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Quantum dynamics in driven sawtooth lattice under uniform magnetic field
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We study the Bloch-Zener oscillation, which is a superposition of Bloch oscillation and Landau-Zener tunneling
between Bloch bands, for a quantum particle in a frustrated sawtooth lattice with and without uniform magnetic
field. Under the single-band tight-binding approximation, the sawtooth lattice is a two-miniband system and
may have a flat band structure. The presence of magnetic field can make the gap between two minibands close,
and around the touch point the dispersion is an asymmetric Dirac cone. We analyze in detail the Landau-Zener
tunneling and Bragg scattering in the Bloch-Zener oscillation and the effect of magnetic field. Our results also
give a clear picture of the dynamical localization in real space induced by the flat band structure of the lattice.

DOI: 10.1103/PhysRevA.87.013607 PACS number(s): 03.75.Lm

I. INTRODUCTION

Bloch oscillation and Landau-Zener tunneling are funda-
mental transport phenomena of an object in periodic potentials
[1–4]. Accelerated by a weak external constant force, an object
undergoes a coherent periodic motion (Bloch oscillation) in
the periodic potential, which is related to the formation of
the energy spectrum of the Wannier-Stark ladder [5] and
localized single-particle states. Tunneling to higher-order
bands (Landau-Zener tunneling [2,3,6,7]) is responsible for
Bloch oscillation damping and broadening of Wannier-Stark
resonances for a stronger driving force. Bloch oscillation and
Landau-Zener tunneling have been demonstrated in a number
of experiments, for example, electrons in semiconductor su-
perlattices [8], light pluses in photonic crystals [9,10], and cold
atoms in an optical lattice [4]. For a multiband system, such
as the system with the usual cosine-shaped potential, whose
band gaps usually decrease rapidly as the energy increases,
a cascade of Landau-Zener tunneling to higher-order bands
would lead to the damping of the Bloch oscillation [11–13]. In
order to study the steady interplay between Bloch oscillation
and Landau-Zener tunneling, which is known as Bloch-Zener
oscillation [14–16], a two-miniband system is needed. For such
a system, the two minibands should be well separated from
the upper ones, and the gap between these two minibands is
small for large Landau-Zener tunneling probability. Because
of the two Wannier-Stark ladder energy spectra with an offset
between them, the Bloch-Zener oscillation is characterized by
two time scales, i.e., the Bloch period and the period of Zener
oscillation [14]. If the two periods are commensurate, the
system will reconstruct at integer multiples of the Bloch-Zener
time.

As one of the simplest frustrated models, the quantum
Heisenberg antiferromagnet model on the sawtooth lattice
has been extensively studied in recent decades [17–25] and
has also an experimental realization in chemistry [26]. Under
high magnetic fields, the spin sawtooth system has been
found to exhibit various peculiar properties, for example,
the macroscopic magnetization jump [27], residual entropy
[28,29], and the enhanced magnetocaloric effect [24,30]. Due
to recent progress in optical lattices for cold atoms [31–33] and
in nanotechnology, which allows the fabrication of quantum-

dot superlattices and quantum-wire systems with any type of
lattice [34–36], flat-band ferromagnetism of Hubbard electrons
in a sawtooth lattice also attracted much attention [37–39].
These systems also exhibit some peculiar properties, such
as highly degenerate ground states constructed exactly by
localized electrons and residual entropy, which are closely
related to their flat band structures.

As the unit cell of the sawtooth chain contains two
asymmetrical sites, its single-particle spectra consist of two
branches, with one of the branches becoming a completely
flat band [40] at a fine-tuning point of the hopping parameters
along the baseline and zigzag path [see Fig. 1(a)]. A peculiar
property related to the flat band is that the corresponding states
in the flat band are localized. If the flat band is the lower band
and partially filled, the ground states are highly degenerate
with nonzero residual entropy. As most previous studies on
the sawtooth lattice focused on the ground-state properties
and thermodynamics for systems without magnetic field, the
quantum dynamics in the sawtooth lattice is rarely studied. In
this paper we shall study the dynamics of a quantum particle
in the driven sawtooth lattice under a uniform magnetic field
and explore the effect of the flat band on the single-particle
dynamics. In the presence of a uniform magnetic field, the band
structure of the sawtooth lattice is dramatically changed; for
example, asymmetric Dirac cone in dispersion may appear for
a particular magnetic field, and the gap between two bands is
tunable by the change of the strength of the magnetic field. As
a two-miniband system with possible partially flat Bloch bands
and a tunable gap for Landau-Zener tunneling, one can expect
that the dynamics of a particle in the driven sawtooth lattice
will be affected by the specific band structure, for example,
Landau-Zener tunneling and Bragg scattering happening at
different times, and dynamical localization of a particle.

This paper is organized as follows. In Sec. II, we introduce
the model and study the spectrum properties for the case
without driving force. We present the Bloch bands under
different parameter regions and discuss the influence of the
magnetic field on the band structure. In Sec. III, we study
the quantum dynamics of a single particle in the sawtooth
under a driving force. The Landau-Zener tunneling and Bragg
scattering in the Bloch-Zener oscillation are analyzed. A
summary is given in the last section.
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FIG. 1. (Color online) (a) The schema of the sawtooth lattice,
driving force F , and magnetic flux φ. t is the hopping amplitude along
the baseline (black dotted line), while t ′ is the hopping amplitude
along the zigzag path (red solid line). The single-particle dispersion
for the sawtooth lattice in the absence of driving force and magnetic
flux with (b) t ′/t = 0.15, (c) t ′/t = 1.1, and (d) t ′/t = 1.5. k is in
units of π/2.

II. BLOCH BANDS FOR A SYSTEM WITHOUT
DRIVING FORCE

Under Landau gauge Ax = −By,Ay = 0, the Hamiltonian
of a driven sawtooth lattice reads

H = −t ′
∑

j

(e−iφπc
†
j cj+1 + H.c.)

− t
∑

j

(c†2j−1c2j+1 + H.c.) − F
∑

j

jnj . (1)

Here we neglect the off-diagonal terms of position operator
x̂ in the Wannier basis, c

†
j (cj ) is the creation (annihilation)

operator of a quantum particle at site j , nj is the particle
number operator, and t > 0 (t ′ > 0) is the hopping amplitude
along the baseline (zigzag path). For the rest of paper we set
t = 1 to be the unit of energy. The parameter F is the strength
of the driving force. The lattice spacing along the baseline is
set to 2, and φ is the magnetic flux in each triangle, which is
related to the magnetic field by φ = BS/φ0. Here S is the area
of a triangle, B is the strength of the magnetic field, and φ0 is
the magnetic flux quantum.

In this section, we study the spectral properties of the
system without driving force (F = 0). The Hamiltonian
with F = 0 can be formulated as a 2 × 2 matrix in terms of
“spinor” �ck = [cA,k,cB,k]T representing two different types of
sites in the unit cell,

H = −
∑

k

�c†k
[

0 t ′(eiπφ + ei2k−iπφ)

t ′(e−iπφ + eiπφ−i2k) 2tcos(2k)

]
�ck,

(2)

where the sum runs over the first Brillouin zone (−π/2,π/2],
B represents the lattice sites in baseline, and A represents the

others. The dispersion is given by

E± = −tcos(2k)

±
√

t2cos2(2k) + 2t ′2[1 + cos(2k − 2φπ )]. (3)

The corresponding Bloch wave functions for both bands are
given by

|χ±〉 = 1√
M±

(uc
†
A,k + E±c

†
B,k)|0〉, (4)

with u = t ′(eiπφ + ei2k−iπφ) and M± = |u|2 + E2
±.

First, we discuss in detail the properties of the dispersion for
the system without magnetic field. When φ = 0, the dispersion
(3) reduces to the well-known dispersion of the sawtooth lattice
[37–40]. We note that almost all previous works focus on
the system with the special ratio t ′/t = √

2, for which the
dispersion becomes

ε+ = 2t,
(5)

ε− = −2t[1 + cos(2k)].

Obviously, one of the Bloch bands is completely flat, and under
the flat dispersion localized eigenstates can be formed, which
are given by [40]

|�j 〉 = 1
2 (c†2j−1 + c

†
2j+1 −

√
2c

†
2j )|0〉. (6)

For the general ratio t ′/t , we classify the dispersion into
three different types. (1) For the system with 0 < t ′/t < 1
[Fig. 1(b)], both bands are the V type. Landau-Zener tunneling
does not happen at the edge of Brillouin zone and is separated
from Bragg scattering against the usual case where both take
place at the edge of the Brillouin zone ([14,41]). The gap for
Landau-Zener tunneling, which happens between two bands
at the same momenta, is defined as � = min[E+(k) − E−(k)].
For 0 < t ′/t < 1, � = 2t ′

√
2 − (t ′/t)2, with the correspond-

ing momenta satisfying cos(2k) = −t ′/t . Notice that, when
t ′/t � 1, both bands are partially flat and Landau-Zener
tunneling happens at k � ±π/4. (2) For the system with
1 � t ′/t �

√
2 [Fig. 1(c)], both bands are still the V type.

But since cos(2k) = −t ′/t has no solution, � gets its value at
the edge of the Brillouin zone with � = 2t . (3) For the system
with t ′/t >

√
2 [Fig. 1(d)], as the ratio becomes bigger than√

2, the upper Bloch band changes into the � type, and
√

2
is a critical ratio which causes the flat Bloch band. � still
gets its value at the edges of the Brillouin zone with � = 2t .
Landau-Zener tunneling and Bragg scattering happen at the
same time.

In the presence of magnetic field, the time-reversal sym-
metry of the system is broken, and Bloch bands usually
become asymmetrical. The dispersion for 1 − φ is the mirror
image of the case φ because E(−k,φ) = E(k,1 − φ). We only
study the spectral properties of the system with magnetic flux
φ ∈ [0,1/2]. In Figs. 2(a)–2(c), we show dispersions for three
different magnetic fluxes with t ′/t � 1. The basic shapes
of the dispersions are the same. But the magnetic flux with
φ ∈ [0,1/2) makes the left gap for Landau-Zener tunneling
smaller or even closed and makes the right gap slightly bigger.
For large t ′/t , the magnetic field changes the dispersion
dramatically [Figs. 2(d)–2(f)]. There will be a new smaller
gap in the dispersion around k � −π/4, and this gap can be
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FIG. 2. (Color online) The single-particle dispersion for the
no-driving-force system in the presence of magnetic field with
(top) t ′/t = 0.15 and (bottom) t ′/t = 1.5 and (a) and (d) φ = 0.15,
(b) and (e) φ = 0.25, and (c) and (f) φ = 0.35. In (e) we also show
the corresponding asymmetric Dirac cone. k is in units of π/2.

closed for particular φ. For different t ′/t , φ = 1/4 is a critical
value, with the gap between two minibands being closed. After
a straightforward calculation, one can get E+(k = −π/4,φ =
1/4) = E−(k = −π/4,φ = 1/4) = 0, and the gap closes at
k = −π/4 for φ = 1/4. Around the touch point the dispersion
is almost linear [Fig. 2(e)], and there is an asymmetric Dirac
cone in the dispersion for φ = 1/4. After linearization, the
form of the asymmetric Dirac equation reads

εcone/t = ν±(k − k0), (7)

where k0 = −π/4 is the Dirac point and ν+(−) is the velocity
of right (left) moving particles with

ν± = 2[−1 ±
√

1 + (t ′/t)2]. (8)

For comparison, we also plot the corresponding Dirac cone in
Fig. 2(e), and around the touch point the two dispersions agree
with each other very well.

Suppose that the system is filled by free fermions with half
filling. When φ 	= 1/4, the dispersion has a gap between two
Bloch bands, and the system is a band insulator, while when
φ = 1/4, the gap closes and the system is a Luttinger liquid
with gapless and linear low-energy excitations. Otherwise,
there is magnetic flux in each triangle, and driven by it,
particles should flow in the lattice. According to the continuity
equation, the local current operators are given by [42]

Ĵ B
2j−1 = −it[c†2i−1c2j+1 − c

†
2j+1c2j−1],

(9)
Ĵ Z

2j = −it ′[e−iφπc
†
2j c2j+1 − eiφπc

†
2j+1c2j ],

where Ĵ B
2j−1 is the current operator along the baseline and

Ĵ Z
2j is the current operator along the zigzag path. In Fig. 3,

we show currents of a system vs φ with JB = 〈Ĵ B
2j−1〉 and

JT = JB + JZ . The structure of the picture is still the same
for different t ′/t . The currents are periodic in φ with the least
common period being 1. Without magnetic flux the system has
no current because there is no driving field. As φ increases, all

FIG. 3. (Color online) The currents JB,JZ, and JT vs magnetic
flux φ for the no-driving-force system filled by free fermions at half
filling with t ′/t = 1.

currents grow for small φ. In region φ ∈ (0,1/4), the currents
JB and JZ have opposite direction, and in each triangle there
is a local current loop with nonzero total current JT , while in
region φ ∈ (1/4,1/2), the currents JB and JZ have the same
direction and all particles move along the same direction, with
no local current loop. For φ = 1/4, the system is a metal, but
the current flows only along the zigzag path. It is worthwhile
to notice that there is no zero JT with finite JB , so the magnetic
field cannot drive the particles to form a local current in each
triangle without drifting along the lattice. At φ = 1/2 all the
currents are zero, which should be related to the pure imaginary
hopping amplitude along the zigzag path.

III. BLOCH-ZENER OSCILLATION AND
RECONSTRUCTION

For a two-Bloch-band system under a driving force, it has
been demonstrated that the dispersion of the system generally
has the structure of two Wannier-Stark ladders [14]. On the
other hand, after introducing the translation operator

Tm =
∑

j

c
†
j−mcj (10)

for two successive eigenstates (belonging to two different
Wannier-Stark ladders) of the Hamiltonian H ,

H |ϕ0〉 = E0|ϕ0〉, H |ϕ1〉 = E1|ϕ1〉. (11)

They satisfy the following relation:

H {T2l|ϕα〉} = {Eα + 2lF }{T2l|ϕα〉} (12)

with α = 0,1. Then, the eigenenergies of the Hamiltonian,

E0,n = 2nF,
(13)

E1,n = S + (2n + 1)F,

consist of two Wannier-Stark ladders with the corresponding
eigenstates satisfying ϕα,n = T2ϕα,n−1. The dynamics of a
single-particle state under Hamiltonian H is a Bloch-Zener
oscillation and is characterized by two periods (see the
Appendix),

T1 = π

F
, T2 = 2π

F − |S| . (14)
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FIG. 4. (Color online) (a) The density profile for a particle in
the trapped sawtooth lattice with t ′/t = 0.1647,VH /t = 0.01, and
φ = 0. (b) The momentum distribution of a particle in the trapped
sawtooth lattice for different strengths of harmonic trap VH with
t ′/t = 0.1647 and φ = 0. (c) The momentum distribution of a particle
in the trapped sawtooth lattice for different ratios t ′/t with VH /t =
0.01 and φ = 0. (d) The momentum distribution of a particle in
the trapped sawtooth lattice for different magnetic fluxes φ with
t ′/t = 0.1647 and VH /t = 0.01. k is in units of π .

In general, if T1 and T2 are commensurate, the single-particle
state reconstructs at integer multiples of Bloch-Zener time (the
least common period of T1 and T2).

In order to study the dynamics of a quantum particle in a
driven sawtooth lattice, we need to prepare an initial state. At
the beginning, by adding a harmonic trap into the system with
the form

Vj = VH (j − j0)2 (15)

and letting the particle be in the single-particle ground state
of the trapped system, a Gaussian-shaped single-particle wave
packet around site j0 can be formed. Here VH is the strength of
the harmonic trap, and j0 is the position of the trap center. After
turning off the harmonic trap and switching on the driving
force, the wave packet will move.

For the initial trapped single-particle system, the density
profile is Gaussian shaped, and there are many oscillations in
it because of lattice frustration [Fig. 4(a)]. In Fig. 4 we also
show the momentum distributions for systems with different
strengths of the harmonic trap, ratio t ′/t , and magnetic flux.
For the system with zero magnetic flux, there is another peak
around k = ±π in the momentum distribution [Fig. 4(b)],
while there is only a Gaussian-shaped peak around k = 0
for the usual one-dimensional system. As VH /t increases,
the amplitude of both peaks at k = 0 and k = ±π decreases,
and the extension of both peaks becomes larger. Eventually,
the momentum distribution becomes flat, with the particle
being localized at a single site for large enough VH . On the
other hand, as t ′/t increases [Fig. 4(c)], the system trends to
the usual one-dimensional system, and the peak at k = ±π

becomes smaller while the peak at k = 0 becomes larger.
The momentum distribution is periodic in φ with period
2. The presence of magnetic flux destroys the time-reversal
symmetry of the system, and momentum distribution is usually
asymmetrical, which is not obvious in the picture because of

FIG. 5. (Color online) (a) |S| vs t ′ for the driven sawtooth
lattice with F = 0.05t . The dynamics of (b) the density profile and
(c) the momentum distribution for a particle in the driven sawtooth
lattice with t ′/t = 0.1647, F = 0.05t , VH /t = 0.01, and φ = 0.
(d) The dynamics of the density profile for producing the dynamical
localized system with t ′/t = 0.1647, F = 0.05t , VH /t = 0.01, and
φ = 0.

the small ratio t ′/t [Fig. 4(d)]. Otherwise, for φ ∈ (0,1) the
peak around k = 0 becomes smaller while the peak around
k = ±π becomes larger as φ increases. For φ ∈ (1,2), the
magnetic flux has the opposite effect.

Given an initial state, now we study the dynamics of a
quantum particle in a driven sawtooth lattice without magnetic
flux. Here we focus on the parameter region t ′ � t , whereas
the single-particle dynamics for t ′ > t is similar to that in the
usual one-dimensional two-band systems with both Landau-
Zener tunneling and Bragg scattering happening at the edge
of the Brillouin zone (see Ref. [14]). In order to observe the
reconstruction of the system, two periods T1 and T2 must be
commensurate, which is decided by F and t ′. In Fig. 5(a),
we show numerical results of |S| versus t ′ for a particular F .
For different F , the structure of the picture is similar. In order
to generate a particular Bloch-Zener time, t ′ must be one of
the discrete numbers. For example, if we want TBZ = TB for
the system with F = 0.05t , we have to let |S| = 0 and then
t ′ = 0.1647t , . . .. TBZ is the Bloch-Zener time, and TB is the
Bloch time for the usual one-dimensional system with TB =
2T1 [14]. On the other hand, numerical results show that the
Landau-Zener tunneling probability [43] PLZ ≈ exp(−π�2

8tF
),

where � is the gap for Landau-Zener tunneling defined above
and � = 2t ′

√
2 − (t ′/t)2 for 0 < t ′/t < 1. Then in order to see

a clear sign of the Landau-Zener tunneling, we must choose
small t ′ for a given driving force.

In Fig. 5, we also show the dynamics of the density profile
and momentum distribution for a system without magnetic

013607-4



QUANTUM DYNAMICS IN DRIVEN SAWTOOTH LATTICE . . . PHYSICAL REVIEW A 87, 013607 (2013)

flux. We choose |S| = 0 and let the system reconstruct at inte-
ger multiples of Bloch time TB . From now on, we take Bloch
time as the reference time scale. First of all, the density profile
reconstructs at integer multiples of Bloch time [Fig. 5(b)].
After being released from the harmonic trap, the particle moves
along the direction of the driving force. Around time TB/8 it
reaches the point k � π/4, and Landau-Zener tunneling hap-
pens. Then part of the particle moves into upper excited Bloch
band, while the other part of the particle remains in the lowest
Bloch band and moves into the flat part. Because of Landau-
Zener tunneling, the particle is divided into two parts, and they
are separated in real space, with particles in the curve trajectory
of the upper half of the picture being in the upper excited Bloch
band. After Landau-Zener tunneling, particles which remain in
the lowest Bloch band are localized in real space because of the
partially flat band. At time TB/4, the particle reaches the right
edge of the Brillouin zone, changes the sign of momentum
because of Bragg scattering, and moves against the direction
of the driving force. Around time 3TB/8, the particle reaches
the point k � −π/4. Landau-Zener tunneling happens again,
and particles in the flat part of the upper excited Bloch band are
localized in real space. The particle changes its direction again
at time TB/2 and k = 0. As time goes on, more Landau-Zener
tunneling and Bragg scattering happen. At time TB the density
profile resumes its original state.

In Fig. 5(c), we show the dynamical evolution of the
momentum distribution for the same system as in Fig. 5(b).
Particles with momenta in the interval (−π/2,π/2) are in the
lowest Bloch band, and outside the region particles are in the
upper excited Bloch band. At time τ = 0, there are two peaks
in the momentum distribution with the peak at k = ±π being
much smaller than at k = 0. The momentum of the particle is
linear with time, with slope being given by the driving force
F . After being released from the harmonic trap, the particle
speeds up under the driving force, and it reaches the point
k � π/4 around time TB/8. Landau-Zener tunneling happens
between k � π/4 in the lowest Bloch band and k � −3π/4 in
the upper excited Bloch band, and because of this the number
of particles at k � π/4 deceases and at k � −3π/4 increases,
which can be directly seen in the picture. From above we know
that after Landau-Zener tunneling the particle in the lowest
Bloch band is localized in real space because of the partially
flat band, but the momentum of this particle is changing and
finite. At time TB/4 the particle reaches the right edge of
the Brillouin zone, and because the number of particles in
the lowest Bloch band at k = π/2 and the upper excited
Bloch band at k = −π/2 are almost the same, after Bragg
scattering, the momentum distribution has no obvious change.
Around time 3TB/8 the particle reaches the point k � −π/4.
This Landau-Zener tunneling happens between k � −π/4 in
the lowest Bloch band and k � 3π/4 in the upper excited
Bloch band. At time TB the momentum distribution resumes
its original state.

From above we know that in the dynamics the particle
in the flat band is localized in real space. Then a dynamical
localized system can be created by keeping the system in the
flat Bloch band all the time while changing the direction of
the driving force at every time interval. For the system shown
in Fig. 5(d), after the particle is released from the trap, the
system evolves under the driving force, and around time TB/8

part of the particle moves into the partial flat part of the lowest
Bloch band, while the other part of the particle moves into the
upper excited Bloch band and moves along the driving force.
At time TB/4 we change the direction of the driving force,
and after this we change the direction for every time interval
TB/16 to let part of the particle always remain in the flat
part of the lowest Bloch band. The other part of particle will
move away from the localized one and will eventually leave
the system. The remaining system is a dynamical localized
one. In Fig. 5(d), we remove the driving force at time TB ,
and the particle moves freely in the lattice. Right before the
driving force is removed, the particle concentrates at the edges
of Brillouin zone k = ±π/2, and after the driving force is
removed, the dynamical localized system is divided into two
parts, and they move against each other linearly.

Now we study the effect of magnetic field on the dynamics.
First of all, in the presence of magnetic flux, the system still has
an energy spectrum with two Wannier-Stark ladders because
of the two-Bloch-band dispersion for the corresponding
no-driving-force system, and there is possible Bloch-Zener
oscillation. But the magnetic flux changes the Bloch bands
dramatically for the no-driving-force system, and it will change
the value of |S| and Bloch-Zener time. For two special points
φ = 1/4,3/4, the gap between two Bloch bands closes. After
adding the driving force, there is only one Wannier-Stark
ladder in the dispersion, and the system always reconstructs at

FIG. 6. (Color online) (a) |S|/|S(φ = 0)| vs φ for systems with
small and different ratios t ′/t [|cos(φ2π )|, black straight line; t ′/t =
0.06, red dotted line; t ′/t = 0.12, blue dash-dotted line; t ′/t = 0.18,
magenta dashed line; t ′/t = 0.22, cyan dots] and F = 0.05t . (b) The
dynamics of density profile and (c) momentum distribution for a
particle in the driven sawtooth lattice with t ′/t = 0.12,F = 0.05t ,
VH /t = 0.01, and φ = 0.096. (d) The single-particle dispersion for
the no-driving-force system in the presence of magnetic flux with
t ′/t = 0.12 and φ = 0.096.
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integer multiples of Bloch time (Bloch oscillation). For general
φ, the system has a spectrum with two Wannier-Stark ladders,
and there is Bloch-Zener oscillation. In order to study how
the magnetic flux changes |S|, we plot |S(φ)/S(φ = 0)| vs φ

for systems with small t ′/t in Fig. 6(a). For large t ′/t , the
curve is different, and Landau-Zener tunneling probability is
very small, which will cause no Bloch-Zener oscillation in the
dynamics. In Fig. 6(a) we also show the curve |cos(φ2π )|, and
these curves agree with each other very well. So

|S(φ)| = |cos(φ2π )S(φ = 0)|. (16)

Then, for example, for a system with t ′ = 0.12t,F = 0.05t ,
if we want Bloch-Zener time TBZ = 2TB , we can choose
φ = 0.096 in Eq. (16) to let |S(φ)| = F/2 after getting
|S(φ = 0)|/t = 0.03045. The dynamical evolution of the
density profile and the momentum distribution are shown
in Figs. 6(b), and (6 c), respectively. Obviously, the system
really reconstructs at τ = 2TB . One can analyze in detail the
Landau-Zener tunneling and the Bragg scattering with the help
of Fig. 6(d).

IV. CONCLUSION

In summary, the dynamics of a quantum particle in the
driven sawtooth lattice under uniform magnetic fields has been
studied in this paper. First, we studied the spectral properties
of a system in the absence of the driving force. Without
magnetic field, the two-miniband system can be classified into
three different types, with the shape of the Bloch bands being
decided by the ratio t ′/t , where t ′ (t) is the hopping amplitude
along the zigzag path (baseline). Especially, with t ′/t � 1,
the system can host partially flat Bloch bands, which causes
the dynamical localization in the dynamics of a particle in
a driven system. In the presence of magnetic field, the gap
between two minibands can be closed for some particular
magnetic field, and when the gap is closed, the dispersion
is an asymmetric Dirac cone around the touch point. We
also studied the Bloch-Zener oscillation in the driven system
with t ′/t � 1. Landau-Zener tunneling and Bragg scattering
happen at different times and places in the dynamics, and one
can see the dynamical localization of a particle caused by
the partially flat bands. Foremost, the system reconstructs at
integer multiples of the Bloch-Zener time. The magnetic field
changes the offset of two Wannier-Stark ladders in the spec-
trum of the driven system, then changes the Bloch-Zener time.
But the Bloch-Zener oscillation still exists in the dynamics,
and the system reconstructs at some time.
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APPENDIX: DYNAMICS OF A PARTICLE IN A DRIVEN
TWO-MINIBAND SYSTEM

For an initial state expanded in the Wannier-Stark basis,

|�〉 =
∑

n

c0,n|�0,n〉 +
∑

n

c1,n|�1,n〉, (A1)

the dynamics of |�〉 under Hamiltonian H is given by

|�(τ )〉 =
∑

n

c0,ne
−iE0,nτ |�0,n〉 +

∑
n

c1,ne
−iE1,nτ |�1,n〉.

(A2)

Expanding Wannier-Stark functions in the Bloch basis,

|�β,n〉 =
∫ π

2

− π
2

aβn(k)|χ−(k)〉dk +
∫ π

2

− π
2

bβn(k)|χ+(k)〉dk,

(A3)

and projecting |�(τ )〉 onto Bloch basis, one can get

〈χ−(k)|�(τ )〉 = e−iE0τ [a0,0(k)C0(k + Fτ )

+ a1,0(k)e−i(F+S)τC1(k + Fτ )],
(A4)

〈χ+(k)|�(τ )〉 = e−iE0τ [b0,0(k)C0(k + Fτ )

+ b1,0(k)e−i(F+S)τC1(k + Fτ )],

where Cβ are the Fourier series of cβ,n:

Cβ(k + Fτ ) =
∑

n

cβ,ne
−i2n(k+Fτ ), (A5)

which are π periodic. To get Eq. (A4) one has to use
T−2n|χ±(k)〉 = e−i2nk|χ±(k)〉 (translation of Bloch waves).
From Eq. (A4), one can see that the dynamics of a particle is
characterized by two periods: Cβ are functions with a period
of

T1 = π

F
, (A6)

whereas the exponential function e−i(F+S)τ has a period of

T2 = 2π

F − |S| (A7)

because e−i(F+S)τ = e−i2Fτ ei(F−S)τ . In general if T1 and T2 are
commensurate,

T1

T2
= F − |S|

2F
= m

n
, n,m ∈ N; (A8)

thus the wave function reconstructs at integer multiples of
Bloch-Zener time (TBZ = nT1).
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