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Nonadiabatic tunneling in circularly polarized laser fields. II. Derivation of formulas
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We provide detailed analysis of strong field ionization of degenerate valence p orbitals by circularly polarized
fields. Our analytical approach is conceptually equivalent to the Perelomov, Popov, and Terent’ev (PPT) theory
and is virtually exact for short-range potentials. After benchmarking our results against the PPT theory for s

orbitals, we obtain the results for p orbitals. We also show that, as long as the dipole approximation is valid,
both the PPT method and our results are gauge invariant, in contrast with widely used strong field approximation
(SFA). Our main result, which has already been briefly outlined in [I. Barth and O. Smirnova, Phys. Rev. A 84,
063415 (2011)], is that strong field ionization preferentially removes electrons counter-rotating to the circularly
polarized laser field. The result is illustrated using the example of Kr atom. Strong, up to one order of magnitude,
sensitivity of strong field ionization to the sense of electron rotation in the initial state is one of the key signatures
of nonadiabatic regime of strong field ionization.
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I. INTRODUCTION

The analysis of ionization in strong low-frequency laser
fields is often based on adiabatic approximation. In this
approximation, ionization is treated as tunneling through a
static (or quasistatic) barrier created by the binding potential
and the voltage drop due to the electric field of the laser
pulse. This picture implies that the electron does not see the
oscillations of the low-frequency laser field during ionization,
i.e., tunneling happens “faster” than the oscillation of linear or
the rotation of circular field. Formally, this picture corresponds
to the limit γ � 1, where γ = √

2Ip ω/E is the Keldysh
parameter [1], Ip is the ionization potential, ω is the laser
frequency, and E is the strength of the laser field.

However, for typical experimental conditions, both for
linear and for circularly polarized fields [2–7], the Keldysh
parameter is often in the nonadiabatic tunneling regime [8,9],
i.e., γ ∼ 1. Therefore, the adiabatic-based interpretation of
these experiments is questionable. In particular, we have
shown in Ref. [10] that for strong field ionization in circularly
polarized laser fields, the sense of electron rotation becomes
significant already for γ < 1, i.e., even when using longer-
wavelength laser radiation than the standard 800 nm, e.g.,
1300 nm as in Ref. [5]. As a consequence of nonadiabatic
effects, the counter-rotating electron can have up to one order
of magnitude larger ionization rate than co-rotating, depending
on the laser field parameters. Our theoretical prediction has
now been confirmed by the experiment [11].

The goal of this paper is to expose our calculations and
discuss the approximations we have used in deriving simple
formulas for ionization rates presented in Ref. [10]. We follow
the theory developed by Perelomov, Popov, and Terent’ev
(PPT) [12,13] for short-range potentials and apply it to p

orbitals. Including effects of the long-range Coulomb potential
in standard way [14,15] does not change our conclusions for
the ratio of ionization rates from p+ and p− orbitals. Including
non-adiabatic Coulomb effects [16] will be considered sepa-
rately [17]. The Stark shift of the initial state is not included
in our analysis, but it can be calculated separately [7,18] and

used to correct the field-free ionization potential used in the
present calculation.

The key advantage of the PPT approach is its gauge
invariance, which is discussed below in the paper. The violation
[19–21] of gauge invariance in strong field approximation
(SFA) leads to both technical and conceptual problems [22]. In
particular, for the ionization of p orbitals by strong circularly
polarized fields, the SFA yields inconsistent results in both
gauges [23,24], which contradict experimental measurements
of either ionization yields [11] or electron spectra (see, e.g.,
Refs. [2–4,6,7]). Note that in linearly polarized fields the
length gauge SFA and the PPT theory yield equivalent results
for short-range potentials [25]. The results of length gauge
SFA and the PPT are different if long-range effects are taken
into account, with length gauge SFA leading to incorrect
prefactor of ionization rate [1]. The deficiencies of velocity
gauge SFA are well documented [19–21] and are significant
even for short-range potentials, e.g., velocity gauge SFA
predicts identical total ionization rates from p+ and p− orbitals
[23].

Our analysis reveals that optimal quantum trajectory, which
minimizes electron action under the barrier, corresponds to
initial nonzero lateral velocity in direction opposite to the
rotation of the laser field. The weight of this trajectory is
determined by the direction of electron current in the initial
orbital and is higher for p− orbitals in case of right circular
polarization of the laser field.

Finally, we show that nonadiabatic dynamics of strong
field ionization leads to nontrivial rotational dynamics of the
hole left in the ion. This dynamics leads to the generation of
electronic ring currents in ions [26,27], and the coherence of
this dynamics can be probed with attosecond time resolution
using attosecond transient absorbtion technique demonstrated
recently in Ref. [28].

This paper is organized as follows: In Sec. II, we derive
analytical formulas for the ionization rates based on the PPT
theory. We first benchmark our results for s orbitals against
the PPT results [12]. We then derive the results for p0 and
p± orbitals. In Sec. III, we apply these formulas to the strong
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field ionization of the Kr atom. Section IV concludes this
work.

II. THEORY

A. Ionization model in circularly polarized laser fields

The PPT formulas for the atomic ionization rates were
derived for the strong field ionization in linearly, circu-
larly, and elliptically polarized laser fields [12,13]. However,
for circular and elliptical polarizations, there are formulas
only for s orbitals. In this section, we derive the analytical
formula for the ionizaton rates in circularly polarized laser
fields also for pm orbitals with azimuthal quantum numbers
m = 0,±1. The right (+) or left (−) circularly polarized laser
field is defined as

E±(t) = E[cos(ωt) ex ± sin(ωt) ey], (1)

which is connected with the vector potential,

A±(t) = −A0[sin(ωt) ex ∓ cos(ωt) ey], (2)

by the relation E±(t) = −dA±(t)/dt , where E is the electric
field amplitude, A0 = E/ω is the velocity amplitude of the
electron oscillations in the laser field, and ω is the laser
frequency.

We assume that the electron ionization from the valence
p shell is described by the time-dependent Schrödinger
equation (TDSE) in single active electron model within dipole
approximation,

i
∂

∂t
ψ±(r,t) =

[
−∇2

r

2
+ V (r) + r · E±(t)

]
ψ±(r,t), (3)

where V (r) is the effective potential and the atomic units are
used throughout in this work. The exact solution of this TDSE
is the integral equation for the time-dependent wave function
ψ±(r,t) starting at time t0 [12],

ψ±(r,t) =
∫

dr′ G±(r,t,r′,t0)ψ±(r′,t0)

− i

∫ t

t0

dti

∫
dr′ G±(r,t,r′,ti)V (r′)ψ±(r′,ti), (4)

where

G±(r,t,r′,ti) = θ (t − ti)

(2π )3

∫
dk eiv±(t)·r−iv±(ti )·r′

e
− i

2

∫ t

ti
v±(τ )2 dτ

(5)

is the Green’s function of the electron for motion in a circularly
polarized field,

v±(t) = k + A±(t) (6)

is the instantaneous electron velocity, and k is the final
momentum observed at the detector. Moreover, we divide
k = k‖ + k⊥ into two components k‖ = kx ex + ky ey and
k⊥ = kz ez, which are parallel (k‖ ‖ A±(t)) and perpendicular
(k⊥ ⊥ A±(t)) to the laser field, respectively.

The first term of Eq. (4) does not contribute to the ionzation
rate, because it describes the smearing out of the initial state
[12]. As in PPT theory, the main approximation of this theory
is the neglect of the distortion of the initial wave function
ψ±(r′,ti) by Stark effect prior to ionization at time ti , i.e.,

we replace the exact wave function ψ±(r′,ti) on the right
side of Eq. (4) by the wave function of the bound orbital
for the free atom ϕlm(r′)eiIpti with quantum numbers l, m, and
ionization potential Ip. Using the field-free TDSE, the term
V (r′)ψ±(r′,ti) is replaced by

V (r′)ϕlm(r′)eiIpti = 1
2

(∇2
r′ − 2Ip

)
ϕlm(r′)eiIpti . (7)

As already described in Ref. [12] in detail, the difference
between two wave functions ψ±(r′,ti) and ϕlm(r′)eiIpti is small
for short-range potentials, i.e., the potential V (r) falls more
rapidly than the effective Coulomb potential ∼1/r. However,
the Coulomb corrections can be introduced using standard
recipes [14,15] involving the time integration of the Coulomb
potential along the optimal trajectory. In this work, we use the
short-range potential and will include Coulomb corrections in
our future work.

Furthermore, we assume that the laser field is turned
on at t0 → −∞ adiabatically. Then, using the momentum
representation of the wave function,

ϕ̃lm(k) = 1

(2π )3/2

∫
dr e−ik·rϕlm(r), (8)

and the abbreviation,

φlm(v±(t)) = 1
2 [v±(t)2 + 2Ip]ϕ̃lm(v±(t)), (9)

we get the approximative electron wave function from Eq. (4),

ψ±(r,t) = i

(2π )3/2

∫ t

−∞
dti eiIpti

∫
dk eiv±(t)·re− i

2

∫ t

ti
v±(τ )2 dτ

×φlm(v±(ti)). (10)

For circularly polarized fields, it is advantageous to use
cylindrical coordinates (ρ,φ,z) instead of Cartesian ones
(x,y,z) in coordinate space related by x = ρ cos φ and
y = ρ sin φ. Similarly, we introduce cylindrical coordinates
(kρ,θ,kz) in momentum space with relations kx = kρ cos θ and
ky = kρ sin θ , thus k2

ρ = k2
x + k2

y = k2
‖ and k2 = k2

ρ + k2
z =

k2
‖ + k2

⊥. With Eqs. (2) and (6), two exponents in Eq. (10)
are expressed as

iv±(t) · r = if±(kρ,θ,φ,t)ρ + ikzz, (11)

and

− i

2

∫ t

ti

v±(τ )2 dτ = − i

2

(
k2 + A2

0

)
(t − ti)

− ik · [ξ±(t) − ξ±(ti)], (12)

where

f±(kρ,θ,φ,t) = kρ cos(θ − φ) − A0 sin(ωt ∓ φ), (13)

and

ξ±(t) = E±(t)/ω2. (14)

B. Derivation of the formula for the time-averaged
ionization rate

We follow the derivation of the formula for the ionization
rate in Refs. [12,13] based on the PPT approach and repeat
it here for clarification and only for the case of circular
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polarization (ε = 1). The time-averaged ionization rate
w±(E,ω) is equal to the time-averaged radial flux at the infinity
ρ → ∞, i.e.,

w±(E,ω) = lim
ρ→∞ J±(ρ,t). (15)

The radial flux J±(ρ,t) is evaluated as the integral of the radial
component of the flux density jρ±(r,t) over a cylinder of radius
ρ with its axis along the propagation z axis of the circularly
polarized laser field, i.e.,

J±(ρ,t) = ρ

∫ ∞

−∞
dz

∫ 2π

0
dφ jρ±(ρ,φ,z,t), (16)

where jρ±(r,t) is defined as

jρ±(r,t) = i

2

(
ψ±(r,t)

∂

∂ρ
ψ∗

±(r,t) − ψ∗
±(r,t)

∂

∂ρ
ψ±(r,t)

)
.

(17)

Inserting Eqs. (10)–(12) into Eq. (17), we get

jρ±(r,t) = 1

2(2π )3

∫
dk1

∫
dk2 ei(k2−k1)·(r−ξ±(t))

× (f±(k1ρ,θ1,φ,t) + f±(k2ρ,θ2,φ,t))

×
∫ t

−∞
dt1i e

i
2 (k2

1+A2
0+2Ip)(t−t1i )F ∗

±(k1,t1i)

×
∫ t

−∞
dt2i e− i

2 (k2
2+A2

0+2Ip)(t−t2i )F±(k2,t2i), (18)

where the function,

F±(k,t) = φlm(v±(t))eik·ξ±(t), (19)

contains terms with complicated, but periodic time depen-
dence. Expanding F±(k,t) into the Fourier series,

F±(k,t) =
∞∑

n=−∞
Fn±(k,ω)e−inωt , (20)

with the Fourier coefficients,

Fn±(k,ω) = 1

2π

∫ π

−π

d(ωt) F±(k,t)einωt , (21)

and carrying out time integrations in Eq. (18), according to
(a ∈ R,δ > 0),∫ t

−∞
dt ′ e±ia(t−t ′) = lim

δ→0

±i

a ± iδ
, (22)

yields the final formula for the radial component of the flux
density (δ > 0),

jρ±(r,t) = lim
δ→0

1

2(2π )3

∫
dk1

∫
dk2 ei(k2−k1)·(r−ξ±(t))

× (f±(k1ρ,θ1,φ,t) + f±(k2ρ,θ2,φ,t))

×
∞∑

n1=−∞
F ∗

n1±(k1,ω)

[
k2

1

2
+ A2

0

2
+ Ip − n1ω + iδ

]−1

×
∞∑

n2=−∞
Fn2±(k2,ω)

[
k2

2

2
+ A2

0

2
+ Ip − n2ω − iδ

]−1

× e−i(n2−n1)ωt . (23)

This expression is then inserted into the formula for the radial
flux J±(ρ,t), Eq. (16). With

i(k2 − k1) · r = iρ((k2x − k1x) cos φ + (k2y − k1y) sin φ)

+ i(k2z − k1z)z, (24)

the z integration is easily carried out, i.e.,∫ ∞

−∞
dz ei(k2−k1)·r = 2πδ(k2z − k1z)

× eiρ((k2x−k1x ) cos φ+(k2y−k1y ) sin φ). (25)

But the evaluation of the φ integration is challenging.
Using Eq. (13), the Euler’s formula, and the substitution
|k2‖ − k1‖| sin φ′ = (k2x − k1x) cos φ + (k2y − k1y) sin φ, the
φ integral is evaluated as (see Appendix A)

∫ 2π

0
dφ eiρ((k2x−k1x ) cos φ+(k2y−k1y ) sin φ)(f±(k1ρ,θ1,φ,t) + f±(k2ρ,θ2,φ,t))

= 2πi
(
k2

2ρ − k2
1ρ − 2k2ρA0 sin(ωt ∓ θ2) + 2k1ρA0 sin(ωt ∓ θ1)

) J1(ρ|k2‖ − k1‖|)
|k2‖ − k1‖| , (26)

where Jn(x) is the Bessel function of the first kind; cf. Ref. [13]. Then, we carry out the simple integration over k1z and get the
result for the radial flux,

J±(ρ,t) = lim
δ→0

i

π

∫
dk1‖

∫
dk2‖ e−i(k2‖−k1‖)·ξ±(t)

(
k2

2ρ − k2
1ρ − 2k2ρA0 sin(ωt ∓ θ2) + 2k1ρA0 sin(ωt ∓ θ1)

) ρJ1(ρ|k2‖ − k1‖|)
|k2‖ − k1‖|

×
∫ ∞

−∞
dkz

∞∑
n1=−∞

F ∗
n1±((k1‖,kz),ω)

[
k2

1ρ + k2
z + A2

0 + 2Ip − 2n1ω + iδ
]−1

×
∞∑

n2=−∞
Fn2±((k2‖,kz),ω)

[
k2

2‖ + k2
z + A2

0 + 2Ip − 2n2ω − iδ
]−1

e−i(n2−n1)ωt . (27)

To obtain the limit of the radial flux at the infinity ρ → ∞, we apply the relation for the arbitrary function g(k‖) (see Appendix B),

lim
ρ→∞

∫
dk‖ g(k‖)

ρJ1(ρk‖)

k‖
= 2π

∫
dk‖ g(k‖)δ(k‖), (28)
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cf. Ref. [13], carry out the integration of the radial flux over k1y , and use Eqs. (1) and (14), and the substitutions k± = k2x ± k1x .
Then, the intermediate result is

lim
ρ→∞ J±(ρ,t) = lim

δ→0
i

∫ ∞

−∞
dk− δ(k−)k−e− iA0k−

ω
cos(ωt)

∫ ∞

−∞
dky

∫ ∞

−∞
dkz

∞∑
n1=−∞

∞∑
n2=−∞

e−i(n2−n1)ωt

∫ ∞

−∞
dk+ h±(k+)

×
[
1

4
(k+ − k−)2 + k2

y + k2
z + A2

0 + 2Ip − 2n1ω + iδ

]−1[1

4
(k+ + k−)2 + k2

y + k2
z + A2

0 + 2Ip − 2n2ω − iδ

]−1

,

(29)

where the analytical function h(k+) is defined as

h±(k+) = (k+ − 2A0 sin(ωt))F ∗
n1±

((
k+ − k−

2
,ky,kz

)
,ω

)

×Fn2±

((
k+ + k−

2
,ky,kz

)
,ω

)
. (30)

It is now shown in Eqs. (29) and (30), that the ionization
rate depends on the sense (±) of circular polarization only
in the function F±(k,t) [Eq. (19)]. By further deep analysis,
the k+ integrand in Eq. (29) has four poles whose locations
on the complex plane and corresponding residues depend
particularly on n1 and n2. For k− = 0 and 0 
= n1 
= n2 
= 0,
all four residues are finite, thus the k− integral in Eq. (29)
would be zero due to the appearance of the factor k− in
the integrand. Therefore, the condition for the number of
photons n = n1 = n2 must be satisfied. Furthermore, for
2nω < k2

y + k2
z + A2

0 + 2Ip, there are only two residues that
could contribute to the ionization rate, but in the limit k− = 0
these residues are opposite. Therefore, we consider only the
case 2nω � k2

y + k2
z + A2

0 + 2Ip, where only two residues
contribute to the ionization rate. By the way, we denote the
quantity n0 as the minimal number of photons required for
ionization in circularly polarized laser fields, i.e.,

n0 = A2
0

2ω
+ Ip

ω
= 2Up + Ip

ω
, (31)

where Up = A2
0/4 is the pondermotive potential. Comparing

to the case for linearly polarized laser fields, the mean kinetic
energy of the electron in a circularly polarized laser field
A2

0/2 = 2Up is twice as much. Applying the residue method
for the k+ integral and evaluating the k− integral, we get the
expression for the radial flux at the infinity (see Appendix C),

lim
ρ→∞ J±(ρ,t)

= π

∞∑
n�n0

∫ ∞

−∞
dky

∫ ∞

−∞
dkz

×
h±

(
2
√

k2
n − k2

y − k2
z

) − h±
(−2

√
k2
n − k2

y − k2
z

)
k2
n − k2

y − k2
z

,

(32)

where

k2
n

2
= (n − n0)ω. (33)

Using Eq. (30) for k− = 0 and n = n1 = n2, i.e.,

h±(k+) = (k+ − 2A0 sin(ωt))

∣∣∣∣Fn±

( (
k+
2

,ky,kz

)
,ω

)∣∣∣∣
2

,

(34)

time averaging over a laser cycle, and using the relations
for the δ function δ(α2 − x2) = [δ(α − x) + δ(α + x)]/(2|α|)
and δ(αx) = δ(x)/|α|, we obtain the final formula for the
ionization rate from Eq. (15) as a sum over multiphoton
channels,

w±(E,ω) =
∞∑

n�n0

wn±(E,ω), (35)

and

wn±(E,ω) = 2π

∫
dk δ

(
k2

2
− k2

n

2

)
|Fn± (k,ω)|2 , (36)

which coincide exactly with Eqs. (13) and (14) of Ref. [13] for
circular polarization, respectively. In Eq. (36), we recognize
that there is the conservation law, namely k = kn, that means
that the electron kinetic energy is equal the photon energy
minus the mean electron energy in a circularly polarized laser
field and the ionization energy [cf. Eqs. (31) and (33)], i.e.,

k2

2
= k2

n

2
= nω − 2Up − Ip. (37)

C. Gauge invariance

The length gauge was used in the derivation as in the
original PPT approach. However, we note that the result
for ionization rate is independent of the gauge. Rewriting
Eqs. (3)–(5) using the velocity gauge yields substitution of
the original wave function ψ±(r,t) in the length gauge by
ψ±(r,t)e−iA±(t)·r in Eq. (10). Thus, in the right-hand side of
Eq. (10) the term eiv±(t)·r is then replaced by eiv±(t)·re−iA±(t)·r =
eik·r and the function in Eq. (13) is therefore time independent,
i.e., f±(kρ,θ,φ) = kρ cos(θ − φ). Following the derivation in
the previous section, Eqs. (26) and (30) do not have any
time-dependent terms anymore, yielding the time-independent
radial flux in Eq. (32). Therefore, time averaging over a laser
cycle is unnecessary in the velocity gauge, yielding the same
result for the ionization rate as in Eqs. (35) and (36).

D. Derivation of the formula for the probability
of the n-photon process

The function |Fn±(k,ω)|2 in Eq. (36) describes the prob-
ability of the n-photon process in circularly polarized fields,
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which is derived in this work not only for s but also for all
atomic orbitals, thus beyond the derivations in Refs. [12,13].
With Eqs. (19) and (21), we start with the general formula for
the probability of the n-photon process at k = kn,

|Fn±(k,ω)|2k=kn
= ω2

4π2

∣∣∣∣
∫ π/ω

−π/ω

dt φlm(v±(t))eiS±(k,t)

∣∣∣∣
2

k=kn

,

(38)

where the action S±(k,t) at k = kn is

S±(k,t)|k=kn
= k · (ξ±(t) − ξ±(0))|k=kn

+ nωt. (39)

It is also obtained by the well-known expression for the action,

S±(k,t) = 1

2

∫ t

0
v±(τ )2 dτ + Ipt, (40)

the conservation law (37), and the relation,

1

2

∫ t

0
v±(τ )2 dτ =

(
k2

2
+ 2Up

)
t + k · (ξ±(t) − ξ±(0)),

(41)

cf. Eq. (12). Using the saddle point method applied for
ω � Ip and ω � Up, we obtain the simple expression for
the probability of the n-photon process,

|Fn±(k,ω)|2k=kn
= ω2

4π2

∣∣∣∣φlm(v±(ti))eiS±(k,ti )

√
2π

S ′′±(k,ti)

∣∣∣∣
2

k=kn

.

(42)

It means that the integral in Eq. (38) is accumulated mostly
in the small region around the so-called (complex) ionization
time ti which is uniquely linked to k and determined by the
saddle point equation,

∂

∂t
S±(k,t)

∣∣∣∣
k=kn,t=ti

= v±(ti)2

2

∣∣∣∣
k=kn

+ Ip

= ∂

∂t
k · ξ±(t)

∣∣∣∣
k=kn,t=ti

+ nω = 0. (43)

With

k · ξ±(t)|k=kn
= A0

√
k2
n − k2

z

ω
cos(ωt ∓ θ ), (44)

the saddle point equation [Eq. (43)] is rewritten as

sin(ωti ∓ θ ) = χn(kz), (45)

where

χn(kz) = nω

A0
√

k2
n − k2

z

� nω

A0kn

= χn(kz = 0) =: χn. (46)

Using Eqs. (31) and (33), the variable χn is reexpressed as

χn =
√

n2ω

2A2
0(n − n0)

=
√

n2(1 + γ 2)

4n0(n − n0)
, (47)

where γ = √
2Ip/A0 > 0 is the Keldysh parameter [1] dis-

criminating between adiabatic tunneling (γ � 1), nonadi-
abatic tunneling (γ ∼ 1) [9], and multiphoton ionization

(γ � 1). Equation (47) is further rewritten as

χn =
√

1 + γ 2

1 − ζ 2
, (48)

where

ζ = 2n0

n
− 1 ∈ (−1,1], (49)

corresponding to the range n � n0. In this range, χn is always
larger than 1, thus χn(kz) > 1, cf. Eq. (46). Therefore, the
ionization time ti in Eq. (45) must be complex, i.e., ti = Re ti +
i Im ti , and we get two equations for Re ti and Im ti ,

sin(ω Re ti ∓ θ ) cosh(ω Im ti) = χn(kz), (50)

cos(ω Re ti ∓ θ ) sinh(ω Im ti) = 0. (51)

The corresponding solutions for Im ti 
= 0 are

ω Re ti = π

2
± θ + 2πN, (52)

ω Im ti = arcosh χn(kz), (53)

where N ∈ Z is chosen such that ω Re ti lies in the interval
of a laser cycle, that is between −π and π ; cf. Eq. (38). The
complex time ti can be interpreted as the time of entering
into the barrier, while its imaginary Im ti and real Re ti
parts are the tunneling time and the time of exiting the
barrier, respectively [14]. With Eqs. (44), (46), (52), (53), and

sinh x =
√

cosh2 x − 1, the corresponding action S±(k,ti) at
k = kn [Eq. (39)] is

S±(k,ti)|k=kn
= n

(
π

2
± θ + 2πN − cos θ

χn(kz)

)

+ in

(
arcosh χn(kz) −

√
1 − 1

χn(kz)2

)
.

(54)

Only its imaginary part,

Im S(k,ti)|k=kn
= n

(
arcosh χn(kz) −

√
1 − 1

χn(kz)2

)
,

(55)

does not depend on the sense (±) of circular polarization, thus
we can omit the index ± of the imaginary part of the action.
It means that the imaginary actions are equal for right and
left circular polarizations. Using Eqs. (39) and (44)–(46), the
absolute value of the second derivative of the action S ′′

±(k,ti)
in Eq. (42) at k = kn,

∣∣∣∣ ∂2

∂t2
S(k,t)

∣∣∣∣
k=kn,t=ti

= nω2

√
1 − 1

χn(kz)2
, (56)

is also independent of the sense (±) of circular polarization.
Then, the expression for the probability of the n-photon
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process (42) is rewritten as

|Fn±(k,ω)|2k=kn

= |φlm(v±(ti))|2k=kn

2πn
√

1 − 1/χn(kz)2
e−2n(arcosh χn(kz)−

√
1−1/χn(kz)2).

(57)

Thus, the dependence of the ionization rate on the sense of
circular polarization is only due to the prefactor,

|φlm(v±(ti))|2k=kn
= 1

4 |[v±(ti)2 + 2Ip]ϕ̃lm(v±(ti))|2k=kn
, (58)

cf. Eq. (9). Using Eqs. (6), (52), and (53), the initial electron
velocity,

v±(ti)|k=kn
= vx±(ti)|k=kn

ex + vy±(ti)|k=kn
ey + kz ez,

(59)

with x and y components,

vx±(ti)|k=kn
= kρ cos θ − A0(χn(kz) cos θ

∓ i
√

χn(kz)2 − 1 sin θ ), (60)

vy±(ti)|k=kn
= kρ sin θ − A0(χn(kz) sin θ

± i
√

χn(kz)2 − 1 cos θ ), (61)

specifies the required momentum of the initial wave function,
i.e., ϕ̃lm(v±(ti)). The amount of this momentum depends
on the orbital, in particular, it is different for p+ and p−
orbitals. Because of the saddle point equation [Eq. (43)], i.e.,
v±(ti)2|k=kn

+ 2Ip = 0, the initial wave function ϕ̃lm(v±(ti))
must have the pole at v±(ti)2|k=kn

= −2Ip = −κ2 that yields
nonzero prefactor |φlm(v±(ti))|2k=kn

; cf. Eq. (58). For short-
range potentials, it corresponds to the wave function in
coordinate representation asymptotically far from the core
[12], i.e.,

ϕlm(r) = Cκlκ
3/2 e−κr

κr
Ylm(θr ,φr ), (62)

with the constant Cκl , depending on κ = √
2Ip and l as well

as details of the potential near the core. Using spherical
harmonics,

Ylm(θr ,φr ) =
√

2l + 1

4π

(l − m)!

(l + m)!
P m

l (cos θr )eimφr , (63)

Fourier transformation (8), and

−iv±(ti) · r = −iv±(ti)r( sin θv±(ti) sin θr cos(φv±(ti) − φr )

+ cos θv±(ti) cos θr ), (64)

in spherical coordinates, we evaluate two integrals over φr and
θr with the help of the Bessel function and Ref. [29] to yield
the intermediate result (see Appendix D),

ϕ̃lm(v±(ti)) = Cκl

√
κ

v±(ti)
Ylm(θv±(ti),φv±(ti)) e−ilπ/2

×
∫ ∞

0
dr

√
r e−κrJl+1/2(v±(ti)r). (65)

Expanding the Bessel function in the Taylor series and using
the Gamma function �(z), the integration over r is easily

carried out. The resulting series is then compacted as the
Gaussian hypergeometric series (see Appendix D),

ϕ̃lm(v±(ti))

= Cκl√
2κ3

(
v±(ti)

2κ

)l

Ylm(θv±(ti),φv±(ti)) e−ilπ/2,

× �(l + 2)

�(l + 3/2)
2F1

(
l

2
+ 1,

l

2
+ 3

2
; l + 3

2
; −v±(ti)2

κ2

)
.

(66)

The hypergeometric series does not converge at the saddle
point v±(ti)2|k=kn

= −κ2, thus this series has the pole as
expected above. Multiplying Eq. (66) by v±(ti)2 + κ2 yields
the series (see Appendix D),

(v±(ti)
2 + κ2)ϕ̃lm(v±(ti))

= Cκl

√
2κ

π

(
v±(ti)

κ

)l

Ylm(θv±(ti),φv±(ti)) e−ilπ/2,

×
√

π

2l+1

�(l + 2)

�(l + 3/2)
2F1

(
l

2
+ 1

2
,
l

2
; l + 3

2
; −v±(ti)2

κ2

)
,

(67)

which is convergent at the saddle point, i.e.,
√

π

2l+1

�(l + 2)

�(l + 3/2)
2F1

(
l

2
,
l

2
+ 1

2
; l + 3

2
; 1

)
= 1. (68)

Thus, the prefactor (58) is simplified as

|φlm(v±(ti))|2k=kn
= |Cκl|2

√
2Ip

2π
|Ylm(θv±(ti),φv±(ti))|2k=kn

,

(69)

cf. Ref. [12]. With Eqs. (57) and (63), we finally obtain the
general result for the probability of the n-photon process for
all atomic orbitals,

|Fn±(k,ω)|2k=kn
= |Cκl|2

√
2Ip (2l + 1)

16π3n
√

1 − 1/χn(kz)2

(l − |m|)!
(l + |m|)!

×
∣∣∣∣P |m|

l

(
ikz√
2Ip

)∣∣∣∣
2

|eimφv±(ti )|2k=kn
,

× e−2n(arcosh χn(kz)−
√

1−1/χn(kz)2), (70)

where cos θv±(ti)|k=kn
= vz/v±(ti)|k=kn

= ±ikz/
√

2Ip was
used. The square of the associated Legendre polynomials in
Eq. (70) are equal to 1 for s orbitals, k2

z /(2Ip) for p0 orbitals,
(k2

z + 2Ip)/(2Ip) for p± orbitals, and so on. The ionization
rates for orbitals with m = 0 (e.g., s and p0 orbitals) are
independent of the sense of circular polarization. For m 
= 0
(e.g., p± orbitals), they depend on the polarization sense, solely
due to the factor |eimφv±(ti )|2k=kn

. For m 
= 0, this factor is not
equal to unity, because the so-called tunneling momentum
angle φv±(ti), which is related by

cos φv±(ti) = vx±(ti)

vρ±(ti)
, (71)

sin φv±(ti) = vy±(ti)

vρ±(ti)
, (72)

is complex. With vρ±(ti)2|k=kn
= −(k2

z + 2Ip), γ =√
2Ip/A0, Eqs. (31), (46), (60), and (61), the factor
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|eimφv±(ti )|2k=kn
for m = ±1 is (see Appendix E)

|eimφv±(ti )|2k=kn
= |cos φv±(ti) + i sgn(m) sin φv±(ti)|2k=kn

(73)

= Ip[2χn(kz)2(1 ∓ sgn(m)
√

1 − 1/χn(kz)2) − (1 + γ 2)n/n0]2

2γ 2χn(kz)2
(
k2
z + 2Ip

) . (74)

Now, we can see that the ionization rates for a given
circular polarization are different for orbitals with opposite
quantum numbers m = ±1 (e.g., p± orbitals). Because of the
term ∓sgn(m) in Eq. (74), the ionization rate for the p+
(or p−) orbital and right circular polarization is the same
as the ionization rate for the p− (or p+) orbital and left
circular polarization, supporting the fundamental symmetry
in electrodynamics.

E. Accurate formulas for the time-averaged ionization
rates for s and p orbitals

Since the function |Fn±(k,ω)|2k=kn
[Eq. (70)] depends only

on k2
z , the two integrations over kρ and θ in the formula for the

time-averaged ionization rate [Eqs. (35) and (36)] are easily
carried out and the result is simplified to

w±(E,ω) = 8π2
∞∑

n�n0

∫ kn

0
dkz |Fn± (k,ω)|2k=kn

. (75)

With Eqs. (70) and (74), the accurate formulas for the time-
averaged ionization rates are

ws(E,ω) = |Cκ0|2
√

2Ip

2π

∞∑
n�n0

1

n

×
∫ kn

0
dkz

e−2n(arcosh χn(kz)−
√

1−1/χn(kz)2)√
1 − 1/χn(kz)2

, (76)

for s orbitals,

wp0 (E,ω) = 3|Cκ1|2
2π

√
2Ip

∞∑
n�n0

1

n

×
∫ kn

0
dkz

k2
z e−2n(arcosh χn(kz)−

√
1−1/χn(kz)2)√

1 − 1/χn(kz)2
, (77)

for p0 orbitals, and

w
p±
± (E,ω) = 3|Cκ1|2

√
2Ip

16πγ 2

∞∑
n�n0

1

n

∫ kn

0
dkz

e−2n(arcosh χn(kz)−
√

1−1/χn(kz)2)

χn(kz)2
√

1 − 1/χn(kz)2

× [2χn(kz)
2(1 ∓ sgn(m)

√
1 − 1/χn(kz)2) − (1 + γ 2)n/n0]2, (78)

for p± orbitals.

F. Approximate formulas for the time-averaged ionization rates
for s and p orbitals

In Eqs. (76)–(78), the exponential function has the maxi-
mum at kz = 0, confirming our expectation that the electron
leaves mostly in the polarization plane of the laser field,
i.e., x/y plane, and that the electron ionization along the
propagation axis (z axis) is suppressed. Therefore, we use
the Taylor series of the exponent at kz ≈ 0 up to second order,
i.e.,

arcosh χn(kz) −
√

1 − 1/χn(kz)2

≈ arcosh χn −
√

1 − 1/χ2
n + 1

2

√
1 − 1/χ2

n

(
kz

kn

)2

. (79)

The kz-dependent prefactors in Eqs. (76)–(78) are then
replaced by the nonvanishing lowest-order terms of the
corresponding Taylor series at kz ≈ 0, i.e.,

1√
1 − 1/χn(kz)2

≈ 1√
1 − 1/χ2

n

, (80)

for s orbitals,

k2
z√

1 − 1/χn(kz)2
≈ k2

z√
1 − 1/χ2

n

, (81)

for p0 orbitals, and

[2χn(kz)2(1 ∓ sgn(m)
√

1 − 1/χn(kz)2) − (1 + γ 2)n/n0]2

χn(kz)2
√

1 − 1/χn(kz)2

≈
[
2χ2

n

(
1 ∓ sgn(m)

√
1 − 1/χ2

n

) − (1 + γ 2)n/n0
]2

χ2
n

√
1 − 1/χ2

n

,

(82)

for p± orbitals. For p0 orbitals, the kz-dependent prefactor in
Eq. (81) has no zeroth-order term due to the existence of the
factor k2

z . That means that the ionization rate for p0 orbitals
in the polarization plane is zero because of the destructive
interference coming from two phase-opposite lobes. It also
concludes that the approximation kz ≈ 0 for p0 orbitals may
not be very appropriate, i.e., the electron from the p0 orbital
will leave with nonzero final momentum component kz 
= 0,
i.e., parallel to the z axis, due to its orbital shape. With the
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Taylor approximations (79)–(82), we evaluate the remaining
integrals in Eqs. (76)–(78) over kz as∫ kn

0
dkz e−a2

n( kz
kn

)2 =
√

π kn erf (an)

2an

, (83)

and∫ kn

0
dkz k2

z e−a2
n( kz

kn
)2 = k3

n

(√
π erf (an)

4a3
n

− e−a2
n

2a2
n

)
, (84)

where an = √
n (1 − 1/χ2

n )1/4. For ω � Ip, the minimal num-
ber of photons n0 [Eq. (31)] must be very large. It follows
that n � n0 � 1, hence χn � 1 [cf. Eqs. (48) and (49)] and
an � 1. In the limit an → ∞, the error function erf(an)
and the exponential function e−a2

n tend to unity and zero,
respectively. For ω � Ip, we use Eqs. (76)–(84) and Eqs. (31)
and (46), A0 = √

2Ip/γ , i.e., kn = nωγ/(χn

√
2Ip) and ω =

Ip(1 + γ 2)/(n0γ
2), to obtain the approximate formulas for the

time-averaged ionization rates,

ws(E,ω) = |Cκ0|2Ip(1 + γ 2)

4
√

π n0γ

∞∑
n�n0

e−2n(arcosh χn−
√

1−1/χ2
n )

√
nχn

(
1 − 1/χ2

n

)3/4 ,

(85)

for s orbitals,

wp0 (E,ω) = 3|Cκ1|2Ip(1 + γ 2)3

32
√

π n3
0γ

3

×
∞∑

n�n0

√
n e−2n(arcosh χn−

√
1−1/χ2

n )

χ3
n

(
1 − 1/χ2

n

)5/4
, (86)

for p0 orbitals, and

w
p±
± (E,ω)

= 3|Cκ1|2Ip(1 + γ 2)

8
√

π n0γ 3

∞∑
n�n0

χn e−2n(arcosh χn−
√

1−1/χ2
n )

√
n

(
1 − 1/χ2

n

)3/4

× [√
1 − 1/χ2

n ∓ (2n0/n − 1) sgn(m)
]2

, (87)

for p± orbitals. These expressions Eqs. (85)–(87) depend on
χn and n. If we use Eqs. (48) and (49) as well as arcosh χn =
artanh

√
1 − 1/χ2

n , then we obtain alternative expressions for
the ionization rates depending on ζ , i.e.,

ws(E,ω) = |Cκ0|2Ip

4
√

2π n
3/2
0

(
1 + 1

γ 2

)1/2 ∞∑
n�n0

(1 + ζ )
√

1 − ζ

×
(

1 + γ 2

ζ 2 + γ 2

)3/4

e
− 4n0

1+ζ
(artanh

√
ζ2+γ 2

1+γ 2 −
√

ζ2+γ 2

1+γ 2 )
,

(88)

for s orbitals, where it coincides exactly with Eqs. (68) and
(69) of Ref. [12],

wp0 (E,ω) = 3|Cκ1|2Ip

16
√

2π n
5/2
0

(
1 + 1

γ 2

)3/2 ∞∑
n�n0

(1 − ζ 2)
√

1 − ζ

×
(

1 + γ 2

ζ 2 + γ 2

)5/4

e
− 4n0

1+ζ
(artanh

√
ζ2+γ 2

1+γ 2 −
√

ζ2+γ 2

1+γ 2 )
,

(89)

for p0 orbitals, and

w
p±
± (E,ω)

= 3|Cκ1|2Ip

8
√

2π n
3/2
0

(
1 + 1

γ 2

)3/2 ∞∑
n�n0

(√
ζ 2 + γ 2

1 + γ 2
∓ ζ sgn(m)

)2

× 1√
1 − ζ

(
1 + γ 2

ζ 2 + γ 2

)3/4

e
− 4n0

1+ζ
(artanh

√
ζ2+γ 2

1+γ 2 −
√

ζ2+γ 2

1+γ 2 )
,

(90)

for p± orbitals. Since |
√

(ζ 2 + γ 2)/(1 + γ 2)| � |ζ |, we rec-
ognize in Eq. (90) that the n-photon ionization rate is maximal
for ∓sgn(m) = 1 if ζ > 0 and for ±sgn(m) = 1 if ζ < 0.
Therefore, for ζ > 0 (low photon and kinetic energies) and,
e.g., for right circular polarization, the rate for p− orbitals
is larger than the one for p+ orbitals. For ζ < 0 (high photon
and kinetic energies), however, the rate for p+ orbitals is larger
than the one for p− orbitals. For ζ = 0, corresponding to the
photon energy nω = 2n0ω = 4Up + 2Ip and electron kinetic
energy k2

n/2 = (n − n0)ω = n0ω = 2Up + Ip, the ionization
rates for both p± orbitals are identical. By the way, we would
like to stress that the ionization rate for p0 orbitals [Eq. (89)]
is very small compared to the rates for s and p± orbitals, due
to the ionization suppression in the polarization plane.

G. Simple formulas for the time-averaged ionization
rates for s and p orbitals

To obtain the simple analytical expressions for the ion-
ization rates, the summation over n-photon processes in
Eqs. (88)–(90) can be replaced with integration over ζ , i.e.,

∞∑
n�n0

≈
∫ ∞

n0

dn = 2n0

∫ 1

−1

dζ

(1 + ζ )2
. (91)

For ω � Ip, i.e., n0 � 1, the saddle point method for
integration over ζ is then applied, where the exponent in
Eqs. (88)–(90),

S(ζ,γ ) = − 4n0

1 + ζ

⎛
⎝artanh

√
ζ 2 + γ 2

1 + γ 2
−

√
ζ 2 + γ 2

1 + γ 2

⎞
⎠ , (92)

has a unique maximum at ζ = ζ0(γ ). This maximum is
determined by the saddle point equation,

∂

∂ζ
S(ζ,γ )

∣∣∣∣
ζ=ζ0

= 0, (93)

that yields the transcendental equation for ζ0(γ ),

artanh

√
ζ 2

0 + γ 2

1 + γ 2
= 1

1 − ζ0

√
ζ 2

0 + γ 2

1 + γ 2
, (94)

or equivalently

artanh
√

1 − 1/χ2
nmax

= 1

2

nmax

nmax − n0

√
1 − 1/χ2

nmax
, (95)

where χnmax =
√

(1 + γ 2)/(1 − ζ 2
0 ) [cf. Eq. (48)] and nmax =

2n0/(1 + ζ0) is the number of photons for which the n-photon
ionization rate is maximal, corresponding to the electron
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kinetic energy k2
nmax

/2 = (nmax − n0)ω = (2Up + Ip)(1 −
ζ0)/(1 + ζ0). Since the solution of Eq. (94) is in the positive
range ζ0(γ ) ∈ [0,1], the maximum of the (nmax-photon) ioniza-
tion rate for right (left) circular polarization is dominated by the
electron ionization from the p− (p+) orbital. In the adiabatic
limit (γ � 1), the solution is approximated as ζ0(γ ) ≈
γ 2/3 (see Ref. [12] and Appendix F), corresponding to the
electron kinetic energy k2

nmax
/2 ≈ (2Up + Ip)(1 − 2γ 2/3) ≈

2Up + Ip/3, whereas in the nonadiabatic limit (γ � 1),
it yields ζ0(γ ) ≈ 1 − 1/ ln γ ; see Ref. [12]. The exponent
[Eq. (92)] at the saddle point ζ0(γ ) is

S(ζ0,γ ) = −2E0

3E g(γ ), (96)

where E0 = (2Ip)3/2 and

g(γ ) = 3ζ0

γ 2
(
1 − ζ 2

0

)√
(1 + γ 2)

(
ζ 2

0

/
γ 2 + 1

)
, (97)

and it does not depend on orbitals. We also need the second
derivative of the exponent S ′′(ζ0,γ ), i.e.,

∂2

∂ζ 2
S(ζ,γ )

∣∣∣∣
ζ=ζ0

= − 4n0
(
2ζ 2

0 + ζ 2
0 γ 2 + γ 2

)
(1 + ζ0)3(1 − ζ0)2

(
ζ 2

0 + γ 2
)
√

ζ 2
0 + γ 2

1 + γ 2
,

(98)

to apply the saddle point method according to∫ 1

−1
dζ f (ζ )eS(ζ,γ ) = f (ζ0)eS(ζ0,γ )

√
2π

−S ′′(ζ0,γ )
. (99)

Therefore, with these equations and Eqs. (88)–(90), we obtain
the compact expressions for the time-averaged ionization
rates,

ws(E,ω) = |Cκ0|2Ip

E
2E0

hs(γ ) e− 2E0
3E g(γ ), (100)

for s orbitals,

wp0 (E,ω) = |Cκ1|2Ip

E
2E0

hp0 (γ ) e− 2E0
3E g(γ ), (101)

for p0 orbitals, and

w
p±
± (E,ω) = |Cκ1|2Ip

E
2E0

h
p±
± (γ ) e− 2E0

3E g(γ ), (102)

for p± orbitals, where

hs(γ ) = (1 − ζ0)

√
(1 + γ 2)

(
1 − ζ 2

0

)
(
ζ 2

0 /γ 2 + 1
)(

2ζ 2
0 /γ 2 + ζ 2

0 + 1
) , (103)

hp0 (γ ) = hs(γ )
3E
2E0

(1 − ζ0)

√
1 + γ 2

ζ 2
0 /γ 2 + 1

, (104)

h
p±
± (γ ) = hs(γ )

3(1 + γ 2)

2
(
1 − ζ 2

0

)
⎛
⎝

√
ζ 2

0 /γ 2 + 1

1 + γ 2
∓ ζ0

γ
sgn(m)

⎞
⎠

2

.

(105)

For s orbitals, Eqs. (97) and (103) coincide exactly with
Eqs. (73) and (74) of Ref. [12]. In the adiabatic limit γ �
1, i.e., ζ0(γ � 1) ≈ γ 2/3(1 − 28γ 2/45) (see Ref. [12] and

Appendix F), the exponent and prefactors in the Taylor series
up to second order in γ are

g(γ � 1) ≈ 1 − γ 2/15, (106)

hs(γ � 1) ≈ 1, (107)

hp0 (γ � 1) ≈ 3E
2E0

(
1 + γ 2

9

)
, (108)

h
p±
± (γ � 1) ≈ 3

2
∓ γ sgn(m) + γ 2

3
. (109)

Therefore, the ratio of the ionization rates for p± orbitals,

w
p−
± (E,ω)

w
p+
± (E,ω)

≈ 1 ± 4γ

3
+ 8γ 2

9
(γ � 1), (110)

is always larger than 1 for right circular polarization and
smaller than 1 for left circular polarization. That means for,
e.g., right circular polarization, the ionization from p− orbitals
is more preferred than the ionization from p+ orbitals. In
the adiabatic case γ = 0, i.e., the tunneling is much faster
than the rotation of the laser field, the ionization rates for
p± orbitals are equal as expected. In the nonadiabatic limit
γ � 1, i.e., ζ0(γ ) ≈ 1 − 1/ ln γ , the exponent and prefactors
are approximated as

g(γ � 1) ≈ 3 ln γ

2γ
, (111)

hs(γ � 1) ≈ γ

(ln γ )3/2
, (112)

hp0 (γ � 1) ≈ 3E
2E0

γ 2

(ln γ )5/2
,

(113)

h
p±
± (γ � 1) = 3

4

γ

(ln γ )1/2

[
1 ∓

(
1 − 1

ln γ

)
sgn(m)

]2

.

Thus, the ratio of the ionization rates for p± orbitals is

w
p−
± (E,ω)

w
p+
± (E,ω)

≈ (2 ln γ )±2 (γ � 1), (114)

i.e., for right circular polarization, the ionization rate for p−
orbitals is much larger than the one for p+ orbitals.

III. RESULTS AND DISCUSSION

For application, we use the Kr atom in the ground state
with ionization potential Ip = 0.5 a.u. An infrared circularly
polarized strong laser field with typical experimental param-
eters of the laser frequency ω = 0.057 a.u. (800 nm) and
the laser amplitude E = 0.06 a.u. (I = 2.5 × 1014 W/cm2)
ionizes an electron from the 4p valence orbital of the Kr
atom. In this experimental example, the Keldysh parameter
is γ = ω/E

√
2Ip = 0.95, thus a 4p electron tunnels the

ionization barrier nonadiabatically with respect to the rotation
of the electric field. Although this is indeed nonadiabatic
tunneling, many previous theoretical works are based on
adiabatic approximation that cannot predict the difference
of the ionization rates for p+ and p− orbitals in circularly
polarized laser fields. With our analytical formulas derived in
Sec. II, which are beyond the original work [12,13], we present
the results in Figs. 1–3 and show that the ionization rates for p+
and p− valence orbitals are indeed very different, supporting
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FIG. 1. (Color online) Time-averaged ionization rates w+(E,ω)
for s (orange), p0 (green), p+ (blue), p− (red) orbitals, and right
circular polarization versus laser frequency ω for Ip = 0.5 a.u. and
laser amplitude E = 0.06 a.u. The solid, dashed, and dotted curves
correspond to the accurate [Eqs. (76)–(78)], approximate [Eqs. (88)–
(90)], and simple [Eqs. (100)–(102)] results, respectively. Note that
|Cκl |2 = 1 are used.

our physical interpretation in the previous work [10]. We also
show the results for the ionization rates for p0 orbitals in
Figs. 1–3. Although the results for the ionization rates for s

orbitals have nothing to do with the ionization of the Kr atom,
we would like to include these results in Figs. 1–3 as well, but
these results cannot be compared with the ones for p orbitals
due to the generally different factors Cκl for s and p orbitals
depending on the model system. However, in all calculations,
we have used Cκl = 1 for simplicity.

FIG. 2. (Color online) Time-averaged ionization rates w+(E,ω)
for s (orange), p0 (green), p+ (blue), p− (red) orbitals, and right
circular polarization versus laser intensity I = c2ε2

0E2 for Ip =
0.5 a.u. and laser frequency ω = 0.057 a.u. (800 nm) in logarithmic
scale. The solid curves corresponds to the accurate results [Eqs. (76)–
(78)]. Because of the logarithmic scale, the accurate [Eqs. (76)–(78)],
approximate [Eqs. (88)–(90)], and simple [Eqs. (100)–(102)] results
coincide within graphical resolution. Note that |Cκl |2 = 1 are used.

FIG. 3. (Color online) Time-averaged n-photon ionization rates
wn+(E,ω) [Eq. (36)] or equivalently photoelectron energy distribution
at the detector for s (orange), p0 (green), p+ (blue), p− (red), and
total p (brown) orbitals and right circular polarization versus final
electronic kinetic energy k2

n/2 [Eq. (37)] for Ip = 0.5 a.u., laser am-
plitude E = 0.06 a.u., and laser frequency ω = 0.057 a.u. (800 nm).
The solid and dashed curves correspond to the accurate [Eqs. (76)–
(78)] and approximate [Eqs. (88)–(90)] results, respectively. The
spectra for total p orbitals are calculated according to w

p
n+(E,ω) =

w
p0
n+(E,ω) + w

p+
n+ (E,ω) + w

p−
n+ (E,ω). Note that |Cκl |2 = 1 are used.

The approximate results of the ionization rates for p+ and p−
orbitals are equal at the final kinetic energy 2Up + Ip ≈ 1.05 a.u; see
text for discussion. In the adiabatic limit γ � 1, all photoelectron
distributions are peaked at 2Up ≈ 0.55 a.u. and are the same for p+
and p− orbitals.

In Fig. 1, the results for ionization rates depending on
the laser frequency up to ω = 0.12 a.u. for laser amplitude
E = 0.06 a.u. are shown. The orange, green, blue, and red
curves correspond to the rates for s, p0, p+, and p− orbitals,
and the associated solid, dashed, and dotted curves correspond
to the accurate [Eqs. (76)–(78)], approximate [Eqs. (88)–(90)],
and simple [Eqs. (100)–(102)] results, respectively. For s

orbitals, the approximate and simple results coincide with
each other very well within graphical resolution. The accurate
results for s orbitals are a little separated from approximate
and simple results, mainly due to the integral approximations
(83) and (84) for ω � Ip. For p0 orbitals, the ionization rates
are very small compared to the ones for p± orbitals, supporting
our thoughts in Sec. II E, i.e., the destructive interference
coming from two phase-opposite lobes of the p0 oribtal causes
ionization suppression in the polarization plane perpendicular
to the orbital nodal axis. Again by more precise inspection, the
approximate and simple results are similar while the accurate
results are a little separated from the approximate and simple
results, again mainly due to approximations (83) and (84) for
ω � Ip. While the ionization rates for s and p0 orbitals do not
depend on the sense of circular polarization, the rates for p+
and p− orbitals do. For right circular polarization, the rates for
p− orbitals are larger than the ones for p+ orbitals by the ratio
up to 6 for large frequencies. For left circular polarization,
the physical behavior is reversed according to the fundamental
symmetry in electrodynamics, i.e., the ionization rates for p±
orbitals and left circular polarization are equal to the ones for
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p∓ orbitals and right circular polarization. In the adiabatic limit
γ = ω = 0, the rates for both p± orbitals are exactly equal as
already predicted in many previous theoretical works based
on adiabatic approximation. For p± orbitals there are some
(but not large) deviations between accurate, approximate, and
simple results in particular for large frequencies or equivalently
for large γ , but in the adiabatic (γ � 1) and nonadiabatic
(γ ∼ 1) tunneling regimes, these three results for p+ and for
p− converge well. The small differences for large frequencies
are not only due to the saddle point method (which is only
applicable for low frequencies) but also due to the integral
approximations (83) and (84) for ω � Ip.

Figure 2 shows the monotonically increased ionization rates
for s and p orbitals versus laser intensity I = c2ε2

0E2 in the
range from 2 × 1013 W/cm2 to 2 × 1014 W/cm2 (correspond-
ing to the laser amplitude E in the range from 0.0169 to
0.0534 a.u.) for laser frequency ω = 0.057 a.u. (800 nm) in
logarithmic scale. In this figure, the accurate, approximate, and
simple results coincide within graphical resolution. As already
explained above, the rates for p0 orbitals are small compared
to the rates for p± orbitals. For right circular polarization, the
rates for p− orbitals are larger than the ones for p+ orbitals.
The corresponding ratio is large (small) for low (high) laser
intensities or equivalently for large (small) γ .

Figure 3 shows the photoelectron spectra for s and p

orbitals, right circular polarization, laser amplitude E =
0.06 a.u., and laser frequency ω = 0.057 a.u. (800 nm). The
curves are calculated using time-averaged n-photon ionization
rates wn+(E,ω) [Eq. (36)] versus final electronic kinetic
energy at the detector k2

n/2 [Eq. (37)]. Since there are no
sums in simple results [Eqs. (100)–(102)], only the corre-
sponding accurate (solid) and approximate (dahsed) spectra
[cf. Eqs. (88)–(90) and Eqs. (100)–(102)] are presented in this
figure, as well as the spectra for total p orbitals according
to w

p
n+(E,ω) = w

p0
n+(E,ω) + w

p+
n+(E,ω) + w

p−
n+(E,ω). In fact,

the spectra are different for electrons coming from different
orbitals. For right circular polarization, the ionization from p−
orbitals is dominant, but there is a unique kinetic energy for
which the n-photon ionization rates for p+ and p− orbitals are
equal. This is the final kinetic energy 2Up + Ip ≈ 1.05 a.u.
for the approximate results. For the accurate results, the
intersection of the spectra for p+ and p− orbitals lies at
the energy a little more than 2Up + Ip. Below (above) this
unique electronic final kinetic energy, the ionization rates
for p− orbitals are larger (smaller) than the ones for p+
orbitals. Therefore, the final kinetic energy indicates the
strength and the direction of the ring current [26,27] generated
in the ion, measured in correlation with the electron. Low
energy electrons correlate to the ions with positive ring
currents, while higher energy electrons correlate to the ions
with negative ring currents. Furthermore, the locations of the
maxima for s, p0, and total p orbitals are similar, whereas
the ones for p− orbitals are shifted to lower energy and
the ones for p+ orbitals are shifted to higher energy. The
reason is that the counterclockwise (“positive,” right) sense
of circular polarization drives the electron from p− and p+
orbitals with clockwise (“negative”) and counterclockwise
(“positive”) azimuthal velocities, yielding smaller and larger
kinetic energies, respectively. In the adiabatic limit γ � 1,
all photoelectron spectra have its maxima at 2Up ≈ 0.55 a.u.

and in this case the spectra for p+ and p− orbitals are
identical.

IV. CONCLUSIONS

We have validated the approximations used in our previous
publication to derive simple formulas for ionization from
different substates of the p orbitals. We extended the PPT
theory to strong field nonadiabatic ioniziation for valence p

orbitals and we derived the corresponding ionization rates in
full analytical form. Due to the existence of the complex-
valued tunneling angle in the prefactor of the ionization rate,
the rates are different for degenerate p+ and p− orbitals and
depend on the sense of rotation of the circularly polarized
laser fields. Strong field ionization preferentially removes a
counter-rotating electron. As expected ionization rates for
degenerate p+ and p− orbitals are significantly larger than
the rates for p0 orbitals due its orbital symmetry. We have
also demonstrated that ionization rates and electron spectra
obtained in this approach are gauge invariant, unlike the results
of the strong field approximation.

An important extension of this work is the consideration
of the electron spin [30] to describe electronic ring currents
in the ion, which couple electronic spin and orbital degree of
freedom. Other possible extensions of this work include the
theory of the nonadiabatic ionization for p orbitals in circularly
or elliptically polarized laser fields and static magnetic fields
(see also works for s orbitals [31,32]).
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APPENDIX A

Here, we evaluate the φ integral in Eq. (26):

I1 =
∫ 2π

0
dφ eiρ((k2x−k1x ) cos φ+(k2y−k1y ) sin φ)(f±(k1ρ,θ1,φ,t)

+ f±(k2ρ,θ2,φ,t)). (A1)

Using the expression for the function f±(kρ,θ,φ,t) [Eq. (13)]
and the Euler’s formula, the prefactor of the integrand in
Eq. (A1) is rewritten as

f±(k1ρ,θ1,φ,t) + f±(k2ρ,θ2,φ,t)

= 1
2 (k1ρe

iθ1 + k2ρe
iθ2 ± 2iA0e

±iωt )e−iφ

+ 1
2 (k1ρe

−iθ1 + k2ρe
−iθ2 ∓ 2iA0e

∓iωt )eiφ, (A2)

hence

I1 = 1

2
(k1ρe

iθ1 + k2ρe
iθ2 ± 2iA0e

±iωt )

×
∫ 2π

0
dφ e−iφeiρ((k2x−k1x ) cos φ+(k2y−k1y ) sin φ)

+ 1

2
(k1ρe

−iθ1 + k2ρe
−iθ2 ∓ 2iA0e

∓iωt )

×
∫ 2π

0
dφ eiφeiρ((k2x−k1x ) cos φ+(k2y−k1y ) sin φ). (A3)
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We use the substitution |k2‖ − k1‖| sin φ′ = (k2x −
k1x) cos φ + (k2y − k1y) sin φ, which is satisfied by the
relations (sin φ =

√
1 − cos2 φ),

cos φ = (k2x − k1x) sin φ′ + (k2y − k1y) cos φ′

|k2‖ − k1‖| , (A4)

sin φ = (k2y − k1y) sin φ′ − (k2x − k1x) cos φ′

|k2‖ − k1‖| . (A5)

With Euler’s formula, we obtain

e±iφ = ∓i(k2x − k1x) + (k2y − k1y)

|k2‖ − k1‖| e±iφ′
(A6)

= ∓i
k2ρe

±iθ2 − k1ρe
±iθ1

|k2‖ − k1‖| e±iφ′
, (A7)

and dφ = dφ′. The integral I1 is then reexpressed as

I1 = i

2
(k1ρe

iθ1 + k2ρe
iθ2 ± 2iA0e

±iωt )
k2ρe

−iθ2 − k1ρe
−iθ1

|k2‖ − k1‖|

×
∫ 2π

0
dφ′ e−iφ′

eiρ|k2‖−k1‖| sin φ′

− i

2
(k1ρe

−iθ1 + k2ρe
−iθ2 ∓ 2iA0e

∓iωt )
k2ρe

iθ2 − k1ρe
iθ1

|k2‖ − k1‖|

×
∫ 2π

0
dφ′ eiφ′

eiρ|k2‖−k1‖| sin φ′
. (A8)

With the definition of the Bessel function of the first kind,

Jn(x) = 1

2π

∫ 2π

0
dφ e−inφeix sin φ

= (−1)n

2π

∫ 2π

0
dφ einφeix sin φ, (A9)

the integral is evaluated as

I1 = πi[(k1ρe
iθ1 + k2ρe

iθ2 ± 2iA0e
±iωt )(k2ρe

−iθ2 − k1ρe
−iθ1 )

+ (k1ρe
−iθ1 + k2ρe

−iθ2 ∓ 2iA0e
∓iωt )(k2ρe

iθ2 − k1ρe
iθ1 )]

× J1(ρ|k2‖ − k1‖|)
|k2‖ − k1‖| , (A10)

which is further simplified to

I1 = 2πi
(
k2

2ρ − k2
1ρ − 2k2ρA0 sin(ωt ∓ θ2)

+ 2k1ρA0 sin(ωt ∓ θ1)
)J1(ρ|k2‖ − k1‖|)

|k2‖ − k1‖| , (A11)

cf. Eq. (26).

APPENDIX B

In this Appendix we prove the relation Eq. (28):

lim
ρ→∞

∫
dk‖ g(k‖)

ρJ1(ρk‖)

k‖
= 2π

∫
dk‖ g(k‖)δ(k‖), (B1)

with the arbitrary function g(k‖) and k‖ = kρ as

lim
ρ→∞

∫
dk‖ g(k‖)

ρJ1(ρk‖)

k‖

= lim
ρ→∞

∫ 2π

0
dθ

∫ ∞

0
dkρ g(kρ cos θ ex + kρ sin θ ey)

× ρJ1(ρkρ) (B2)

= lim
ρ→∞

∫ 2π

0
dθ

∫ ∞

0
dx g

(
x

ρ
cos θ ex + x

ρ
sin θ ey

)
J1(x)

(B3)

=
∫ 2π

0
dθ

∫ ∞

0
dx g(0)J1(x) (B4)

= 2πg(0)
∫ ∞

0
dx J1(x) (B5)

= 2πg(0) (B6)

= 2π

∫
dk‖ g(k‖)δ(k‖). (B7)

APPENDIX C

In this section we will evaluate k+ and k− integrals in
Eq. (29). First with Eq. (31), we rearrange the denominator
of the k+ integrand in Eq. (29) as[

1
4 (k+ − k−)2 + k2

y + k2
z + A2

0 + 2Ip − 2n1ω + iδ
]

× [
1
4 (k+ + k−)2 + k2

y + k2
z + A2

0 + 2Ip − 2n2ω − iδ
]

= 1
16 [(k+ − k−)2 − 4K1 + 4iδ][(k+ + k−)2 − 4K2 − 4iδ],

(C1)

where K1,2 = 2(n1,2 − n0)ω − k2
y − k2

z . It has four zeros k+ =
k1±,k2±, i.e.,

k1± = ±2
√

K1 − iδ + k−, (C2)

k2± = ±2
√

K2 + iδ − k−. (C3)

Using Taylor series limδ→0
√

K ± iδ = limδ→0 (
√

K ±
iδ/(2

√
K)), the zeros are rewritten as

k1± = ±2
√

K1 + k− ∓ iδ√
K1

, (C4)

k2± = ±2
√

K2 − k− ± iδ√
K2

. (C5)

Thus, the k+ integrand in Eq. (29) is

h̃±(k+) =
[

1

4
(k+ − k−)2 + k2

y + k2
z + A2

0

+ 2Ip − 2n1ω + iδ

]−1

(C6)

×
[
1

4
(k+ + k−)2 + k2

y + k2
z + A2

0 + 2Ip − 2n2ω − iδ

]−1

h±(k+)

= 16h±(k+)

(k+ − k1+)(k+ − k1−)(k+ − k2+)(k+ − k2−)
.

(C7)
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The corresponding integral is then evaluated using the residue
method as

∫ ∞

−∞
dk+ h̃±(k+) = 2πi

∑
k=k1±,k2±

�(Im k) Res h̃±(k), (C8)

where the residues are calculated as

Res h̃±(k) = lim
k+→k

(k+ − k)h̃±(k+), (C9)

in particular,

Res h̃±(k1+) = 8h±(k1+)(
2
√

K1 − iδ√
K1

)(
2
√

K1 − 2
√

K2 + 2k− − iδ√
K1

− iδ√
K2

)−1

×
(

2
√

K1 + 2
√

K2 + 2k− − iδ√
K1

+ iδ√
K2

)−1

, (C10)

Res h̃±(k1−) = − 8h±(k1−)(
2
√

K1 − iδ√
K1

) (
2
√

K1 + 2
√

K2 − 2k− − iδ√
K1

+ iδ√
K2

)−1

×
(

2
√

K1 − 2
√

K2 − 2k− − iδ√
K1

− iδ√
K2

)−1

, (C11)

Res h̃±(k2+) = − 8h±(k2+)(
2
√

K2 + iδ√
K2

) (
2
√

K1 − 2
√

K2 + 2k− − iδ√
K1

− iδ√
K2

)−1

×
(

2
√

K1 + 2
√

K2 − 2k− − iδ√
K1

+ iδ√
K2

)−1

, (C12)

Res h̃±(k2−) = 8h±(k2−)(
2
√

K2 + iδ√
K2

) (
2
√

K1 + 2
√

K2 + 2k− − iδ√
K1

+ iδ√
K2

)−1

×
(

2
√

K1 − 2
√

K2 − 2k− − iδ√
K1

− iδ√
K2

)−1

. (C13)

For δ = 0, k− = 0, and 0 
= n1 
= n2 
= 0, i.e., 0 
= K1 
=
K2 
= 0, all four residues (C10)–(C13) are finite. Therefore,
the k− integral in Eq. (29) would be zero due to the existence
of the factor k− in the integrand. Thus, the condition n =
n1 = n2, i.e., K = K1 = K2, must be satisfied and the residues
(C10)–(C13) are simplified to

Res h̃±(k1+) = 2h±(k1+)(
2
√

K − iδ√
K

)
(2

√
K + k−)

(
k− − iδ√

K

) ,

(C14)

Res h̃±(k1−) = 2h±(k1−)(
2
√

K − iδ√
K

)
(2

√
K − k−)

(
k− + iδ√

K

) ,

(C15)

Res h̃±(k2+) = − 2h±(k2+)(
2
√

K + iδ√
K

)
(2

√
K − k−)

(
k− − iδ√

K

) ,

(C16)

Res h̃±(k2−) = − 2h±(k2−)(
2
√

K + iδ√
K

)
(2

√
K + k−)

(
k− + iδ√

K

) .

(C17)

For K < 0, only two poles k1+ and k2+ have positive imaginary
parts, therefore only two corresponding residues contribute to
the k+ integral (C8), but in the limit δ = 0 and k− = 0, the
integrand of the k− integral in Eq. (29) or the sum of these
two residues times k− is exactly zero. Therefore, we consider
only the remaining case K � 0, where only two poles k1− and
k2+ have positive imaginary parts. Multiplying Eq. (C8) by k−,
applying limδ→0, and using residues (C15) and (C16) yields

lim
δ→0

k−
∫ ∞

−∞
dk+ h̃±(k+)

= 2πi
h±(−2

√
K + k−) − h±(2

√
K − k−)√

K(2
√

K − k−)
. (C18)

Inserting this result of the k+ integral in Eq. (29) and carrying
the simple integration over k− yields the desired result (n =
n1 = n2 � n0 for K � 0):

lim
ρ→∞ J±(ρ,t) = π

∞∑
n�n0

∫ ∞

−∞
dky

∫ ∞

−∞
dkz

× h±(2
√

K) − h±(−2
√

K)

K
, (C19)

where K = 2(n − n0)ω − k2
y − k2

z = k2
n − k2

y − k2
z ; cf.

Eq. (32).
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APPENDIX D

Here, we derive the wave function in momentum repre-
sentation ϕ̃lm(v±(ti)). Using Fourier transformation (8), wave
function in coordinate representation ϕlm(r) (62), spherical
harmonics Ylm(θr ,φr ) (63), and the equation for −iv±(ti) · r
(64), we obtain

ϕ̃lm(v±(ti))

= Cκl

√
κ

(2π )3/2

√
2l + 1

4π

(l − m)!

(l + m)!

∫ ∞

0
dr re−κr

×
∫ π

0
dθr sin θr e−iv±(ti )r cos θv±(ti ) cos θr P m

l (cos θr )

×
∫ 2π

0
dφr eimφr e−iv±(ti )r sin θv±(ti ) sin θr cos(φv±(ti )−φr ). (D1)

Using the substitution φ′ = φr − φv±(ti) − π/2, we get
cos(φv±(ti) − φr ) = − sin φ′ and dφr = dφ′. With the help of
the Bessel function of the first kind (A9), we evaluate the φ′
integral as

ϕ̃lm(v±(ti))

= Cκl

√
κ

2π

√
2l + 1

4π

(l − m)!

(l + m)!
eimφv±(ti )e−imπ/2

×
∫ ∞

0
dr re−κr

∫ π

0
dθr sin θr e−iv±(ti )r cos θv±(ti ) cos θr

×P m
l (cos θr )Jm(v±(ti)r sin θv±(ti) sin θr ). (D2)

Using Eqs. (19) and (23) of Ref. [29], the θr integral is
evaluated as∫ π

0
dθr sin θr e−iv±(ti )r cos θv±(ti ) cos θr P m

l (cos θr )

× Jm(v±(ti)r sin θv±(ti) sin θr )

=
√

2π

v±(ti)r
e−i(l−m)π/2P m

l ( cos θv±(ti))Jl+1/2(v±(ti)r),

(D3)

hence

ϕ̃lm(v±(ti)) = Cκl

√
κ

v±(ti)
Ylm(θv±(ti),φv±(ti)) e−ilπ/2

×
∫ ∞

0
dr

√
r e−κrJl+1/2(v±(ti)r), (D4)

cf. Eq. (65). With the Taylor expression of the Bessel function
of the first kind,

Jα(x) =
∞∑

β=0

(−1)β

β! �(α + β + 1)

(
x

2

)α+2β

, (D5)

we have

ϕ̃lm(v±(ti)) = Cκl

√
κ

v±(ti)
Ylm(θv±(ti),φv±(ti)) e−ilπ/2

×
∞∑

β=0

(−1)β

β! �(β + l + 3/2)

(
v±(ti)

2

)2β+l+1/2

×
∫ ∞

0
dr r2β+l+1 e−κr . (D6)

Using the definition of the Gamma function (z > 0),

�(z) =
∫ ∞

0
dx xz−1e−x, (D7)

the r integration is easily carried out,∫ ∞

0
dr r2β+l+1 e−κr = �(2β + l + 2)

κ2β+l+2
, (D8)

hence

ϕ̃lm(v±(ti)) = Cκl√
2κ3

(
v±(ti)

2κ

)l

Ylm(θv±(ti),φv±(ti)) e−ilπ/2

×
∞∑

β=0

1

β!

�(2β + l + 2)

�(β + l + 3/2)

(
−v±(ti)2

4κ2

)β

. (D9)

Using the duplication formula for the Gamma function,

�(2z) = �(z)�(z + 1/2)

21−2z
√

π
, (D10)

for z = β + l/2 + 1 yields

ϕ̃lm(v±(ti))

= Cκl

√
2

πκ3

(
v±(ti)

κ

)l

Ylm(θv±(ti),φv±(ti)) e−ilπ/2

×
∞∑

β=0

1

β!

�(β + l/2 + 1)�(β + l/2 + 3/2)

�(β + l + 3/2)

×
(

−v±(ti)2

κ2

)β

. (D11)

Using the Gaussian hypergeometric series,

2F1(a,b; c; z) = �(c)

�(a)�(b)

∞∑
β=0

�(β + a)�(β + b)

�(β + c)

zβ

β!
,

(D12)

and Eq. (D10) for z = l/2 + 1, we obtain

ϕ̃lm(v±(ti))

= Cκl√
2κ3

(
v±(ti)

2κ

)l

Ylm(θv±(ti),φv±(ti)) e−ilπ/2

× �(l + 2)

�(l + 3/2)
2F1

(
l

2
+ 1,

l

2
+ 3

2
; l + 3

2
; −v±(ti)2

κ2

)
,

(D13)

cf. Eq. (66). Using Euler’s hypergeometric transformation,

2F1(a,b; c; z) = (1 − z)c−a−b
2F1(c − a,c − b; c; z), (D14)

the wave function is then rewritten as

ϕ̃lm(v±(ti)) = Cκl

v±(ti)2 + κ2

√
2κ

π

(
v±(ti)

κ

)l

×Ylm(θv±(ti),φv±(ti)) e−ilπ/2

√
π

2l+1

�(l + 2)

�(l + 3/2)

× 2F1

(
l

2
+ 1

2
,
l

2
; l + 3

2
; −v±(ti)2

κ2

)
, (D15)
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cf. Eq. (67). With the Gaussian theorem for the hypergeometric
series,

2F1(a,b; c; 1) = �(c)�(c − a − b)

�(c − a)�(c − b)
, (D16)

and Eq. (D10) for z = l/2 + 1, the series in Eq. (D15) is
convergent for v±(ti)2 = −κ2, i.e.,

2F1

(
l

2
,
l

2
+ 1

2
; l + 3

2
; 1

)
= 2l+1

√
π

�(l + 3/2)

�(l + 2)
, (D17)

cf. Eq. (68), therefore the wave function in momentum
representation (D15) has the pole at v±(ti)2 = −κ2.

APPENDIX E

Using Eqs. (71), (72), and vρ±(ti)2|k=kn
= −(k2

z + 2Ip), the
factor |eimφv±(ti )|2k=kn

for m = ±1 is rewritten as

|eimφv±(ti )|2k=kn
= |cos φv±(ti) + i sgn(m) sin φv±(ti)|2k=kn

(E1)

= |vx±(ti) + i sgn(m)vy±(ti)|2k=kn

k2
z + 2Ip

. (E2)

With Eqs. (60) and (61), kρ = √
k2 − k2

z , and |eimθ |2 = 1, it
becomes

|eimφv±(ti )|2k=kn
=

[
A0χn(kz)(1 ∓ sgn(m)

√
1 − 1/χn(kz)2) − √

k2
n − k2

z

]2

k2
z + 2Ip

. (E3)

Using Eq. (46), we obtain

|eimφv±(ti )|2k=kn
=

[
A2

0χn(kz)2(1 ∓ sgn(m)
√

1 − 1/χn(kz)2) − nω
]2

A2
0χn(kz)2

(
k2
z + 2Ip

) . (E4)

Using γ 2 = 2Ip/A2
0 and Eq. (31), i.e., n0ω = A2

0/2 + Ip = Ip/γ 2 + Ip = Ip(1 + γ 2)/γ 2, we obtain the result for m = ±1:

|eimφv±(ti )|2k=kn
= Ip

[
2χn(kz)2(1 ∓ sgn(m)

√
1 − 1/χn(kz)2) − (1 + γ 2)n/n0

]2

2γ 2χn(kz)2
(
k2
z + 2Ip

) , (E5)

cf. Eq. (74).

APPENDIX F

To obtain the simple analytic solution ζ0(γ ) of Eq. (94),

artanh

√
ζ 2

0 + γ 2

1 + γ 2
= 1

1 − ζ0

√
ζ 2

0 + γ 2

1 + γ 2
, (F1)

in the adiabatic limit γ � 1, we use the power series,

ζ0(γ ) =
∞∑
i=0

ciγ
i, (F2)

yielding

artanh

√(∑∞
i=0 ciγ i

)2 + γ 2

1 + γ 2
− 1

1 − ∑∞
i=0 ciγ i

×
√(∑∞

i=0 ciγ i
)2 + γ 2

1 + γ 2
= 0. (F3)

In the Taylor series of Eq. (F3) at γ = 0, each coefficient of
powers γ i must be zero. For zeroth order, we get

artanh c0 − c0

1 − c0
= 0, (F4)

with the solution c0 = 0. The coefficient for the first order is
then automatically zero. For the second order, we get

c1
(
1 + c2

1

)
√

1 + c2
1

= 0, (F5)

thus c1 = 0. For other orders, we get

1
3 − c2 = 0, (F6)

c3 = 0, (F7)

28
135 + c4 = 0, (F8)

thus c2 = 1/3, c3 = 0, and c4 = −28/135. The solution of
Eq. (94) is therefore

ζ0(γ ) = γ 2

3

(
1 − 28

45
γ 2 + 236

567
γ 4 − 5212

18225
γ 6

+ 12570692

63149625
γ 8 − · · ·

)
, (F9)

and for small γ � 1

ζ0(γ ) ≈ γ 2

3
. (F10)
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