtained by solving a single uncoupled differential

TABLE I. Calculated minimum of eigenpotential (ω0|min), its position, and excitation energies of the two lowest l states (E01 and E02) (all
in o.u.) and the CPU time for different Kmax values and different A. This table shows the extremely fast convergence of the correlated PH basis
expansion.

Kmax 2 4 6
A Quantity

100 ω0|min 165.251233 165.249242 165.248840
at 18.53 18.53 18.53

E01 2.0542 2.0542 2.0542
E02 4.1082 4.1082 4.1082

CPU time 0:13:17 0:39:51 1:21:38
(h:m:s)

1000 ω0|min 2431.556579 2431.549665 2431.549300
at 74.22 74.22 74.22

E01 2.1685 2.1685 2.1685
E02 4.3369 4.3369 4.3369

CPU time 0:16:35 0:49:46 1:41:58
(h:m:s)

10000 ω0|min 51986.15544 51986.07882 51986.07505
at 351.16 351.15 351.15

E01 2.2228 2.2229 2.2228
E02 4.4456 4.4455 4.4456

CPU time 0:18:22 0:55:06 1:52:51
(h:m:s)

20000 ω0|min 135140.95468 135140.73302 135140.71626
at 567.54 567.54 567.54

E01 2.2283 2.2283 2.2283
E02 4.4566 4.4566 4.4565

CPU time 0:17:08 0:51:27 1:45:24
(h:m:s)

100000 ω0|min 1267040.91207 1267040.48387 1267040.45244
at 1742.12 1742.12 1742.12

E01 2.2339 2.2339 2.2339
E02 4.4678 4.4678 4.4678

CPU time 0:19:23 0:58:11 1:59:10
(h:m:s)

1000000 ω0|min 31670143.0254 31670141.9141 31670141.8652
at 8716.92 8716.92 8716.92

E01 2.2357 2.2357 2.2358
E02 4.4714 4.4714 4.4715

CPU time 0:28:42 1:26:06 2:56:20
(h:m:s)
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equation, [
−h̄2

m

d2

dr2
+ ω0(r) − ER

]
ζ0(r) = 0, (10)

subject to appropriate boundary conditions on ζ0(r). The
function ζ0(r) is the collective wave function of the conden-
sate in the hyperradial space. The lowest-lying state in the
effective potential ω0(r) corresponds to the ground state of the
condensate. The total energy of the condensate is obtained by
adding the energy of the center-of-mass motion ( 3

2h̄ω) to ER .
The advantages of this approach are as follows: first, the HAA
basically reduces the 3N-dimensional problem to an effective
one-dimensional one, where the lowest eigenpotential exhibits
all necessary features of BEC; second, the PH basis includes
the two-body correlations exactly and yet the number of
variables involved is only four for any A; third, the use of
a realistic (van der Waals) potential takes both the short-range
repulsion and long-range correlation correctly into account and
finally, one is, basically, facing the task of solving a system
of coupled, single-variable, differential equations of limited
small rank for any A.

B. Results

We use oscillator units (o.u.) throughout, in which length
and energy are expressed in the units of aho = √

h̄/mω and h̄ω,
respectively. We have already mentioned that the interatomic
potential is chosen as the van der Waals potential with a hard
core of radius rc, viz. V (rij )= ∞ for rij � rc, and = −C6

r6
ij

for

rij > rc. The strong short-range repulsion is parameterized by
the hard core and the strength (C6) is known for a given type
of atom, e.g., C6 = 6.4898 × 10−11 o.u. for Rb atoms [16].
The value of rc is adjusted to get the desired value of as [16].

First we check the rate of convergence of the correlated
PH basis expansion as the maximum value of grand orbital
quantum number Kmax increases. In Table I, we present
calculated values of the minimum of eigenpotential (ω0|min),
its position (both in o.u.), excitation energies of the first two
l = 0 excited states (E01 and E02) in o.u., and the CPU time (on
a Dell Inspiron Core2 Duo laptop computer) for different Kmax

values and different particle number (A). We notice that the rate
of convergence as Kmax increases is extremely fast, particularly
as Kmax or A increases. For example, for A = 10 000, ω0|min

changes by only about 7.3 × 10−6% as Kmax increases from
4 to 6. The change becomes smaller as either Kmax or
A increases. For A = 106, the percentage change between
Kmax = 4 to Kmax = 6 is about 1.5 × 10−7. Other calculated
quantities remain practically unchanged. This extremely fast
convergence is due to the use of our correlated PH basis,
which correctly simulates the very short-range behavior of the
interacting-pair Faddeev component. We checked that the rate
of convergence of an uncorrelated PH basis expansion is much
slower. This emphasizes the very important role played by our
correlated PH basis. On the other hand, the CPU time increases
quickly with Kmax, and to a smaller extent with A. Hence we
restrict the K values to a Kmax = 4. For A > 15 000, CPHEL is
used. Thus A = 10 000 and A = 20 000 are calculated using
CPHEM and CPHEL, respectively. One can notice that the
CPU time needed for the same Kmax is smaller for A = 20 000
than that needed for A = 10 000, in spite of an increase of A

TABLE II. Ground-state energy per particle (in o.u.) obtained by
CPHEM for different number (A) of 87Rb atoms in the condensate
for two choices of as = 100 and 1000 Bohr. DMC results are also
presented for comparison [3].

asc A CPHEM DMC

100 3 1.512 1.503
5 1.511 1.507
10 1.523 1.515
20 1.548 1.532
100 1.677 1.651

1000 3 1.549 1.534
5 1.595 1.567
10 1.713 1.642
20 1.890 1.773
50 2.158 2.079
100 2.534 2.454

by a factor of two. This shows that the CPHEL is faster than
the CPHEM.

For the next part of our work, we consider the BEC
experiment at the JILA trap for which as = 100 Bohr =
0.00433 o.u. [1]. The ground-state energy per particle obtained
by our CPHEM for few particles is presented in Table II.

We also present available results of DMC for comparison.
The nice agreement with our correlated but approximate
many-body approach and the exact many-body calculation
demonstrates the importance of correlation in the two-particle
level for dilute and weakly interacting BEC. Due to the
computational difficulty, DMC results are available only up
to ∼100 atoms. However, we can run our many-body code
for quite a large number of atoms (∼millions) without any
computational difficulty. This is because of the fact that the
total number of active degrees of freedom remains always
four, irrespective of the number of atoms. For further compar-
ison with large atom number, we plot the energy per atom in
Fig. 1.

GP and Thomas-Fermi (TF) model results are also pre-
sented. TF results are always lower than both the GP and

TF

GP

CPHEM

A  

E
/A

10510410
(o.u.)

3102101

14

12

10

8

6

4

2

0

(o
.u

.)
(o

.u
.)

(o.u.)

FIG. 1. (Color online) Ground-state energy per atom (in o.u.) by
the correlated potential harmonics expansion approach as a function
of the number of bosons A (using log scale) in the condensate of 87Rb
atoms with as = 100 Bohr. GP and TF results are also shown for
comparison.
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as = 100 a0

log10(A)

N
or

m
a
li
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d
C

E

21.81.61.41.210.80.60.4

0.016

0.014

0.012

0.01

0.008

0.006

0.004

FIG. 2. (Color online) Normalized correlation energy as a func-
tion of log10(A) in the condensate of 87Rb atoms with as = 100 Bohr.

many-body results, as the kinetic-energy term is completely
ignored in the TF limit. However, the difference between
many-body and mean-field energies exists both for moderate
and large numbers of atoms. It indicates that even for such
small scattering lengths, interatomic correlation plays an
important role. We refer to the energy difference Emany−body −
EGP as a correlation energy (ECE).

Normalized correlation energy is defined as ECE

Emany−body

and has been shown as a function of log10(A) in Fig. 2.
Correlation energy smoothly increases with particle num-
ber, which clearly shows the presence of particle-particle
correlation.

Besides the limitation of the GP theory arising from the
assumption of a constant strength of the effective interaction,
its use of a shape-independent zero-range potential for the
interatomic interaction needs to be examined. To test the
validity of this shape-independent approximation (SIA), we
calculate correlation energy as before by gradually increasing
C6, keeping as unchanged.

The hard-core radius is appropriately changed to get the
same as = 100 Bohr [16]. With an increase in C6, the
strength of the long-range attractive interaction increases,
which causes an increase in the actual two-body attraction
[4π

∫ ∞
rc

V (r)r2dr]. The net many-body energy thus decreases
and the correlation energy also decreases with an increase
in the C6 parameter, as shown in Fig. 3. Thus our many-
body calculation acts as the test bed for the validity of the
SIA and to study many-body physics beyond the mean-field
approach.

As already stated in Sec. I, the second important motivation
of our present study is to push the correlated basis function
for larger scattering lengths. In the present work, we limit as

up to 1000 Bohr and study several ground-state properties.
We also show how the effect of correlation gradually builds
in with a continuous increase in scattering length. Thus this
part of our work considers still dilute, but strongly interacting
BEC, where the use of the two-body correlated basis function
is fairly justified. In this limit, mean-field theory and the shape-
independent approximation break down and the beyond-mean-
field effects come into the picture. In Table II, we also present
both the many-body and DMC energies for up to 100 particles
with as = 1000 Bohr.

C6 = 9.0 × 10−11
C6 = 8.0 × 10−11
C6 = 7.0 × 10−11

C6 = 6.489 × 10−11
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FIG. 3. (Color online) Normalized correlation energy as a func-
tion of log10(A) in the condensate of 87Rb atoms with as = 100 Bohr
and different choices of C6 parameter.

Although the DMC and CPHEM results are in close
agreement, many-body energy is slightly but consistently
higher than the DMC results. It may be noted that the
DMC calculation used purely repulsive hard-core potential
or the sum of repulsive and attractive Gaussians, whereas
our many-body theory used the hard core with a long-range
attractive tail. It may be because the shape-dependent potential
plays an important role for larger scattering lengths. In Fig. 4,
we plot the condensate energy per atom as a function of particle
number for as = 1000 Bohr. In the same figure, GP results are
also presented. The large deviation between the mean-field and
many-body energy even for a few-thousand particles shows
that the mean-field approximation is no longer accurate in
such density regime. The interatomic correlation also plays a
significant role here. In Fig. 4, we restricted A up to 10 000.
It should be noted that we can obtain results for A > 10 000,
but the mean-field results become unstable in this limit.

Next, to quantify the effect of correlation, we gradually tune
the scattering length from 100 to 1000 Bohr. We calculate the
normalized correlation energy as before and plot it in Fig. 5 as
a function of scattering length for a fixed number of particles in
the trap. We observe that correlation energy smoothly increases
with as for A = 1000. In this particle limit, the finite-size effect
also comes in, which is beyond the scope of study in the mean-
field approach. For A = 10 000, the normalized correlation

GP

CPHEM
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FIG. 4. (Color online) Ground-state energy per atom (in o.u.) as
a function of the number of bosons A in the condensate of 87Rb atoms
with as = 1000 Bohr. GP energy is also presented for comparison.
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FIG. 5. (Color online) Normalized correlation energy as a func-
tion of scattering length for indicated fixed number of atoms in the
condensate.

energy is large; however, with an increase in scattering length,
it gradually saturates. It indicates that with a further increase
in as , the normalized correlation energy does not change. Thus
the condensate will exhibit the universal behavior of saturation
in relative correlation energy when the scattering length will
be the order of the trap size.

The other important aspect of our present study is the
ground-state correlation properties with various scattering
lengths. We are especially interested in the one-body density,
which contains information regarding the one-particle aspect
of the bosonic system. Although it is not directly measurable,
one can indirectly explore it in the interferometry experiments.
We define the one-body density as the probability density of
finding a particle at a distance �rk from the center of mass of
the condensate as

R1(�rk) =
∫

τ ′
|�|2dτ ′, (11)

where � is the full many-body wave function and the integral
over the hypervolume τ ′ excludes the variable �rk . After a
lengthy but straightforward calculation, we arrive at a closed

as = 0.00433
as = 0.0433

rk

R
1

(o
.u

.)

(o.u.)

r k
)

(

9876543210

0.025

0.02

0.015

0.01

0.005

0

FIG. 6. (Color online) One-body density distribution as a function
of rk (in o.u.) for 87Rb atoms in the condensate with A = 10 000
bosons. Plots shown are for as = 100 Bohr (0.00433 o.u., green
dashed line) and 1000 Bohr (0.0433 o.u., red solid line).

form given by

R1(�rk) = 2α+1/2

π3/2

∫ ∞

0

∫ 1

−1

[
�((D − 3)/2)
�((D − 6)/2)

]
[ζ0(r ′)]2

×
∑
KK ′

χK0(r ′)χK ′0(r ′)
fKlfK ′l

P
αβ

K (z)P αβ

K ′ (z)[
h

αβ

K h
αβ

K ′
]1/2

×
√

1 + z

2

(
1 − z

2

)(D−8)/2

× (
r ′2 + 2r2

k

)(1−D)/2
r ′D−4dr ′dz, (12)

where D = 3A − 3 and h
αβ

K is the norm of the Jacobi
polynomial P

αβ

K (z). In Fig. 6, we present calculated one-body
density as a function of the distance from the trap center for
A = 10 000 with various as . The effect of the interaction
is revealed by the deviation from the Gaussian profile. We
observe sharp changes in R1(�rk) as as increases. For as =
100 Bohr, the density distribution is sharper as the correlation
induced by the interaction is weak, while for as = 1000 Bohr,
the peak is flatter with a large width.

The important point to be noted is that our correlated many-
body approach takes care of the effect of finite size, where
quantum fluctuation is important. To observe the effect of
finite size, we calculate the one-body density for fixed effective
interaction Aas and plot it in Fig. 7. In the mean-field theory,
the net interaction is determined by the effective interaction
parameter (Aas) and does not take into account the finite-
size effect, whereas the many-body results strongly depend
on A and as separately. In Fig. 7, we observe that the many-
body graphs separate for A = 1000 and A = 10 000 for
the same Aas . Thus in the finite-particle range, where the
effect of quantum fluctuation is important, our many-body
result strongly deviates from the mean-field result and gives
the realistic picture of correlation properties.

 0
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FIG. 7. (Color online) One-body density distribution as a function
of rk (in o.u.) for 87Rb atoms in the condensate for fixed effective
interaction Aas = 43.3 (in o.u.). The (a) GP and CPHEM results are
for A = 10 000, as = .00433 o.u. and (b) CPHEM for A = 1000,
as = .0433 o.u.

013608-7



S. A. SOFIANOS et al. PHYSICAL REVIEW A 87, 013608 (2013)

IV. CONCLUSION

This paper presents an approximate quantum many-body
calculation for the inhomogeneous Bose gas. It uses the van der
Waals interaction and keeps all possible two-body correlations.
This two-body correlated basis function is successfully applied
for any number of bosons in the dilute weakly interacting
Bose gas. Our quantum many-body calculation can handle
the entire range of particles which is experimentally achieved,
and thus our many-body theory basically serves as a stringent
test of the mean-field theory for the entire range of particles.
It is also used as the testing bed for the validity of the
shape-independent approximation (SIA). In the study of
ground-state properties, we observe the breakdown of SIA,
as the interatomic correlation plays an important role even in
the dilute regime. Next we push the correlated basis function
for larger scattering lengths, while the condensate is still dilute,
such that the two-body collisions only remain significant.
Thus our many-body theory provides a bottom-up research
to give the realistic picture of the ground-state properties. For
large scattering lengths, we observe a noticeable breakdown
in the mean-field results and the correlation energy shows

saturation properties in the limit of large particle numbers. The
calculation of one-body density also highlights the one-particle
aspect of the bosonic system. We also observe the finite-size
effect in the one-body densities.

The present study is limited to dilute systems with large
scattering lengths, but the condition n|as |3 < 1 is still valid.
In the future, it will be interesting to extend these studies for
strongly interacting systems, where n|as |3 is greater than 1, and
see how far our correlated basis function will be appropriate
to describe the properties of such BECs. The particularly
interesting part will be the study of correlation properties near
the Feshbach resonance where the condensate becomes highly
correlated.
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