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Effect of the laser magnetic field on nonsequential double ionization of He, Li+, and Be2+
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The role of the magnetic field of the laser pulse and the importance of relativistic corrections to the equations
of motion in the recollision double ionization of He, Li+, and Be2+ are investigated within a classical trajectory
model. It is found that the inclusion of the magnetic field is important even at intensities as low as 1015 W/cm2, but
that the relativistic corrections proportional to 1/c2 have no impact on either total probabilities or final momentum
spectra. Two field configurations with counterpropagating pulses, previously proposed to circumvent the detri-
mental effect of the magnetic field on the double-ionization probability, are compared with the single-pulse case.
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I. INTRODUCTION

The nonsequential double ionization (DI) of helium has
since its discovery [1,2] attracted a lot of attention. Laser-
driven helium has become an archetypal example of strong
electron-electron correlation induced by an external laser
field [3]. The ionization mechanism is intuitively explained
in terms of recollision [4]: one electron pulled away from the
atomic center is driven back to the core by the oscillating
electric field to eject the second electron by a collision. In
an alternative scenario, recollision excitation with subsequent
ionization (RESI), the returning electron excites the second
electron which is later ejected by tunneling [5].

Due to its importance as the simplest system exhibiting
strong electron-electron correlation, laser-driven helium has
been investigated from a number of different viewpoints.
Experimentally, early measurements of the total DI yield
exhibiting the famous “knee” structure [1,2] were followed by
observations of differential electron momentum spectra [5–8],
which led to the identification of different mechanisms of DI. A
recent trend is to employ short pulses and exploit the sensitive-
ness of the electron spectra to the carrier-envelope phase [9].

Theoretically, different models have been employed to
describe DI of He. These can be grouped into roughly four cat-
egories: (i) direct solution of the time-dependent Schrödinger
equation [6,10], (ii) the strong-field approximation [11–13],
(iii) classical trajectory models with some quantum mechani-
cal elements [14,15], and (iv) purely classical models [16–19].
All have their advantages and drawbacks, offering different
insights into the DI process. The latter two methods are
attractive since they permit a direct and intuitive interpretation
of the physical mechanisms involved in terms of the classical
trajectories of the electrons.

In the present paper, we investigate one of the problems
regarding DI of He and He-like ions which is still open: the
importance of the magnetic field of the laser pulse. Usually,
the laser pulse is approximated as an oscillating electric
field, neglecting the magnetic field component. For laser
wavelengths of λ ≈ 800 nm, this is an excellent approximation
for intensities of order 1015 W/cm2 or less. However, the
region where nonsequential DI of He has the largest yield
occurs for intensities larger than 1015 W/cm2 [2], even close to
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1016 W/cm2 in some theoretical models [20]. Considering a
free electron at rest at the origin subjected to the laser field E =
x̂E0 cos[ω0(t − z/c)], B = ẑ × E, one finds by solving the
classical relativistic equations of motion that during one laser
cycle this electron is moved an amount �z = (2π/cω0)Up

in the propagation direction due to the Lorentz force of the
magnetic field. Here ω0 and E0 are used to denote the angular
frequency and peak electric field, respectively, of the laser field,
Up = E2

0/4ω2
0 is the familiar ponderomotive potential, and c is

the speed of light [all quantities are expressed in atomic units
(a.u.)]. For 800 nm, 1016 W/cm2 laser light, �z ≈ 18 a.u.,
which means that the effect of the magnetic field cannot be
neglected in the description of recollision phenomena.

There exist only a few experiments addressing the above
question [21–24], and the problem cannot be considered con-
clusively settled. A number of theoretical proposals [25–27]
have been put forward to address the problem of the drift
motion of the electron. To the best of our knowledge, these
proposals have never been implemented in an experiment,
neither have they been tested in realistic simulations involving
several (more than one) electrons. For a recent investigation of
the impact of the magnetic field on the ionization dynamics in
a classical one-electron system, see [28]. We also mention
the recent study [29] on the effect of an additional static
magnetic field on DI of He. One of the difficulties of
studying the above-mentioned topics is that there is currently
no practical, microscopic theory of laser-driven relativistic
many-particle dynamics. On the mean-field level, laser-driven
relativistic plasmas are usually treated within the relativistic
particle-in-cell scheme [30,31], but neither classical nor
quantum simulations of laser-driven relativistic few-particle
systems going beyond the mean-field description, allowing
for collisions at small impact parameters, have so far appeared
in the literature to the best of our knowledge.

The purpose of this contribution is twofold: (i) To inves-
tigate in detail the effect of the magnetic field of the laser
pulse on the nonsequential DI process, within a model that
explicitly treats the electron-electron correlation, and to assess
quantitatively different methods to overcome the drift motion
of the electron. Effects of the magnetic field are investigated
for three cases: a single, few-cycle linearly polarized laser
pulse, a setup with two delayed counterpropagating linearly
polarized laser pulses proposed in [26], and two counterprop-
agating circularly polarized laser pulses, as proposed in [27].
(ii) To take the first steps towards a microscopic description
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of relativistic, laser-driven few-particle systems. Our model is
a purely classical model of the three-body system consisting
of two electrons and one nucleus, similar to the one used in
[17,20,32]. We perform the simulations by solving numerically
both the standard, nonrelativistic equations of motion as well as
the equations of motion derived from the Darwin Lagrangian.
The Darwin Lagrangian includes relativistic effects up to order
(v/c)2, where v is the magnitude of the velocity of the electron.

We proceed by introducing in Sec. II the theoretical model
employed for the simulations. Details about the simulation
procedure can be found in Sec. III. The results of the
simulation, together with a discussion of the obtained spectra
are presented in Secs. IV A (total probabilities) and IV B
(momentum spectra). We conclude the paper in Sec. V.

II. THEORETICAL MODEL

Atomic units are used throughout the paper, unless other-
wise specified. This implies that the mass and the magnitude
of the charge of the electron equal unity, and that the numerical
value of the speed of light is c ≈ 137 a.u. The system
considered consists of two electrons, labeled by j = 1,2,
moving in the potential V (r − R) of a nucleus of charge
number Z situated at R, and the electric and magnetic field of a
laser, denoted by E(t,r) and B(t,r). The nucleus is considered
to have infinite mass, i.e., to be immobile. We conduct
simulations based on the following equations of motion:

dr1

dt
≡ v1 = P1 − 1

2c2
|P1|2P1

− 1

2c2

1

|r12|
[

P2 + (P2 · r12)r12

|r12|2
]
, (1a)

dP1

dt
= r12

|r12|3 + 1

2c2

1

|r12|3
[

(P2 · r12)P1 + (P1 · r12)P2

− (P1 · P2)r12 − 3(P1 · r12)(P2 · r12)
r12

|r12|2
]

−∇V (r1 − R) − E(t,r1) − v1

c
× B(t,r1), (1b)

dr2

dt
≡ v2 = dr1

dt
(1 ↔ 2), (1c)

dP2

dt
= dP1

dt
(1 ↔ 2), (1d)

where we have used the notation r12 = r1 − r2 and
r21 = −r12. The symbol Pj (j = 1,2) appearing in Eq. (1)
is the canonical momentum of the electron. The physical,
kinetic momentum for electron j reads

pj = vj + v2
j

2c2
vj . (2)

The equations of motion (1) can be derived from the Darwin
Lagrangian LD [33],

LD =
2∑

j=1

[
1

2
v2

j + 1

8c2
v4

j + V (rj − R) − vj

c
· A(t,rj )

]

− 1

|r12| + 1

2c2

1

|r12|
[

v1 · v2 + (v1 · r12)(v2 · r12)

|r12|2
]
,

(3)

where A(t,r) is the vector potential of the laser field. The
Lagrangian LD includes relativistic effects up to order v2/c2,
and is valid for velocities much smaller than the speed of light,
v � c. In terms of the motion of an electron in a laser wave, the
condition v � c translates into E0/ω0 � c for the laser field
amplitude and frequency (expressed in a.u.), or I � 2 × 1018

W/cm2 for the intensity in the case of 800 nm laser light. To
describe first-order relativistic effects, the Darwin Lagrangian
is convenient, since the time derivatives of the positions and
canonical momenta at time t are functions of the positions
and momenta at the same time t . In a completely relativistic
description, this would not be possible due to retardation, i.e.,
the force on a particle at one instant depends on the positions
of the other particles at an earlier instant. We note that the
Darwin approximation has been suggested previously as a
tool for plasma simulation [34], but we are unaware of its
application to laser-driven atomic systems.

In the following, we present results obtained at three differ-
ent levels of approximation: (i) Nonrelativistic approximation
(referred to in the following as NRA); here terms proportional
to c−1 or c−2 are neglected in (1), which means that there
is no force due to the magnetic field. (ii) Nonrelativistic
approximation with a magnetic field (referred to as NRBA);
in this case, all terms proportional to c−2 in (1) are discarded.
However, we keep the magnetic field term (v/c) × B in the
Lorentz force. (iii) Darwin approximation (referred to as DA);
the full equations of motion given by Eq. (1) are solved.

Since the model we use is entirely classical, a bare Coulomb
potential cannot be used for the nuclear potential. We employ
the standard soft-core potential [17]

V (r) = − Z√
r2 + α2

. (4)

The softening parameter α is set such that autoionization of the
ground state does not occur (which imposes a lower bound on
α), and such that the energy of the lowest-energy configuration
of the two electrons is below the ground-state energy ε0(Z) of
the corresponding atom or ion (this puts an upper bound on
α). To fix ε0(Z), we use the approximate quantum mechanical
formula for the ground-state energy of He and He-like ions
in [35]. The numerical values (in a.u.) for the parameter pairs
(ε0,α) employed in the following read

(ε0,α) =

⎧⎪⎨
⎪⎩

(−2.904,0.7918) if Z = 2,

(−7.280,0.5060) if Z = 3,

(−13.66,0.3730) if Z = 4.

(5)

III. SIMULATION

The simulations are carried out in a statistical, Monte Carlo
fashion, which is a well-established method for laser-atom
interaction [16,32,36]. First, initial values for the canonical
momenta and positions are sampled by a procedure described
in some detail below. Then the equations of motion given
by (1) are integrated numerically by an adaptive, fifth-order
Runge-Kutta solver. At a sufficiently long time after the laser
pulse has passed, the ionization state (doubly ionized, singly
ionized, or not ionized) and final momenta of the electrons are
recorded. An electron j is considered to be ejected if its energy
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εj > 0, where the single-electron energy is defined as

εj = v2
j

2
+ 3v4

j

8c2
+ V (rj − R)

+1

2

[
1

|r12| + 1

2c2|r12|
(

v1 · v2 + (v1 · r12)(v2 · r12)

|r12|2
)]

.

(6)

Here we have adopted the convention that the parts of the
total energy ε that depend on the coordinates and velocities of
both electrons are split equally between the two electrons. The
total energy then satisfies ε = ε1 + ε2. Obviously, the terms
proportional to c−2 in Eq. (6) are relevant only in the DA.

The initial values for the electrons are sampled in the
following way. First, the electrons are placed at r1 = reqr̂rand,
r2 = −r1, where req = α/

√
(4Z)2/3 − 1 is the equilibrium

distance for two electrons in a soft-core potential, and r̂rand

is a random unit vector. In this configuration, the total energy
ε of the system is less than ε0(Z) given in Eq. (5). Second,
a total amount ε0(Z) − ε of kinetic energy is added to the
system in the form of momentum, directed along either r1

or r2, and randomly split between the two electrons. This
implies that the initial configuration has vanishing total angular
momentum. Third, the system is allowed to evolve for 100 a.u.
of time before the interaction with the laser pulse. We use the
same set of initial conditions for all three approximations, the
NRA, NRBA, and DA. The above described method of initial
value sampling can be considered to be a commonly accepted
procedure [16,32]. If not otherwise stated, the nucleus is placed
at the origin, R = 0.

Three different laser field configurations, labeled SL, CL,
and CC, are used in the simulations. The first (configuration
SL) corresponds to a single, few-cycle linearly polarized
laser pulse with a sine-squared envelope propagating in the
z direction,

ESL(t,r) = E0 cos(ω0η−) sin2

(
πη−
T

)
bT

0 (η−)x̂,

(7)
BSL(t,r) = ẑ × ESL(t,r),

where η− = t − z/c, T = 2πN/ω0 is the total pulse duration,
and b

t1
t0 (·) is the box function, defined as b

t1
t0 (t) = 1 when

t0 � t � t1, and 0 otherwise. Throughout this paper, we take
N = 3 as the number of cycles, and ω0 = 0.057 a.u., which
corresponds to a wavelength of 800 nm.

The second laser field configuration, denoted by CL,
corresponds to the setup proposed in [26],

ACL(t,r) = −x̂
E0c

ω0
cos(ω0η−) sin2

(
πη−
T

)
bT

0 (η−)

− x̂

√
2E0c

ω0
cos(ω0η+) sin2

(
πη+
T

)
b2T

T (η+),

ECL(t,r) = −1

c

∂

∂t
ACL(t,r), BCL(t,r) = ∇ × ACL(t,r),

(8)

where η+ = t + z/c. The total laser field thus consists of
two consecutive, counterpropagating laser pulses of linear
polarization, the second one with twice the peak intensity
of the first. An electron at rest at the origin at t = 0 is first

driven away in the positive z direction by the first pulse, and
then pushed back by the second pulse to return to the origin at
maximal kinetic energy [26].

The third setup, labeled by CC, is that put forward in [27],

ECC(t,r) = E0b
T
0 (η−) sin2

(
πη−
T

)
[cos(ω0η−)x̂

+ sin(ω0η−)ŷ] + E0b
T
0 (η+) sin2

(
πη+
T

)

× [cos(ω0η+)x̂ − sin(ω0η+)ŷ],
(9)

BCC(t,r) = E0b
T
0 (η−) sin2

(
πη−
T

)
[cos(ω0η−)ŷ

− sin(ω0η−)x̂] − E0b
T
0 (η+) sin2

(
πη+
T

)

× [cos(ω0η+)ŷ + sin(ω0η+)x̂],

two counterpropagating circularly polarized laser pulses of
equal intensity. In this setup, the Lorentz forces in the z

direction mutually cancel, so that the probability for recollision
is enhanced. However, for a finite pulse such as described by
Eq. (9), this condition holds strictly only at z = 0.

For the three field configurations SL, CL, and CC, we
conduct simulations at various peak field strengths E0. When
results are displayed as a function of the laser intensity I ,
we use the formula I (W/cm2) = 3.51 × 1016E2

0 (a.u.) for the
conversion.

IV. RESULTS

A. Total probabilities

In Figs. 1 and 2 we show the results for the total probability
for DI of He and Li+, defined as PDI = nDI/ntot. Here nDI

is the number of trajectories which resulted in both electrons
being unbound (εj > 0, j = 1,2) at the end of the trajectory.
The total number of trajectories run at each intensity were
ntot ≈ 1.3 × 106 for Z = 2 and ntot ≈ 9 × 105 for Z = 3.

Several remarks can be made based on Figs. 1 and 2.
Although the plateau structure of the total probability for DI
of He with a single pulse [Fig. 1(a)] stretches up to as far
as I = 1016 W/cm2 in this model, inclusion of the magnetic
field reduces the height of the plateau only by a factor ≈2.
For DI of Li+ [Z = 3, Fig. 2(a)], inclusion of the magnetic
field reduces the single-pulse plateau probabilities by an order
of magnitude. This reduction of the plateau height is only
marginally smaller for the field configuration CL, the linearly
polarized double pulse, for both He and Li+, which can be seen
in Figs. 1(b) and 2(b). On the contrary, field configuration CC,
the counterpropagating circularly polarized pulses, results in
equal DI probabilities with and without magnetic field for both
He [Fig. 1(c)] and Li+ [Fig. 2(c)].

For both He and Li+, regardless of the field configuration
employed, we could not find any difference between the
results obtained in the DA and the NRBA. In principle,
since a field-driven system of two charged particles in a
binding potential is chaotic, i.e., the final outcome is extremely
sensitive to variations in the initial conditions, even a small
modification of the Hamiltonian of the system [such as the
terms proportional to c−2 in (1)] could lead to observable
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ERIK LÖTSTEDT AND KATSUMI MIDORIKAWA PHYSICAL REVIEW A 87, 013426 (2013)

10
15

10
16

10
17

10
−4

10
−3

10
−2

10
−1

10
0

intensity [W/cm2]

D
I

pr
ob

ab
ili

ty

(a)

10
15

10
16

10
−4

10
−3

10
−2

10
−1

10
0

intensity [W/cm2]

D
I

pr
ob

ab
ili

ty

(b)

10
14

10
15

10
16

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

ii

iii

iv

i

intensity [W/cm2]

D
I

pr
ob

ab
ili

ty

(c)

FIG. 1. (Color online) Probability for DI of He (Z = 2) as a
function of the laser intensity, for the different field configurations.
Field configuration (a) SL [a single linearly polarized pulse, see
Eq. (7)], (b) CL [two counterpropagating linearly polarized pulses,
see Eq. (8)], and (c) CC [two counterpropagating circularly polarized
pulses, see Eq. (9)]. R = 0 in (a) and (b). The different curve styles
correspond to the different approximations of the equations of motion:
NRA, solid triangles; NRBA, solid squares; and DA, solid circles. In
all panels the NRBA and DA curves are almost indistinguishable, and
in (c) all three curves lie almost on top of each other. In (c), in addition
to the curves obtained at Rz = 0 (solid symbols, marked with i), we
also show curves calculated at Rz �= 0 (open symbols), Rz = 1 a.u.,
(ii); Rz = 200 a.u., (iii); and Rz = 1000 a.u., (iv).

differences in the final probabilities or spectra. Moreover,
the terms in (1) proportional to P1P2/(c2r2

12) could become
significant for large momenta and small electron separation, as
is the case at a recollision. However, no statistically significant
difference between including or excluding the c−2 terms
was found in the present investigation. We do observe the
sensitiveness of the initial conditions in the sense that exactly
the same initial positions and momenta that lead to DI in the
DA do not necessarily lead to DI in the NRBA. For example,
when we use a set of initial conditions which all lead to DI
in the DA case for I = 2 × 1015 W/cm2, field configuration
SL [the set of initial conditions that produces trajectories with
final momentum spectrum shown in Fig. 5(c)], and repeat the
simulation in the NRBA, only 20% of the trajectories result in
DI. Nevertheless, when averaged over many trajectories run
from slightly different initial conditions, the DA and NRBA
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FIG. 2. (Color online) Probability for DI of Li+ (Z = 3) as a
function of the laser intensity, for the different field configurations.
Field configuration (a) SL, (b) CL, and (c) CC. R = 0 in all panels.
The different curve styles correspond to the different approximations
of the equations of motion: NRA, solid triangles; NRBA, solid
squares; and DA, solid circles. Statistical error bars ±√

nDI/ntot are
shown when their lengths exceed the size of the curve symbol.

models give the same results, within the statistical error bars.
The same conclusion is arrived at also in Sec. IV B, where
the momentum distribution of the two ejected electrons is
analyzed. To the contrary, the inclusion or not of the magnetic
field, which can be viewed as a zeroth-order compared to a
first-order approximation in c−1, affects the final probabilities
and momentum spectra (as will be seen in Sec. IV B) in a
quantitatively significant way.

For field configuration CC and Z = 2, we have also
investigated the dependence of the total DI probability on the
position R of the nucleus. In Fig. 1(c), we show the results
obtained at four different values of Rz, with R = (0,0,Rz).
This figure reveals the sensitivity of the DI probability to the
displacement of the He atom along the laser pulse propagation
axis for field configuration CC. Already a small displacement
of 1 a.u. from the laser focus reduces the DI probability by
almost one order of magnitude. This reduction is because the
polarization of the total pulse (9) effectively becomes slightly
elliptical at Rz �= 0. It should be noted that the laser pulse (9)
is only an approximation to the electric and magnetic fields of
a focused laser pulse, which cannot be described by a plane
wave in general. However, close to the focal region, even a
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FIG. 3. (Color online) Probability for DI of He (solid symbols)
and Li+ (open symbols) as a function of the average intensity E2

[see Eq. (10)], in the DA. R = 0 for all curves. Results for field
configuration SL are shown with diamonds, for CL with inverted
triangles, and for CC with stars.

focused pulse is well approximated by a plane wave of the
form (9).

To conclude the presentation of the Z = 2 and Z = 3
results, we compare in Fig. 3 the total DI probabilities in the
DA for He and Li+ (i.e., the same data points as shown with
solid circles in Figs. 1 and 2). We plot the total DI probabilities
as a function of the average intensity E2, defined here as

E2
a = 1

τa

∫ ∞

0
[Ea(t,0)]2dt, (10)

where a = SL, CL, or CC, and the total pulse length τSL,CC =
T and τCL = 2T . For a realistic, finite pulse, E2 would be
proportional to the total pulse energy. Note, however, that
for plane-wave pulses considered in this paper, the total
pulse energy is not defined. From Fig. 3, we see that field
configuration CC is superior (although the difference is small
for He), in the sense that this field configuration yields the
highest DI probability at a given average intensity.

We have also conducted simulations for the He-like ion
Be2+ (Z = 4), but only for field configuration SL. The results
are shown in Fig. 4. About ntot ≈ 5 × 106 trajectories were
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FIG. 4. (Color online) Probability for DI of Be2+ (Z = 4) as a
function of the laser intensity, for field configuration SL, a single few-
cycle pulse [see Eq. (7)]. R = 0. The different curve styles correspond
to the different approximations of the equations of motion: NRA, solid
triangles; NRBA, solid squares; and DA, solid circles. Statistical error
bars ±√

nDI/ntot are shown when their lengths exceed the size of the
curve symbol.

calculated at each intensity. The difference in probability
between the NRA and the NRBA and DA results is here almost
two orders of magnitude in the plateau region. Also note the
high laser intensities needed for DI. Strictly speaking, the DA
breaks down at the higher end of the intensity range considered
in Fig. 4, since at I ≈ 1018 W/cm2 the condition v � c is no
longer satisfied. To explore even higher values of Z, a fully
relativistic model would be required.

It may seem from Fig. 4 that the DA and NRBA curves are
different. Due to the low probability, however, the points on
the DA and NRBA curves in Fig. 4 in the plateau region
(I ≈ 1017 W/cm2) result from only a few DI trajectories,
which makes it difficult to make any statistically significant
conclusions. We have therefore repeated the simulations for
Z = 4 at one particular intensity I = 2 × 1017 W/cm2, with
field configuration SL (as in Fig. 4), and increased the total
number of simulated trajectories. From ntot ≈ 108 trajectories
run, we get P

(DA)
DI = (1.76 ± 0.13) × 10−6, and P

(NRBA)
DI =

(1.70 ± 0.13) × 10−6 for the DI probabilities, where we have
also indicated the estimated statistical error. We conclude that
even at Z = 4, I = 2 × 1017 W/cm2 the DA and NRBA give
indistinguishable results within the statistical uncertainties.

B. Momentum distributions

In this section we show examples of the correlated momen-
tum spectra of the ejected electrons. The first example of the
final momentum distribution in the x direction is displayed in
Fig. 5, which contains the results of a simulation made at I =
2 × 1015 W/cm2, with field configuration SL (single linearly
polarized pulse). The x direction here corresponds to the
polarization direction of the electric field. We first remark that,
similarly to the results for the total DI probability presented
in Sec. IV A, there is no difference between the NRBA
distribution [Fig. 5(b)] and the DA distribution [Fig. 5(c)],
apart from statistical fluctuations.

On the contrary, comparing Fig. 5(a) and Fig. 5(b) [or
Fig. 5(c)], we see that the magnetic field has a large impact on
the momentum distribution. In the NRBA and DA spectra, the
ridge ranging from (p1x,p2x) ≈ (−4,0) a.u. to (p1x,p2x) ≈
(0,−4) a.u. clearly seen in the NRA spectrum is almost
completely absent. After a trajectory analysis, we find that
two classes of trajectories give rise to the features exhibited by
the NRA momentum distribution in Fig. 5(a). The first is the
trajectory in which the electron ejected at one field maximum
returns to eject the second electron approximately one half
cycle later. This kind of trajectory results in at least one of
the ejected electrons having positive final momentum in the x

direction, and the other one positive or slightly negative px .
This feature is common to all three panels in Fig. 5. An example
of such a trajectory, calculated in the NRA, is displayed in
Fig. 6(a). One electron is ejected close to the first peak of the
laser pulse and recollides a half cycle later at the next peak.

The second class of trajectories are the long ones, where the
ejected electron returns after an almost complete field cycle to
eject the second electron. A typical trajectory of this kind is
shown in Fig. 6(b). These trajectories give rise to the ridge seen
in Fig. 5(a) in the lower left quadrant of the p1x-p2x plane. The
explanation of why this ridge is absent for the NRBA and DA
calculations is simply that the long trajectories are much less
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FIG. 5. (Color online) Final distribution of the electron momenta
p1x and p2x in the x direction (polarization direction) in DI of He,
for a single, three-cycle pulse (field configuration SL) of intensity
2 × 1015 W/cm2. R = 0. Results employing the NRA are shown in
(a), NRBA in (b), and DA in (c). The color indicates the number
of trajectories with final momentum in that particular bin. In total
ntot = 5 × 106 trajectories were run.

probable if the magnetic field is included, due to the tendency
of the (v/c) × B force to prevent the ejected electron from
recolliding.

We note that the above analysis of the dynamics using long
and short trajectories is similar to that introduced in order to
understand high-harmonic generation [37].

We now proceed to show in Fig. 7 the correlated final
p1x-p2x spectrum for Li+, at I = 1 × 1017 W/cm2, field
configuration SL. The NRBA [Fig. 7(b)] and DA [Fig. 7(c)]
distributions cannot be distinguished, which shows that even
at high laser intensity the c−2 terms in the equations of motion
(1) are unimportant also for the momentum spectra.

For the NRBA and DA distributions, there are two main
features, both of which are present also in the NRA case. The
first is the peak in the lower left quadrant of the p1x-p2x plane,
where both electrons have the same final momenta p1x =
p2x ≈ −11 a.u. This peak corresponds to a genuine recollision:
an electron ejected during the first laser cycle recollides
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FIG. 6. (Color online) Two examples of DI trajectories contribut-
ing to the different features of the momentum spectrum. The distance
rj (t) = |rj (t)| from the nucleus for each electron j = 1,2 is shown
with a solid line. The time development of the x component of the
laser electric field x̂ · ESL(t,0) is shown with a thicker, broken line
(not to scale, and vertically shifted). All parameters are the same
as used for the results shown in Fig. 5(a): NRA, field configuration
SL, laser intensity 2 × 1015 W/cm2, and R = 0. In (a), the final
momenta are (p1x,p2x) = (2.2, − 0.13) a.u., while in (b) we have
(p1x,p2x) = (−2.4, − 0.84) a.u.

with the remaining electron at a small impact parameter,
and transfers roughly half of its momentum to the second
electron, after which both electrons promptly escape from the
nucleus with roughly the same kinetic energy. The recollision
occurs at t0 ≈ 95 a.u., shortly before the end of the first
field cycle, which fixes the final momentum as p1x = p2x ≈
− ∫ T

t0
x̂ · ESL(t,0)dt ≈ −11 a.u. In Fig. 8(a), an example from

this group of trajectories is demonstrated. Note that the time
from ejection to recollision is shorter than a half cycle.

The second main feature is the two stripes (one horizontal,
and one vertical), where one of the electrons (j = 1 or 2)
has final momentum −13 � pjx � −11 a.u., and the other
electron has final momentum p(3−j )x in the range −11 to
approximately 15 a.u. In this case, the final momenta are
uncorrelated. The trajectories leading to this feature are of
the RESI type [3]: one electron is ejected during the peak of
the first cycle, and then recollides after less than a half cycle
later. After recollision, only one electron is ejected, whereas
the second one is left bound in an excited state, and is ejected
at a later time by field ionization. The recolliding electron
either excites the bound electron and scatters, or ejects the
bound electron and recombines into a transient bound state,
so that the electron that is emitted directly after the recollision
event is not necessarily the one that was first ejected. Both
types of trajectories contribute to the horizontal and vertical
stripes in the momentum distributions in Fig. 7. We refer to
Fig. 8(b) for an example of a trajectory where the recolliding
electron is recaptured into an excited state and ejected during
a subsequent field maximum. Note that since the laser field is
very intense, the ejection of the second electron is not limited
to a field maximum, which explains the range of possible final
momenta for the second electron.
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FIG. 7. (Color online) Final distribution of the electron momenta
p1x and p2x in the x direction (polarization direction), for field
configuration SL, in DI of Li+ at intensity 1 × 1017 W/cm2. R = 0.
Results for the NRA are shown in (a), NRBA in (b), and DA in
(c). In (a), final momenta obtained from the approximation (11) are
shown with white crosses (×). A total number of ntot = 1.2 × 107

trajectories were run for each plot.

Left to discuss is the part of the final momentum distribution
which can be seen in the NRA plot [Fig. 7(a)], but not in
the NRBA or DA plot. The part of this feature which has
p1x < 0 is marked with crosses in Fig. 7(a). The corresponding
trajectories in this case are soft recollisions at large impact
parameter, so that the recolliding electron transfers only a small
part of its relatively large momentum to the bound electron.
The time between ejection and recollision is here close to
one half cycle, rather long compared to the two classes of
trajectories discussed above. A typical trajectory is shown in
Fig. 8(c). The longer time for recollision together with the soft
nature of the recollision makes this kind of trajectory extremely
unlikely if the magnetic field is included, which explains
the absence of this feature in Figs. 7(b) and 7(c). Assuming
that the ejection of electron 1 occurs at t = t1, we can estimate
the time t2 for the recollision as the smallest t2 > t1 for
which the equation

∫ t2
t1

dt
∫ t

t1
x̂ · ESL(t ′,0)dt ′ = 0 is satisfied.

Since the momentum transfer in the recollision is small, the
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FIG. 8. (Color online) Trajectories r1,2(t) contributing to the
momentum spectra shown in Fig. 7 are drawn with solid lines. For ori-
entation, the x component of the laser electric field (not to scale, and
vertically shifted) is shown with a broken line. The laser intensity is
I = 1 × 1017 W/cm2, the field configuration is SL, Z = 3, and R = 0
(the same parameters as employed in Fig. 7). In (a), the final momenta
are (p1x,p2x) = (−11.0, − 11.3) a.u., in (b) we have (p1x,p2x) =
(2.7,−12.7) a.u., and in (c) (p1x,p2x) = (−7.5,10.0) a.u. The DA
was used in (a) and (b), and the NRA in (c). Note that in (a), the two
curves almost overlap each other after the recollision at t ≈ 95 a.u.

final momenta of the electrons can be approximated as

pjx ≈ −
∫ T

tj

x̂ · ESL(t,0)dt, (11)

for j = 1,2. The approximation (11) for p1x and p2x , with
50 � t1 � 67 a.u., is shown in Fig. 7(a) with crosses.

V. CONCLUSIONS

In this paper, we have addressed two open questions
regarding the DI of He and He-like ions: the importance of
including the magnetic field of the laser pulse in the simulation
and the impact of second-order (in 1/c) corrections to the
equations of motion. It was found that the magnetic field can
have substantial influence on both the total DI probability
and on the final momentum spectrum, even at laser intensities
as low as 1015 W/cm2, which is commonly thought of as
a nonrelativistic intensity (at 800 nm wavelength). On the
other hand, the 1/c2 corrections, as derived from the Darwin
Lagrangian, were shown to have a negligible effect on the
total probabilities and final momentum spectra, even for Be2+
driven by 2 × 1017 W/cm2 laser light. The reason is that at high
laser intensities, the trajectories that lead to DI by recollision
occur exclusively during the first cycle of the pulse, when the
field is still relatively weak.

In order to increase the DI probability, three field config-
urations were implemented and assessed in the simulations.
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Two of these were proposed previously [26,27] as suitable
setups to allow for DI even at relativistically strong laser
fields where the v × B force generally impedes recollision. We
conclude that the setup with two counterpropagating circularly
polarized laser pulses proposed in [27] is superior, since
the DI probability of Li+ increases by almost one order of
magnitude in the plateau region (see Fig. 3). However, as
shown in Fig. 1(c), in the current setup with short pulses, the
DI probability is very sensitive to the displacement of the atom
(or ion) along the laser focus. This fact severely restricts the
practical applicability of this setup.

The model employed in the current investigation is clas-
sical. To investigate the large-amplitude motion of strongly
driven electrons, classical models are convenient, since one is
not restricted to finite-sized grids as in the case of the numerical
solution of the Schrödinger equation. Moreover, within the

classical model employed, electron-electron correlation can
be treated without approximations. To be able to compare
the total probabilities and final spectra quantitatively with
experimental data, quantum tunneling has to be included.
However, at the charge numbers (Z � 4) and intensities
(I � 1018 W/cm2) considered in this paper, the tunneling
process itself is essentially nonrelativistic [38]. We therefore
expect the conclusions about the recollision dynamics reached
in this paper to be valid also in the quantum case.
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