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Revival times at quantum phase transitions

F. de los Santos1,2 and E. Romera1,3
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The concept of quantum revivals is extended to many-body systems and the implications of traversing a
quantum phase transition are explored. By analyzing two different models, the vibron model for the bending of
polyatomic molecules and the Dicke model for a quantum radiation field interacting with a system of two-level
atoms, we show evidence of revival behavior for wave packets centered around energy levels as low as the
fundamental state. Away from criticality, revival times exhibit smooth, nonsingular behavior and are proportional
to the system size. Upon approaching a quantum critical point, they diverge as a power law and scale with the
system size, although the scaling is no longer linear.
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I. INTRODUCTION

The concept of a phase transition can be extended to
zero absolute temperatures, when thermal fluctuations cease.
Quantum fluctuations then take over and the system may
undergo a quantum phase transition (QPT), which reflects in a
dramatic change in its physical properties as illustrated by the
dependence of many several observables on a suitable control
parameter (other than the temperature, say λ) that determines
the amplitude of quantum fluctuations [1]. It is a generic feature
that at second-order QPTs the system will exhibit diverging
quantities as the transition is approached. An important one is
the correlation length, which, following notions and a nomen-
clature borrowed from classical critical phenomena, diverges
as ξ ∼ |λ − λc|−ν . Similarly, other quantities such as specific
heats or susceptibilities diverge in the same manner, defining
new critical exponents which are related through scaling
relations. This is all well known and to date examples abound
of quantum critical features of classical observables brought
about by quantum fluctuations alone. Much less studied,
however, is the influence of QPTs on purely quantal properties,
lacking a classical counterpart. Here, we address the problem
of wave-packet revivals in systems exhibiting QPTs.

The long-time evolution of propagating quantum wave
packets may lead to unexpected periodic behavior. Initially,
the wave packets evolve quasiclassically and oscillate with a
classical period Tcl, but eventually spread out and collapse.
At later times, multiples of the revival time TR, wave packets
regain their initial form and behave quasiclassically again. The
classical period and the revival time of wave-packet evolution
are embodied in the first coefficients of the Taylor expansion of
the energy spectrum Ek around the energy Ek0 corresponding
to the peak of the initial wave packet,

Ek = Ek0 + E′
k0

(k − k0) + E′′
k0

2
(k − k0)2

+ E′′′
k0

6
(k − k0)3 + · · · , (1)

the first-, second-, and third-order terms in the expansion
providing the classical period of motion Tcl = 2π/|E′

k0
|, the

quantum revival scale time TR = 4π/|E′′
k0

|, and the so-called
super-revival time TSR = 12π/|E′′′

k0
|, respectively. Revivals

have received considerable attention over the last decades [2].
Both experimental and theoretical progress was made in,
among others, Rydberg atoms, molecular vibrational states,
electric currents in graphene, or Bose-Einstein condensates
[3–9]. Recently, methods for isotope separation [10] and
number factorization [11] as well as for wave-packet control
[12–14] have been put forward that are based on revival phe-
nomena, and the presence of effective multibody interactions
in a system of ultracold bosonic atoms in a three-dimensional
optical lattice was identified in time-resolved traces of quan-
tum phase revivals [15]. Interestingly, the collapse and revival
dynamics of ultracold atoms in optical lattices have been
investigated and shown to be strongly sensitive to the initial
many-body ground state [16].

In this article, we extend the concept of quantum revivals to
many-body systems and explore the implications of traversing
a quantum phase transition. By analyzing two different models,
the U(3) vibron model for the bending dynamics of molecules
and the Dicke model of two-level atoms interacting with a
one-mode radiation field, we show that, as a consequence of
the squeezing of the energy levels around the ground-state
energy at the critical point, revival times of wave packets
centered around quantum numbers as low as the fundamental
state diverge as a power law upon approaching a quantum
critical point. Interestingly, we find that the revival times
diverge sufficiently close to the critical point even at finite
system sizes.

II. THE U(3) VIBRON MODEL

The U(3) vibron model has been successfully applied to
study the bending dynamics of linear polyatomic molecules
[17]. Its Hamiltonian is constructed as a combination of
invariant operators associated with the subalgebras of U(3)
(see [17] for further details), and it reads

H = (1 − χ )k + χ

N − 1
P̂ , (2)
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where 0 � χ � 1 and P̂ is the so-called pairing operator (see
below). Here N and k are the total number of bound states
and the number of vibrational quanta. The associated base has
elements |k,l〉, l being the value of the angular momentum
along the z axis perpendicular to the plane of vibrations.
Their allowed values for a given N are k = 0,1,2, . . . ,N and
l = ±k,±(k − 2), . . . ,±1 or 0 for k odd or even. In what
follows we shall restrict ourselves to zero vibrational angular
momentum, l = 0.

Four cases can be distinguished in terms of the value
of the control parameter χ : bending vibrations of rigidly
linear molecules (χ = 0); the quasilinear case (0 < χ � 0.2)
(including a quantum critical point at χ = 0.2; see below);
the quasibent case (0.2 < χ < 1); and the rigidly bent case
(χ = 1). The Hamiltonian is U(2) invariant for χ = 0 and
SO(3) invariant for χ = 1, and in these cases analytical
solutions for the spectra exist [18]:

Ek(χ = 0) = 2k, (3)

Ek(χ = 1) = 4

N − 1

[(
N + 1

2

)
k − k2

]
. (4)

The classical and revival times can be computed from the
expressions above to give the exact, limiting values Tcl(χ =
0) = π and TR(0) = ∞ on the one hand, and Tcl(χ = 1) =
(N − 1)π/(2N + 1 − 4k0) and TR(1) = (N − 1)π/2 on the
other. The divergence of TR is in accordance with the harmonic
nature of the Hamiltonian when χ = 0, while TR(χ = 1) being
linear in N provides an example of the scaling of revival times
in a many-body system, a scaling feature that is absent in the
classical period.

For general 0 < χ < 1 the spectra are no longer analytically
accessible and one has to resort to numerical methods. To
diagonalize the Hamiltonian Eq. (2) we use the matrix elements
of P̂ = N (N + 1) − Ŵ 2 [18],

〈k2,l|Ŵ 2|k1,l〉 = aδk1,k2 + bδk1−2,k2 + cδk1+2,k2 , (5)

with

a = (N − k1)(k1 + 2) + (N − k1 + 1)k1 + l2,

b = −
√

(N − k1 + 2)(N − k1 + 1)(k1 + l)(k1 − l), (6)

c = −
√

(N − k1)(N − k1 − 1)(k1 + l + 2)(k1 − l + 2).

We find the general feature (already reported in Ref. [19])
that on increasing the system size N , k/N becomes a
quasicontinuous variable x and that the combination Ek/N

N

converges to a common spectrum ex . This property alone
implies that the revival times for a given x scale with N because

d2ex

dx2
= N

d2Ek

dk2
. (7)

For the purpose of illustrating this scaling, we construct initial
wave packets as the linear combination

|�(t = 0)〉 =
∑

k

ck|k,l = 0〉 (8)

with Gaussian coefficients ck ∝ exp[−(k − k0)2/σ ], σ = 2,
and centered around x0 = k0/N = 0.25. Centering the wave
packets around a common x0 guarantees that the average

FIG. 1. (Color online) Time dependence of the modulus of the
autocorrelation function |A(t)| for wave packets initially centered
around k0/N = 0.25 with N = 1000 (bottom), 2000 (center), and
4000 (top). Other parameter values are χ = 0.5 and σ = 2. TR �
1024 denotes the revival time for N = 1000, and Tcl � 192 the
classical period. Times are given in dimensionless units.

energies are common in turn [20]. At later times, of course,

|�(t)〉 =
∑

k

ck|k,l = 0〉e−iEkt . (9)

Figure 1 shows the time evolution of the modulus of the
autocorrelation function, A(t) = 〈�(0)|�(t)〉, which is the
overlap between the initial and the time-evolving wave
packets, of three wave packets corresponding to χ = 0.5,
N = 4000, 2000, and 1000. Given an initial state, |A(t)|
decreases in time and the occurrence of revivals is reflected in
its returning to its initial value of unity.

It can be clearly appreciated from the figure that TR(N =
4000) � 2TR(N = 2000) � 4TR(N = 1000). For consistency,
we have also verified that these revival times match those
obtained by evaluating 4π/|E′′

k0
|, the second derivatives be-

ing simply computed through the numerical approximation
Ek+1 + Ek−1 − 2Ek . The figure also shows the classical period
Tcl � 192, which does not scale with N .

Revivals are also observed at energy levels as low as the
ground state. As an example, Fig. 2 shows the time develop-
ment of a wave packet with Gaussian-distributed population
for χ = 0.5, centered around the ground state and with σ = 2.
The estimated revival time from the figure is approximately
2850, to be compared with TR/2 = 2π/|E′′

k0=0| = 2853.5. In
this case, E′′

k is computed by fitting the first three levels of
the spectrum to a parabola and then taking k = 0. The results
thus obtained are in perfect agreement with those observed by
monitoring the wave packet’s time evolution. Other values of
χ , both above and below 0.2, yield again the behavior TR ∼ N .

Next, we study how the revival times are affected by the
presence of the quantum critical point. At χ = χc = 0.2 this
system undergoes a second-order quantum phase transition
in the thermodynamic limit, N → ∞, between two phases
displaying anharmonicities of opposite signs. To compute the
classical period and the revival time, notice that the former is
simply related to the energy gap, 
 ≡ E1 − E0, by Tcl ∼ 
−1.
Since this can be evaluated in the thermodynamic limit through

 = √

(5χ − 1)(1 + 3χ ) (valid for χ > χc [21]), this implies
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FIG. 2. (Color online) Time dependence of |A(t)| for a wave
packet centered around the ground state and system parameters χ =
0.5, N = 2000, and σ = 2. TR � 2853.5 denotes the revival time.
Time is given in dimensionless units.

that the classical period of wave packets centered around the
ground state diverges as the critical point is approached as
Tcl ∼ (χ − χc)−1/2. For the sake of consistency, we have veri-
fied this prediction numerically. As regards TR, a divergent be-
havior is also expected due to the squeezing of the energy levels
around the ground-state energy at the critical point, what leads
to the time evolution of the wave packet being basically con-
trolled by a single autostate. In fact, we find TR ∼ (χ − χc)−1

at fixed N = 1000 and k0 = 0, with χc = 0.205 907 075(3)
(see Fig. 3). Supporting this image is the divergence of the
super-revival time TSR, as shown in the inset of Fig. 3 with, in
this case, χc = 0.203 904 4(2) and the same scaling exponent
−1. Notice that all time scales diverge at close but different
χ , only to coincide at χc in the thermodynamic limit [for N =
1000, Tcl peaks at χc = 0.205 305(5) rather than diverging].

Another interesting aspect is the dependence of TR and
Tcl on the system size N for a given k. Previous results for
the energy gap yield the scaling form 
 ∼ N−1/3 (see [18]
and references therein), which is in perfect agreement with
our own, Tcl(k0 = 0) ∼ N1/3. Moreover, we find this same

FIG. 3. (Color online) Revival and super-revival (inset) times at
criticality as a function of χ for wave packets centered around the
ground state and N = 1000. The red circles and the blue squares
correspond to, respectively, χ < χc and χ > χc. Times are given in
dimensionless units.

FIG. 4. (Color online) Revival time as a function of χ for wave
packets centered around the ground state and N = 1000. The inset is
an enlargement of the delimited area and shows the divergence of TR

close to the critical point. Notice the logarithmic scale of the y axis.
Time is given in dimensionless units.

scaling behavior for wave packets peaked at arbitrarily high
k, i.e., Tcl(k0 > 0) ∼ N1/3. Turning to TR, we find that for
any system size N there always exists a χ , the closer to χc

the larger N , such that TR(k0 = 0) diverges. This is illustrated
in the inset of Fig. 4 which shows the behavior of TR for
N = 1000 in the vicinity of χc. Similar divergences are found
generically for any N , including values as low as 10, and
for a different quantity in another model too, as discussed in
the next section. To rationalize this behavior one can resort
to analytical approximations to the spectra. In particular, a
semiclassical approach at χc gives [19]

Ek

N
− χc ∼

(
k

N

)4/3

, (10)

which yields TR ∼ k
2/3
0 N1/3 and Tcl ∼ k

−1/3
0 N1/3, k0 being

again the quantum number of the energy level the packet is
centered around. However, this approximation seems to be
valid only far from the ground state, as shown in Fig. 5 by
plotting Ek

N
− χc vs k in double-logarithmic scale for several

system sizes. Note that the spectra compare well with the

FIG. 5. (Color online) Numerical spectra at criticality for increas-
ing system sizes N as compared with results of the semiclassical
approximation. (Dimensionless units.)
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FIG. 6. (Color online) Log-log plot of the revival times for the
Dicke model with j = 10 in the vicinity of the critical point. The red
circles and the blue squares correspond to, respectively, λ < λc and
λ > λc. The data can approximated by a straight line of slope −1.
(Atomic units.)

power law k1.36 only for sufficiently high k. This conveys the
idea that the semiclassical formula might be asymptotically
correct at very large values of both k and N .

III. THE DICKE MODEL

The Dicke model describes the interaction of a two-level
atomic ensemble with a one-mode radiation field. It dates back
to the 1950s [22], and to date several experimental realizations
of the model have been proposed [23]. The Dicke model
exhibits a quantum phase transition at zero temperature as
embodied in the Hamiltonian [24]

H = w0Jz + wa†a + λ√
2j

(a† + a)(J+ + J−). (11)

Here, Jz and J are the usual angular momentum operators for
collective spin operators of length j = N/2, and a, a† are the
bosonic operators of the field. The atomic level splitting is
given by w0, w is the field frequency, and λ is the atom-field
coupling. In the thermodynamic limit, N,j → ∞, the system
undergoes a second-order quantum phase transition at a critical
coupling of λ = λc = √

w0w/2. At this point the system
changes from a normal phase to the so-called super-radiant
one in which both the field and the atomic ensemble acquire
macroscopic occupations. Revivals and fractional revivals in
the Jaynes-Cummings model, a single (j = 1/2) two-level
atom interacting with one mode of the quantized radiation
field, were studied in the past [25,26].

Proceeding along the same lines as in the previous section,
that is, solving numerically for the spectra and populating

the autostates around the ground state with Gaussian weights,
a wave packet is constructed and its time development
monitored. The parity has been taken into account as a
symmetry in this system. (Variational approximations have
been proposed in Refs. [27,28] to study the Dicke model in
an analytical framework.) We have verified that our results for
the classical time on scale resonance, i.e., w0 = w = 1, follow
those reported in Ref. [29], 
 ∼ (λc − λ)1/2. As for TR, we find
TR ∼ |λc − λ|−1 (see Fig. 6). Oddly enough, as in the vibron
model, there is a value of λ at which TR diverges irrespective of
the system size. At this point, it may be in order to mention that
it has been recently shown that the fidelity necessarily diverges
at the critical point in the Dicke model [30], and, interestingly,
divergent behavior has been observed to occur at finite system
sizes [31].

IV. CONCLUSIONS

We have extended the concept of quantum revivals to many-
body systems and explored the implications of traversing a
quantum phase transition by analyzing the time development
of wave packets centered around the fundamental state in two
different models, namely, the U(3) vibron model and the Dicke
model. Far from the quantum critical point, characteristic
time scales such as the classical period and the revival and
the superrevival times exhibit a smooth nonsingular behavior,
and revival times are proportional to the system size. Upon
approaching a quantum critical point, energy levels squeeze
into the ground state, rendering the wave packet with a
Gaussian-distributed population basically a combination of
states with almost equal energies. We have shown evidence that
under these circumstances, the above-mentioned quantities
diverge as power laws with well-defined critical exponents.
Interestingly, the revival and super-revival times were found
to diverge on approaching the critical point even at finite
system size. Should it be the case that all time scales
in the Taylor expansion diverge, a statement we cannot
confirm but that is suggested by the numerics and by the
squeezing of the energy levels around the ground state as the
transition point is approached, the time evolution of such wave
packets at criticality would then be limited to phase changes,
i.e., to rotations. Finally, we comment that quantum phase
transitions can also influence the revival behavior of wave
packets centered around excited states. This interesting effect,
however, will be discussed elsewhere.
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