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Symmetry breaking in dipolar matter-wave solitons in dual-core couplers
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We study the effects of spontaneous symmetry breaking (SSB) in solitons composed of a dipolar Bose-Einstein
condensate trapped in a dual-core system with dipole-dipole interactions (DDIs) and hopping between the cores.
Two realizations of such a matter-wave coupler are introduced: weakly and strongly coupled. The former is
based on two parallel pipe-shaped traps, whereas the latter is represented by a single pipe sliced by an external
field into parallel layers. The dipoles are oriented along the axes of the pipes. In these systems, the dual-core
solitons feature SSB of the supercritical and subcritical types, respectively. Stability regions are identified for
symmetric and asymmetric solitons and nonbifurcating antisymmetric solitons, as well as for symmetric flat
states, which may also be stable in the strongly coupled system due to competition between the attractive and
repulsive intracore and intercore DDIs. The effects of the contact interactions are considered too. Collisions
between moving asymmetric solitons in the weakly symmetric system feature an elastic rebound, a merger
into a single breather, and passage accompanied by excitation of intrinsic vibrations of the solitons for small,
intermediate, and large collision velocities, respectively. A PT -symmetric version of the weakly coupled system
is considered briefly, which may be relevant for matter-wave lasers. Stability boundaries for PT -symmetric
and -antisymmetric solitons are identified.

DOI: 10.1103/PhysRevA.87.013604 PACS number(s): 03.75.Lm, 42.65.Tg, 47.20.Ky, 05.45.Yv

I. INTRODUCTION

Studies of Bose-Einstein condensates (BECs) made of
dipolar atoms or molecules have produced a great deal of
fascinating experimental and theoretical results, which have
been summarized in Refs. [1,2] and [2,3], respectively. The
continuation of the work in this direction has yielded new
remarkable findings such as the prediction of various pattern-
formation mechanisms [4,5] (which share some features with
the formation of patterns in ferrofluids [6]), analysis of the
stability of the dipolar BEC trapped in optical-lattice (OL)
potentials [7], analysis of the roton instability [5,8], and
the possibility of the Einstein–de Haas effect [9]. Important
experimental achievements, which offer new perspectives
for studies of dipole-dipole interactions (DDIs) in atomic
condensates, are the creation of BECs in dysprosium [10]
and erbium [11]. Parallel to that, essential results have
been obtained for degenerate quantum gases of dipolar
fermions [3,12].

In addition to their own physical significance, dipolar
condensates may also be used as quantum simulators [13,14]
representing other physical media where nonlocal nonlin-
earities play a fundamental role. These include the heating
and ionization of plasmas [15]; nonlinear optics of nematic
liquid crystals [16], of waveguides sensitive to temperature
variations [17], and of semiconductor cavities [18]; BECs with
long-range interactions induced by laser illumination [19]; and
others settings.

An interesting ramification of the study of collective
nonlinear modes in the dipolar BEC is the prediction of solitons
(which have not yet been reported in experimental works).
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In effectively one-dimensional (1D) traps, solitons have been
analyzed in both continual [20] and discrete [21] settings, the
latter corresponding to the fragmentation of the BEC by a deep
OL. In a similar form, 1D solitons supported by the attractive
DDIs were predicted in the Tonks-Girardeau gas of dipolar
hard-core bosons [22]. Taking into account the 3D structure of
the quasi-1D cigar-shaped traps, the solitons, including ones
with embedded vorticity (cf. similar modes introduced earlier
in the context of BECs with local interactions [23]), were
further studied in Ref. [24] and gap solitons in a similar setting,
but including an OL potential, were considered as well [25].
In the 2D system, discrete fundamental solitons and solitary
vortices with long-range DDIs between sites of the lattice
can be constructed easily [26]. In the continual 2D model,
fundamental [27] and vortical [28] solitons were constructed
in the isotropic setting, assuming that the sign of the DDI
could be reversed from repulsion to attraction by means of a
rapidly oscillating ac field [29]. Two-dimensional fundamental
and vortex solitons supported by a trapping potential were
introduced in Ref. [30].

Without reversing the DDI sign, stable 2D anisotropic
solitons, corresponding to the in-plane polarization of dipoles,
were constructed in Ref. [31] by means of the variational
approximation and systematical numerical simulations. The
variational approximation for 2D solitons supported by the
DDI was analyzed in Ref. [32] and a rigorous proof of the
existence of such solitons was provided too [33]. Also studied
were more complex situations, such as the formation of a
multisoliton patterns as a result of the development of the
modulational instability of an extended state [34].

The long-range character of the DDI makes it possible
to consider interactions between condensate layers trapped
in parallel planar waveguides. The DDI couples them by
nonlinear forces even in the absence of hopping (tunneling)
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of atoms across gaps separating the layers [5] (the isolation of
parallel layers can be provided by a strong OL field whose axis
is perpendicular to the layers [35]). This nonlocal interaction
gives rise to indirect scattering of 2D solitons moving in the
separated layers [36] and the formation of bound states of
such solitons [37]. The creation of multisoliton filaments and
checkerboard crystals in a multilayered stack was predicted
too [38].

The model of nonlocal DDIs between parallel layers
considered in Refs. [5,36–38] did not take into regard the
hopping (tunneling of atoms, also known as linear coupling)
between the layers. In contrast, models of dual-core couplers,
with intrinsic local nonlinearity acting in both cores, were
studied in detail in terms of optics and matter waves, starting
from the analysis of the spontaneous symmetry breaking (SSB)
of cw (i.e., uniform) states in dual-core optical fibers with the
cubic and more general forms of the intracore nonlinearity. In
that system, the linear coupling is caused by the overlap of the
evanescent field, originating from each core, with the parallel
one. The SSB happens in the dual-core fiber, as a result of
the interplay of the linear coupling and intrinsic nonlinearity,
with the increase of the total power of the cw beam. The
analysis of the SSB was extended, in full detail, to temporal
and spatial solitons [39,40] and to optical domain walls [41].
The SSB effects were also studied for solitons in dual-core
fiber Bragg gratings [42], in two-tier waveguiding arrays
(for discrete solitons) [43], in parallel-coupled waveguides
with the quadratic (second-harmonic-generating) [44] and
cubic-quintic (CQ) [45] nonlinearities, and for dissipative
solitons in linearly coupled CQ complex Ginzburg-Landau
equations [46]. Recently, a similar analysis was developed for
the SSB of solitons in PT -symmetric couplers, with mutually
balanced loss and gain (and identical cubic nonlinearities)
acting in the two cores [47,48]. Unlike the above-mentioned
settings, in the latter case the SSB destroys symmetric solitons
rather than replacing them by stable asymmetric ones. The
linear coupling in optics may also represent the mutual
interconversion of two polarizations of light in twisted fibers
(which, in particular, are used in the so-called rocking filters)
[49], twisted photonic-crystal fibers [50], and twisted fiber
gratings [51] or the interconversion of two waves with different
carrier frequencies caused by electromagnetically induced
transparency [52].

Similar dual-core (double-well) settings, approximated by
linearly coupled Gross-Pitaevskii equations (GPEs), were
introduced for the mean-field wave functions describing a
trapped BEC with local interactions [53]. A similar linear
coupling accounts for the mutual interconversion in a mixture
of two different atomic states induced by a resonant electro-
magnetic wave [54]. The linearly coupled GPEs were used
to predict the shift of the miscibility-immiscibility transition
in BEC or fermionic mixtures of two states connected by
the linear interconversion [55] and the stabilization of 2D
solitons against the collapse in a linearly coupled binary system
with attractive and repulsive intracomponent interactions [56].
The SSB of matter-wave solitons trapped in 1D and 2D
linearly coupled cores was analyzed in Ref. [53]. In the 1D
situation, a more accurate description, which, nevertheless,
yields similar results for the solitons’ SSB, is provided by
the two-dimensional GPE, which, instead of postulating two

1D wave functions in the two parallel cores with the linear
exchange between them, introduces a single 2D wave function
comprising both cores [57]. This includes the case when the
cores are defined by nonlinear pseudopotentials (rather than
by a linear trapping potential), i.e., local modulation of the
self-attraction coefficient [58].

Although previous works analyzed many aspects of the
SSB in dual-core cw and solitonic states, those works were
dealing solely with local intrinsic nonlinearities. Only in a
very recent paper [59] was a shift of the SSB transition
of solitons in the coupler with nonlocal nonlinearity of the
thermal type, typical of optical systems [17], considered. The
analysis was performed for two opposite-limit cases, viz., the
weak nonlocality characterized by a small correlation radius,
which may be approximated by the first two terms of the
expansion of the nonlocal cubic term, and the opposite limit
of the infinite correlation radius, which corresponds to the
two-component quasilinear model of accessible solitons [60].

The aim of the present work is to consider the SSB of
solitons in the effectively 1D dual-core coupler filled by
the dipolar condensate, which exhibits the interplay of the
long-range DDIs and linear hopping between the quasi-1D
cores. In particular, the DDIs act both inside the cores and
between them, while the thermal nonlocality considered in
Ref. [59] could not act across the gap separating the parallel
waveguides. It is relevant to stress that in the absence of
the longitudinal dimension, the double-well setting is not
sufficient to exhibit the nonlocal character of the interactions in
the dipolar condensate, the minimum necessary configuration
being based on a set of three potential wells [61].

Two coupler configurations are considered here, as shown in
Fig. 1. The first setting, presented in Fig. 1(a), is based on two
identical condensate-trapping pipes of diameter b, separated
by distance a. In this case, b < a is implied, hence the system
may be naturally called weakly coupled. The other setting is
shown in Fig. 2(b), with the condensate loaded into a single
pipe of diameter b, which is sliced into two parallel layers by
a thin potential barrier of small thickness a. The barrier can
be induced by a repulsive light sheet (blue shifted by one with
respect to the atoms) [62]. The latter setting implies b > a and
will accordingly be referred to as a strongly coupled system.
In either case, the dipoles are polarized along the pipes’ axes,
hence the DDIs are attractive inside the cores, which makes it
possible to form solitons in each one [20].

In studying the SSB (the symmetry-breaking phase tran-
sition) in these settings, it is relevant to recall that there
are two types of the SSB bifurcation, namely, subcritical
and supercritical [63], which are tantamount to the phase
transitions of the first and second kinds, respectively. In the
subcritical situation, branches representing asymmetric modes
emerge as unstable states at the bifurcation point, then go
backward in the bifurcation diagram, and stabilize after turning
forward. In the supercritical setting, the asymmetric branches
emerge as stable at the bifurcation point and immediately
continue forward.

The rest of the paper is organized as follows. In Sec. II
we construct symmetric solitons in the two settings presented
in Fig. 1 and then identify the SSB transitions to asymmetric
solitons. Antisymmetric solitons and their stability are con-
sidered too (these solitons do not undergo any bifurcation).
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FIG. 1. (a) In the weakly coupled system, the dipolar condensates are trapped in parallel pipes of diameter b, separated by distance a. The
arrows represent the orientation of the dipoles. (b) The strongly coupled system is shown by means of the cross-section image of the condensate
trapped in the single pipe of diameter b, which is sliced by a repelling laser sheet into two layers, with effective separation a between them.
The symbol ⊗ represents the orientation of the dipoles, which are perpendicular to the figure’s plane.

Basic results for the stability of different modes are presented
(including a flat state, which may also be stable in the
strongly coupled system). The effects of the local (contact)
nonlinearity on the SSB are considered too. In Sec. III we
study collisions between moving asymmetric solitons. In
Sec. IV a PT -symmetric [64] extension of this system is
briefly considered, which includes gain and loss applied to
the two cores (similar to the PT -symmetric coupler with the
local nonlinearity introduced in Refs. [47,48]). The paper is
summarized in Sec. V.

II. SYMMETRY-BREAKING BIFURCATION AND
STABILITY OF SOLITONS

A. Coupled Gross-Pitaevskii equations

In the usual mean-field approximation [2,3], both dual-core
settings introduced in Fig. 1 are described by the system of 1D
linearly coupled GPEs for the wave functions in the two cores

(a) (b)

(c) (d)

FIG. 2. (Color online) Examples of stable (a) symmetric,
(b) asymmetric, and (c) antisymmetric solitons found in the weekly
coupled system [see Fig. 1(a)] for a = 1, b = 0.4, and total norm
(a) P = 0.4 and (b) and (c) P = 0.6. The antisymmetric solitons are
stable below the boundary P ≈ 7b3, shown in the plane of (b,P ) in
(d), at different values of a.

ψ1 and ψ2. In scaled form, the equations are

i
∂ψn

∂t
= −1

2

∂2ψn

∂x2
+ g|ψn|2ψn − κψ3−n

−GDDψn(x)
∫ +∞

−∞

[ |ψn(x ′)|2
(b2 + |x − x ′|2)3/2

− 1

2

(1 − 3 cos2 θ )|ψ3−n(x ′)|2
2(a2 + |x − x ′|2)3/2

]
dx ′, (1)

where n = 1,2 and cos θ = |x − x ′|/(a2 + |x − x ′|2)1/2 [see
Fig. 1(a)]. In this notation κ is the coupling parameter (hopping
coefficient), g represents the local interaction (repulsive in
the case of g > 0), and the orientation of the dipoles in
Fig. 1 corresponds to GDD > 0, which implies the attraction
between dipoles in the given core and repulsion between
the cores for cos2 θ < 1/3. The first term in the integrand,
which accounts for the intracore DDIs, is regularized by the
transverse diameter b, which is an approximation sufficient for
producing 1D solitons [20].

The solitons will be characterized by the total norm
(proportional to the number of atoms in the condensate)

P ≡ P1 + P2 =
∫ +∞

−∞
(|ψ1|2 + |ψ2|2)dx.

To focus on SSB effects dominated by the DDI, we will first
drop the local nonlinearity by setting g = 0 (in the experiment
this can be done by means of the Feshbach resonance [65]); the
effects of the contact interactions will be considered afterward.
Then we scale the units to srt κ ≡ 1 and GDD ≡ 1, the
remaining free parameters being a, b, and P (and g too, in
the end).

Stationary solutions to Eq. (1) with chemical potential μ

are sought in the usual form ψ1,2(x,t) = exp (−iμt) φ1,2(x),
with real functions φ1,2(x). In particular, φ1,2(x) ≡ φ(x) for
symmetric solutions obeys the stationary equation

(μ + 1)φ = −1

2

d2φ

dx2
+ gφ3

−φ(x)
∫ +∞

−∞

[
1

(b2 + |x − x ′|2)3/2

− 1 − 3 cos2 θ

2(a2 + |x − x ′|2)3/2

]
φ2(x ′)dx ′, (2)

where κ = GDD = 1 is fixed, as stated above. Equations (1)
and (2) are solved below by means of numerical methods.
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(a) (b) (c)

FIG. 3. (Color online) (a) Bifurcation diagram for solitons in the weakly coupled system: The soliton’s asymmetry, measured by the
deviation of the share of the total power in one core (P1/P ) from 0.5, versus total norm P . (b) Bifurcation diagram as a function of the pipes’
diameter b. The circles located along the solid and dashed lines represent stable and unstable solutions, respectively. (c) Critical value of the
total norm at the symmetry-breaking point as a function of b for fixed a = 1. Stable asymmetric solitons exist above the curve, while the
symmetric solitons are stable below it. The curve is well fitted by Pcr = 3b2.

In particular, stationary solutions are found below by means
of the imaginary-time-propagation method [66] with periodic
boundary condition, while the stability of the solutions is tested
by means of integration in real time.

B. Weakly coupled system (a > b)

Typical examples of stable symmetric, asymmetric, and
antisymmetric solitons found in the system represented by
Fig. 1(a) are displayed in Fig. 2. Naturally, the asymmetric
solitons, morphed by the stronger nonlinearity, are narrower
and taller than their symmetric counterparts.

It is relevant to mention that, unlike the standard model of
the coupler with the local cubic nonlinearity, where symmetric
and antisymmetric solitons are available in an obvious exact
form and asymmetric solitons can be effectively described
by means of the variational approximation [40,67], in the
present strongly nonlocal system such an approximation is
not practically possible. Nevertheless, some results can be
obtained in an approximate analytical form for the present
system too [see Eqs. (5) and (6) below].

Before proceeding to the consideration of the transition
between the symmetric and asymmetric solitons, we display
the stability area of the antisymmetric ones (which do not
undergo any antisymmetry-breaking bifurcation), in the plane
of (b,P ), in Fig. 2(c). The stability boundary may be fitted to
the curve

P = 7b3. (3)

Unstable antisymmetric solitons gradually decay into radiation
(not shown here in detail).

The SSB for solitons is summarized in Fig. 2 by means
of the bifurcation diagrams, which clearly show that the
symmetry-breaking bifurcation, driven by the nonlocal at-
tractive DDIs, is supercritical, in contrast to the commonly
known subcritical bifurcation in the coupler with the local
self-focusing nonlinearity [39,40]. A trend similar to the
change of the character of the SSB bifurcation for solitons
from subcritical to supercritical, with an increase of the
degree of the nonlocality, was recently demonstrated in a
model of the optical coupler with weakly nonlocal thermal
nonlinearity [59].

As seen from the structure of the first term in the integrand
of Eq. (1), a decrease of the diameter b of the parallel pipes
implies effective enhancement of the nonlinearity. This, as
well as the direct strengthening of the nonlinearity due to an
increase of the total norm P , leads to symmetry breaking, as
seen in Figs. 3(b) and 3(a). Further, Fig. 3(c) demonstrates the
related effect of a decrease of the critical value Pcr of the total
norm at the bifurcation point with a decrease of b. The latter
dependence may be fitted to the formula Pcr = 3b2, which is
explained by the fact that, at small b, the nearly diverging first
integral term in Eq. (2) may be estimated as A2/b, where A

is the soliton’s amplitude. Its balance with other terms in the
equation leads to estimates for scalings of the amplitude and
width:

A ∼ P/b, W ∼ b2/P. (4)

Then, as the SSB point is determined by the competition
between the nonlinear intracore and linear intercore-coupling
terms in Eq. (1) [39,68,69], the corresponding scaling for the
value of P at the critical point indeed takes the form

Pcr ∼ √
κb2 (5)

(here κ is kept for clarity, although it was actually scaled to be
κ ≡ 1).

Note that, according to Eq. (3), the stability region for
antisymmetric solitons is much smaller at small b. This
agrees with the general trend of the antisymmetric solitons
in nonlinear couplers to be more fragile modes than their
symmetric counterparts [39,47,48] due to the obvious fact
that they correspond to a larger coupling energy. In fact,
the cubic scaling in Eq. (3) may be qualitatively explained
too, although in a more vague form than Eq. (5). Indeed,
the antisymmetric soliton with amplitude A is subject to an
oscillatory instability characterized by complex growth rates
(eigenvalues) λ = ±iκ + Re (λ), where, in the generic case,
an estimate Re (λ) ∼ A is valid (see, e.g., Ref. [48]). Because
the instability is oscillatory, the corresponding perturbations
tend to escape from the region of width W , occupied by
the soliton [see Eq. (4)], within time τ ∼ W/Vgr, where
the group velocity is determined by the characteristic wave
number of the perturbation mode k ∼ W−1, i.e., τ ∼ W 2.
The instability accounted for by the escaping perturbations

013604-4



SYMMETRY BREAKING IN DIPOLAR MATTER-WAVE . . . PHYSICAL REVIEW A 87, 013604 (2013)

FIG. 4. (Color online) Examples of stable modes found in the strongly coupled system. (a) A symmetric soliton with parameters (a,b,P ) =
(0.3,0.5,0.2). (b) A symmetric flat state with (a,b,P ) = (0.1,0.5,0.2). (c) An asymmetric soliton with (a,b,P ) = (0.2,0.5,1).

seems to be convective, which means that it will have enough
time to destroy the antisymmetric soliton under condition
Re (λ) τ ∼ 1, i.e., according to the above estimates,

AW 2 ∼ b3/P ∼ 1, (6)

which qualitatively explains the numerically found fit (3).
It is also worth noting that additional analysis demonstrates

that, as strongly suggested by Figs. 2(d) and 3(c), the general
picture of the SSB, being sensitive to the value of b, shows
little dependence on the separation between the cores a (in
the case of a > b, which is considered here). In other words,
the SSB in the weakly coupled system, in accordance with
its name, is weakly sensitive to the DDI between the parallel
cores, which renders the picture relatively simple.

C. Strongly coupled system (a < b)

In the setting displayed in Fig. 1(b), the small separation
between the effective cores makes the effects of the intercore
DDIs essentially stronger compared with the weakly coupled
system. In fact, the strongly coupled system realizes an ex-
ample of competing interactions, namely, intracore attraction
and intercore repulsion. A somewhat similar example is the
discrete Salerno model with competing signs of the on-site
and intersite cubic nonlinearities, which was studied in 1D
and 2D settings [70].

The numerical solution demonstrates that, in addition to
symmetric and asymmetric solitons, stable flat states with
unbroken symmetry between the cores also exist in the
strongly coupled system, being stabilized by the strong dipolar
repulsion between the cores. A typical example of such stable
states is displayed in Fig. 4.

In comparison to their counterparts in the weakly coupled
system (cf. Fig. 2), the symmetric solitons are wider in the
case of strong coupling. This is also an effect of the repulsive
DDI between the cores, which partly cancels the intracore
attraction, which forms the symmetric modes. The transition
to the asymmetric soliton occurs, as before, with an increase
of the total norm, the difference from the weakly coupled
system being that the smaller component of the asymmetric
mode displays the split-peak structure in Fig. 4(b). This feature
originates from the anisotropy [i.e., the θ dependence in the
second term in the integrand of Eq. (1)] of the DDI between
the cores.

The results of the systematic analysis of the strongly
coupled system are summarized in Figs. 5(a) and 5(b) in the
form of stability diagrams for all three types of the modes,
in the plane of (a,P ), for two different fixed values of b.
There are two bistability areas where the stable flat state and
asymmetric solitons coexist [the large yellow triangular and
trapezoidal regions in Figs. 5(a) and 5(b), respectively] or the
symmetric and asymmetric solitons are simultaneously stable

(a) (b) (c)

FIG. 5. (Color online) (a) and (b) Stability diagrams in the plane of the total norm P and separation a between the cores of the strongly
coupled system for two different values of the overall diameter b. Symmetric solitons are stable in the bottom right red areas, flat states are in
the bottom left blue areas, and asymmetric solitons are in the green top areas on the left and right sides. The middle-left yellow areas are regions
of the bistability area of the flat state and asymmetric solitons, while the small orange areas at the right center harbor the bistability of the
symmetric and asymmetric solitons. (c) Bifurcation diagram for solitons in the strongly coupled system: The soliton’s asymmetry, measured by
the deviation of the share of the total power in one core (P1/P ) from 0.5, versus total norm P . The type of the symmetry-breaking bifurcation is
subcritical here. The dashed segments, which link the stable asymmetric branches and the stable symmetric one, designate the actually missing
unstable branches, which, as usual [57], could not be found by means of the imaginary-time-integration method.
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(a) (b) (c)

FIG. 6. (Color online) Bifurcation diagrams in the weakly coupled system, with (a,b) = (1,0.4), in the presence of the (a) self-attractive
g = −2 or (b) self-repulsive g = 2 local nonlinearity. (c) Total norm at the bifurcation point as a function of strength g of the additional contact
nonlinearity at different fixed values of b.

[small orange regions in Figs. 5(a) and 5(b), respectively].
The presence of the latter bistability area implies that the SSB
transition between the symmetric and asymmetric solitons is
subcritical in the strongly coupled system, as explicitly shown
in the bifurcation diagram in Fig. 5(c) [cf. Fig. 3(a)]. It is
thus concluded that the repulsive DDI between the cores plays
an increasingly more important role with a decrease of the
separation between them a, which becomes the dominant
parameter of the system at a � (2/3)b. In particular, only in
this region may the symmetric flat state be stable. In contrast,
the effect of parameter a is inconspicuous at a > (2/3)b, like
in the weakly coupled system (see Sec. II B). Accordingly,
at a → b, the area of the bistability between the symmetric
and asymmetric solitons [the small orange areas in Figs. 5(a)
and 5(b)] shrinks to zero, which demonstrates that the SSB
changes to the supercritical type, like in the weakly couple
case. Finally, antisymmetric solitons and flat states can also be
found as stationary solutions of the strongly coupled system,
but both these species of the modes turn out to be completely
unstable.

D. Effects of local nonlinearity

The inclusion of the local self-attractive (g < 0) or self-
repulsive (g > 0) nonlinearity in the coupled GPEs [Eq. (1)]
shifts the point of the SSB bifurcation (the critical value of
the total power Pcr), but it does not change the supercritical
character of the bifurcation in the weakly coupled system.
The bifurcation diagrams for the system of this type, in the
presence of the local nonlinearity of either sign, are presented
in Figs. 6(a) and 6(b) (cf. Fig. 3). In addition, Fig. 6(c) displays
the dependence of the bifurcation point Pcr on the strength
g of the local nonlinearity. Naturally, the latter dependence

is weaker for smaller values of the pipes’ diameter b, as
the DDI is stronger at smaller b, suppressing the effect of
the local nonlinearity. It is natural too that the self-attractive
local nonlinearity (g < 0) makes Pcr smaller, while the local
self-repulsion (g > 0) makes it larger. Similarly, the addition
of the contact nonlinearity does not change the type of SSB
bifurcation in the strongly coupled system either (not shown
here in detail).

III. MOBILITY AND COLLISIONS BETWEEN SOLITONS

Collisions between solitons represent an important aspect
of the dynamics of integrable and nonintegrable models [71].
In dual-core systems, one can study collisions between sym-
metric solitons and, most interestingly, between asymmetric
solitons with equal or opposite polarities, i.e., with larger
components belonging to the same or different cores [72].
These three cases are schematically defined in Fig. 7.

We report here numerical results for collisions between
solitons in the weakly coupled system, taking the initial state
at t = 0 as a pair of widely separated kicked solitons,

ψ
(0)
1,2 = U

(1)
1,2(x + x0,P )eiη(x+x0) + U

(2)
1,2(x − x0,P )e−iη(x−x0),

(7)

where U
(1,2)
1,2 (x ± x0,P ) are the two-component soliton solu-

tions with total powers P , which are centered at x = ∓x0

with sufficiently large initial separation 2x0, and η is the kick
(momentum imparted to the soliton). Solutions U (1) and U (2)

are either identical or, in the above-mentioned case of opposite
polarities, two asymmetric solitons with swapped components
[see Fig. 7(b)].

In Figs. 8 and 9 we display typical results of collisions
for asymmetric soliton pairs in the case that is close to

FIG. 7. Three types of collisions between solitons in the dual-core system: (a) unipolar asymmetric solitons with the larger components
belonging to the same core, (b) asymmetric solitons with opposite polarities, and (c) symmetric solitons.
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FIG. 8. (Color online) Examples of collisions between unipolar asymmetric solitons for (a) and (b) slow solitons with η = 0.1, (c) and (d)
intermediate velocity η = 0.4, (e) and (f) larger intermediate velocity η = 0.8, and (g) and (h) fast solitons with η = 1.6.

the border between the weakly and strongly bound systems
(a,b,P ) = (1,0.4,0.5). Figures 8(a), 8(b), 9(a), and 9(b) show

that slowly moving solitons bounce back from each other
elastically. When the kick and ensuing velocities are larger,

FIG. 9. (Color online) Examples of collisions between asymmetric solitons with opposite polarities for (a) and (b) slow solitons with
η = 0.1, (c) and (d) intermediate velocity η = 0.4, and (e) and (f) fast solitons with η = 1.6.
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FIG. 10. (Color online) Examples of stable PT -symmetric solitons, defined as per Eq. (9), with (a,b,P ) = (1,0.4,0.3) for γ = 0, 0.3, and
0.6. (a) Profile of |ψ1,2(x)|, which is common for the three solitons. (b) Real and (c) imaginary parts of the solitons.

the collision becomes inelastic, leading to the merger of the
solitons into a single asymmetric breather. Figures 8(c)–8(f)
demonstrate that the merger of the colliding unipolar solitons
may switch the polarity of the emerging breather from that
of the original solitons or produce a breather that keeps the
original polarity. The merger of the solitons with opposite
polarities gives rise to an asymmetric breather whose polarity
is established spontaneously, as seen in Figs. 9(c) and 9(d).
Finally, at still larger values of the kick, the moving solitons
pass through each other, reappearing in an excited form (each
one as a moving breather) [see Figs. 8(g), 8(h), 9(e), and 9(f)].
The norms of the outgoing vibrating solitons are equal, as they
were before the collision.

The same sequence of outcomes of the collisions—
rebound, merger into a breather, and passage in the form
of moving breathers—is observed, with an increase of the
kick η, at other values of the parameters. Collisions between
symmetric solitons seem simpler (not shown here in detail):
rebound at small values of η and passage, without conspicuous
excitation of intrinsic vibrations, at larger η.

IV. THE PT -SYMMETRIC VERSION OF THE WEAKLY
COUPLED SYSTEM

The realization of PT -symmetric systems in BECs was
proposed by linearly coupling two traps (cores, in the present
terms) with the loss of atoms in one trap and the gain of
atoms in the other, which may be provided by a matter-wave
laser [73]. The objective of the analysis was to provide a direct
realization of the PT symmetry in quantum media, after it
was proposed [74] and implemented [75] in classical optics
(see also Ref. [76]).

Accordingly, the PT -balanced version of linearly coupled
GPEs (1) is

i
∂ψ1

∂t
= −1

2

∂2ψ1

∂x2
− ψ2 + iγψ1

−ψ1

∫ +∞

−∞

[ |ψ1(x ′)|2
(b2 + |x − x ′|2)3/2

− 1

2
(1 − 3 cos2 θ )

× |ψ2(x ′)|2
(a2 + |x − x ′|2)3/2

]
dx ′,

i
∂ψ2

∂t
= −1

2

∂2ψ2

∂x2
− ψ1 − iγψ2

−ψ2

∫ +∞

−∞

[ |ψ2(x ′)|2
(b2 + |x − x ′|2)3/2

− 1

2
(1 − 3 cos2 θ )

× |ψ1(x ′)|2
(a2 + |x − x ′|2)3/2

]
dx ′, (8)

where γ > 0 is the coefficient of the gain and loss in the
first and second cores, respectively, κ = GDD ≡ 1 is fixed,
as above, and the local nonlinearity is dropped (g = 0). As
in the recently studied model of the PT -symmetric coupler
with cubic nonlinearity [47,48], stationary PT -symmetric and
-antisymmetric solutions to Eq. (8) can be found as

ψ
(symm)
1,2 (x,t) = e−iμtφ(x) exp

( ± 1
2 i arcsin γ

)≡e−iμtφ1,2(x),

(9)

ψ
(anti)
1,2 (x,t) = ±ie−iμtφ(x) exp

( ∓ 1
2 i arcsin γ

)
, (10)

where the upper and lower signs correspond to subscripts 1
and 2, respectively, μ is a real chemical potential, and the real
function φ(x) is the solution of the stationary equation (2)
for symmetric solitons in the system without the PT terms
and with the same value of μ. Obviously, the symmetric and

(a) (b)

FIG. 11. (Color online) Critical value γcr

(the stability boundary for the PT -symmetric
solitons) versus the total norm P at different
fixed values of the pipe’s parameter b in the
weakly coupled system for (a) symmetric soli-
tons (9) and (b) antisymmetric solitons (10). The
continuous and dashed curves are guides for
the eye.
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antisymmetric solitons exist for γ < 1 and form continuous
families parametrized by μ, like their counterparts in the
conservative system.

Here we focus on the analysis of the stability of the
PT -symmetric and -antisymmetric solitons (9), which is a
nontrivial problem in the present context. Typical examples of
stable symmetric solitons are displayed in Fig. 10, along with
their counterpart in the system without the PT terms (γ = 0).

The PT -symmetric and -antisymmetric solitons remain
stable up to a certain critical value γcr of the gain-loss
coefficient and are unstable in the interval of γcr < γ < 1,
which is a situation typical for solitons in PT -symmetric
systems [47,48,77]. The unstable solitons suffer a blowup
of the pumped component and decay of the damped one,
which is a typical scenario too (not shown here in detail).
The most essential results are presented in Fig. 11 for the
weakly coupled system in the form of the dependence of γcr

on the total norm for different diameters of the parallel-coupled
pipes b (recall that b was demonstrated above to be the most
essential coefficient for the weakly coupled system). The
figure demonstrates that the instability region expands as the
nonlinear interactions get stronger, which is caused by either
an increase of the total norm P or a decrease of b.

V. CONCLUSION

The objective of this work was to extend the study of
the symmetry breaking of solitons in dual-core systems with
the cubic nonlinearity and linear coupling between the cores,
which has been previously analyzed in full detail for local
interactions, to dipolar BECs with long-range interactions,
which act both inside each core and between them. Two
versions of the system were introduced, weakly and strongly

coupled ones, depending on the relation between the diameter
of the pipe-shaped traps and the distance between them. In
either case, the linear coupling accounts for hopping of atoms
between the cores. The symmetry-breaking bifurcation and
stability regions for symmetric and asymmetric solitons, as
well as for nonbifurcating antisymmetric solitons, have been
identified in both systems. In addition to the solitons, the
strongly coupled system supports a stability region for flat
states with unbroken symmetry between the cores due to
the competition between the attractive and repulsive intracore
and intercore dipole-dipole interactions. Collisions between
kicked asymmetric solitons in the weakly coupled system
were systematically studied too, showing bouncing back at
small velocities, a merger into an asymmetric breather in
the intermediate range, and the reappearance of vibrating
fast solitons after the collision. Finally, a PT -symmetric
generalization of the weakly coupled system was introduced
as a more exotic extension of the system and a stability
boundary for PT -symmetric and -antisymmetric solitons was
found. A challenging generalization of the analysis may be
its application to 2D dual-core systems, where in particular
the symmetry breaking may occur not only for fundamental
solitons, but also for solitary vortices.
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