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In this paper, we have investigated theoretically the influence of atomic collisions on the behavior of a one-
dimensional Bose-Einstein condensate inside a driven optical cavity. We develop the discrete-mode approximation
for the condensate taking into account the interband transitions due to the s-wave scattering interaction. We show
that in the Bogoliubov approximation the atom-atom interaction shifts the energies of the excited modes and also
plays the role of an optical parametric amplifier for the Bogoliubov side mode which can affect its normal-mode
splitting behavior. On the other hand due to the atomic collisions the resonance frequency of the cavity is
shifted which leads to the decrease of the number of cavity photons and the depletion of the Bogoliubov mode.
Besides, it reduces the effective atom-photon coupling parameter which consequently leads to the decrease of
the entanglement between the Bogoliubov mode and the optical field.
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I. INTRODUCTION

The emerging field of optomechanics concerns the study of
the mechanical effects of light on mesoscopic and macroscopic
mechanical oscillators. This phenomenon has been realized in
the optomechanical systems consisting of an optical cavity
with a movable end mirror or with a membrane in the middle.
The radiation pressure exerted by the light inside the optical
cavity couples the moving mirror or the membrane which
acts as a mechanical oscillator to the optical field. This
optomechanical coupling has been employed for a wide range
of applications such as the cavity cooling of microlevers
and nanomechanical resonators to their quantum mechanical
ground state [1–5], producing high precision detectors for
measuring weak forces and small displacements and also
providing a good approach for fundamental studies of the
transition between the quantum and the classical world [6–8].

On the other hand an alternative path to the studies of cavity
optomechanics has been provided experimentally by systems
consisting of ultracold atomic ensembles trapped in optical
cavities [9–12] where the excitation of a collective mode of
the cold gas plays the role of the vibrational mode of the mirror.
The standing electromagnetic wave inside the cavity forms a
periodic potential, the so-called optical lattice, in which the
cold atoms exhibit phenomena typical of solid-state physics
like the formation of energy bands and Bloch oscillations [13].

In such systems with high finesse cavities the atom-light
interaction is enhanced because the atoms are collectively
coupled to the same optical mode. Besides, in the dispersive
regime where the laser pump is far detuned from the atomic
resonance the excited electronic state of the atoms can be
adiabatically eliminated and consequently the only degrees of
freedom of atoms will be their mechanical motions [14–16].
For low photon numbers when the optical grating produced
by the intracavity optical field is very shallow, one can
approximately restrict the dynamics to the first two motional
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modes [17,18]. In more recent theoretical investigations
[19,20] it has been shown that the simple two-mode model
of a Bose-Einstein condensate (BEC) can be improved by
considering higher motional modes.

In spite of similarities between the two kinds of optome-
chanical systems (with a moving mirror and with a BEC),
there are some essential differences between them. Firstly, in
contrast to the moving mirror of the optomechanical systems
which is placed in the harmonic potential of its spring, the
excitation modes of the BEC are not based on the presence
of such an external harmonic potential [11]. Secondly, their
parameters are realized in different regimes; the frequency
of the excitation mode of the BEC, i.e., recoil frequency, is
well below the dipole coupling strength while the oscillation
frequency of a moving mirror is of the same order of magnitude
as the coupling strength [12,18]. On the other hand in addition
to pumping the cavity from one of the end mirrors, in the
cavities equipped with atomic gas it is also possible to pump
the atoms from the side of the cavity [21].

One of the most important characteristics of the many-
body systems is the two-body collision which can affect the
properties of the system. So in order to study the dynamics of a
BEC gas in a realistic experimental situation, it is necessary to
take it into account. In the optomechanical systems containing
the atomic gas there are two kinds of atom-atom interactions
which are the origins of the system nonlinearities. Firstly,
due to the atom-photon interaction the potential acting on
the condensate depends in a highly nonlocal and nonlinear
way on the condensate itself which leads to the long-range
atomic interaction mediated by the cavity field [20,22]. On
the other hand there is an intrinsic nonlinearity due to the
s-wave scattering which can take place at arbitrary momentum
values and causes a broadening of the atomic momentum
distribution [23] due to the intraband transitions and also can
scatter atoms to the other bands (interband transitions) [13,24].
Furthermore, there is another kind of nonlinearitiy due to the
finiteness of the particle number of the system which can be
neglected in the thermodynamic limit where the total number
of atoms is very large [25].
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In this work, we are going to extend the two-mode model
considering the effects of atom-atom interaction for a one-
dimensional BEC in an optical cavity. We consider the system
in the low photon regime but will not restrict our treatment to
the weak atom-atom interaction. In fact the atomic collisions
can populate several nonzero quasimomenta of the energy
bands (intraband transition) and can also cause the atoms
to be scattered to the other bands (interband transitions). In
order to have a simplified optomechanical model we take
into account just the lowest nonzero quasimomenta in the first
Brillouin zone. We show that in the Bogoliubov approximation
the atom-atom interaction not only shifts the energies of the
excited modes but also plays the role of an optical parametric
amplifier (OPA) for the Bogoliubov side mode which can
affect its normal-mode splitting behavior [26]. On the other
hand due to the atomic collisions the resonance frequency
of the cavity is shifted which leads to the decrease of the
number of cavity photons and the depletion of the Bogoliubov
mode. These results are in good agreement with those obtained
by the numerical solutions of the full description of the
Gross-Pitaevskii equation (GPE) [20,27].

The paper is structured as follows. In Sec. II we will first
give a thorough theoretical description of the many-body
system under consideration and then derive a simplified
optomechanical model. In Sec. III the quantum Langevin
equations (QLEs) are derived and linearized around the
semiclassical steady state. In Sec. IV we study the mean-field
solutions and fluctuations of the system and in Sec. V we
derive the spectrum of the Bogoliubov mode and investigate
the normal-mode splitting (NMS). Finally, our conclusions are
summarized in Sec. VI.

II. THEORETICAL DESCRIPTION OF THE SYSTEM

We are going to study a gas of N ultracold bosonic two-level
atoms with mass M and transition frequency ωa inside the
optical lattice of a single-mode, high-finesse Fabry-Perot
cavity with length L. The cavity is driven at rate η through
one of its mirrors by a laser with frequency ωp, and wave
number K = 2π/λ = ωp/c. We assume the BEC is confined
in a cylindrically symmetric trap with a transverse trapping
frequency ω⊥ and negligible longitudinal confinement along
the x direction (Fig. 1). In this way we can describe the dynam-
ics within an effective one-dimensional model by quantizing
the atomic motional degree of freedom along the x axis only.

A. The general form of the Hamiltonian of a BEC
inside an optical lattice

In the dispersive regime where the laser pump is far
detuned from the atomic resonance (�a = ωp − ωa exceeds
the atomic linewidth γ by orders of magnitude), the excited
electronic state of the atoms can be adiabatically eliminated
and spontaneous emission can be neglected [14]. In the frame
rotating at the pump frequency, the many-body Hamiltonian
reads

H = −h̄�ca
†a + ih̄η(a† − a)

+
∫ L/2

−L/2
dx�†(x)H0�(x) + Haa, (1)

FIG. 1. (Color online) N two-level atoms trapped in an optical
cavity interacting dispersively with a single cavity mode. The cavity
mode is driven by a laser at rate η and the decay rate is κ .

where a is the annihilation operator for a cavity photon
and �c = ωp − ωc is the cavity-pump detuning. H0 is the
single-particle Hamiltonian of an atom inside the optical lattice
of the cavity and Haa is the atom-atom interaction that is,
respectively, given by

H0 = p2/2M + h̄U0 cos2(Kx)a†a, (2a)

Haa = 1

2
Us

∫ L/2

−L/2
dx�†(x)�†(x)�(x)�(x). (2b)

Here U0 = g2
0/�a is the optical lattice barrier height per

photon and represents the atomic backaction on the field,
g0 is the vacuum Rabi frequency, Us = 4πh̄2as

M
, and as is the

two-body s-wave scattering length [15,16]. The second term
in the Hamiltonian of Eq. (2a) is a periodic potential of period
λ/2.

It is well known that the eigenfunctions of a particle
inside a periodic potential are the Bloch functions ψν,q(x)
with eigenvalues εν,q where ν is the Bloch band index and
q ∈ [−2π/λ,2π/λ] is the quasimomentum of the particle
[28]. If there are l periods inside the cavity, then L = lλ/2.
Using the Born-Von Karman periodic boundary condition
ψν.q(x + L) = ψν,q(x) and based on the Bloch theorem,

ψν,q(x + lλ/2) = eiqlλ/2ψν,q(x), (3)

it is deduced that qlλ/2 = 2mπ , where (m ∈ Z). In this way
the quasimomentum qm in the first Brillouin zone can be
written in terms of optical wave number, i.e., qm = 2mK/l

where −l/2 � m � l/2. Now using the Bloch theorem, the
eigenfunctions ψν,qm

(x) can be written as

ψν,q(x) = 1√
l
eiqmxuν(x). (4)
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Here uν(x) is a periodic function with the optical lattice period
(λ/2) and reads

uν(x) = 1√
λ/2

∑
n

cν,ne
i2nKx. (5)

By substituting Eq. (5) into Eq. (4), the eigenfunctions of the
single-particle Hamiltonian H0 is obtained as

ψν,qm
(x) = 1√

L

∑
n

cν,ne
i(qm+2nK)x. (6)

The second quantized atomic wave field �(x) can be
expanded as a Fourier series in terms of the Bloch functions,
i.e.,

�(x) =
∑
ν,qm

b̃ν,qm
ψν,qm

(x). (7)

Here b̃ν,qm
(b̃†ν,qm

) is the annihilation (creation) operator for
the atomic field that annihilates (creates) a particle in a state
determined with the Bloch band index ν and quasimomentum
qm. By using this expansion the Hamitlonian of the system is
diagonalized and one can investigate the Bloch band structure
of the condensate [29]. However, the Fourier coefficients cν,n

can only be determined numerically and there is no closed
form for the Bloch functions. Instead, by substituting Eq. (6)
into Eq. (7) one can obtain a Fourier expansion of the atomic
field in terms of plane waves,

�(x) = 1√
L

∑
n,m

bn,mei2K(n+m/l)x . (8)

In the derivation of Eq. (8) we have done a Bogoliubov
transformation,

bn,m =
∑

ν

cν,nb̃ν,qm
, (9)

where bn,m (b†n,m) is the atomic field operator that annihilates
(creates) a particle in a state determined with the band index n

and quasimomentum qm.
By substituting Eq. (8) into Eq. (1) the Hamiltonian of the

systems can be written as

H = −h̄�ca
†a + ih̄η(a† − a) +

∑
n,m

εnmb†nmbnm

+ 1

4
h̄U0a

†a
∑
n,m

b†nm(bn−1,m + bn+1,m + 2bn,m) + Haa.

(10)

In these sums n ∈ Z, −l/2 � m � l/2, and

εn,m = 4ER

(
n + m

l

)2

(11)

are the energy eigenvalues in which ER = h̄2K2/2M is the
recoil energy. As seen, the field expansion of Eq. (8) can no
longer diagonalize the Hamiltonian of the system. In fact that
part of Hamiltonian which corresponds to the atom-photon
interaction remains nondiagonal. Due to the interaction with
the optical field, the atoms are scattered to the nearest
bands (�n = ±1) while their quasimomentum (m) remains
unchanged.

B. Optomechanical model

Since the optical potential is symmetric with respect to
the origin, the Hamiltonian of the system has the parity
symmetry. So if the system starts from a homogeneous BEC,
only the cosine parts of the exponential functions in Eq. (8)
are excited because of the parity conservation. In the limit of
weak photon-atom coupling, when either the photon number
inside the cavity or U0 is small, the lowest bands n = ±1
can be excited by fluctuations resulting from the atom-light
interaction [18]. On the other hand, the s-wave scattering
populates fluctuations with arbitrary n and m [24]. In a
very simplified optomechanical model one can consider the
scattering from m = 0 to m = ±1 in the lowest band n = 0.
In this way the atomic field operator [Eq. (8)] can be truncated
as

�(x) = 1√
L

c00 +
√

2

L
c10 cos(2Kx) +

√
2

L
c01 cos(2Kx/l),

(12)

where we have done the following Bogoliubov transforma-
tions,

cnm = 1√
2

(bnm + b−n,−m), (13a)

cn,−m = 1√
2

(bn,−m + b−n,m). (13b)

In the case that the system does not have parity symmetry,
for example, when the BEC is inside a ring cavity, one should
also consider sine modes with annihilation operators,

snm = 1√
2

(bnm − b−n,−m), (14)

which in our model have been set aside [30,31]. By substituting
the atomic field operator, Eq. (12), into the Hamiltonian of
Eq. (1), one can arrive at the following Hamiltonian:

H = −h̄�ca
†a + ih̄η(a − a†) + 4ER

(
c
†
10c10 + 1

l2
c
†
01c01

)

+Hac + Haa, (15)

where

Hac = 1

2
h̄U0a

†a

(
c
†
00c00 + c

†
10c10 + c

†
01c01

+ 1√
2
c
†
00c10 + 1√

2
c00c

†
10

)
, (16a)

Haa = h̄
ωsw

4N

[
c
†2
00

(
c2

10 + c2
01

) + c2
00

(
c
†2
10 + c

†2
01

)

+ 4c
†
00c00c

†
10c10 + 4c

†
00c00c

†
01c01

+ c
†2
10c

2
01 + c2

10c
†2
01 + 4c

†
10c10c

†
01c01

+ 3

2
c
†2
01c

2
01 + 3

2
c
†2
10c

2
10 + c

†2
00c

2
00

]
. (16b)

The first two terms in Eq. (15) denote the cavity and the
pump Hamiltonians. The third term is the energy of the side
modes c10 and c01 which is just the third term in Eq. (10) with
energy eigenvalues εn,m given by Eq. (11). The Hamiltonian
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Hac denotes the atom-photon interaction and Haa is the atom-
atom interaction. Furthermore, ωsw = 8πh̄asN/MLw2 is the
s-wave scattering frequency and w is the waist of the optical
potential.

This Hamiltonian can be further simplified since for
weak optical fields and large N the depletion of the initial
condensate remains weak. So we can use the Bogoliubov
approximation and treat the zero-momentum mode classically,
i.e., c00 → √

N [17,23]. In this way Eq. (15) reduces to the
following forms:

H = −h̄�̃ca
†a + ih̄η(a − a†) + h̄(4ωR + ωsw)c†10c10

+ h̄

(
4

l2
ωR + ωsw

)
c
†
01c01 + Hac + Haa, (17a)

Hac =
√

2N

4
h̄U0a

†a(c10 + c
†
10) + 1

2
h̄U0a

†a(c†10c10 + c
†
01c01),

(17b)

Haa = 1

4
h̄ωsw

(
c2

10 + c
†2
10 + c2

01 + c
†2
01

)
. (17c)

Here �̃c = �c − NU0/2 is the effective Stark-shifted detun-
ing. As seen from the Hamiltonian of Eq. (17b) there are two
kinds of optomechanical coupling. The first term of Eq. (17b)
is the linear radiation pressure which couples the side mode c10

to the optical field with the optomechanical coupling constant√
2N
4 h̄U0 while the second term is the nonlinear optomechani-

cal coupling of the two side modes c10 and c01 with the optical
field. In the atom-atom interaction Hamiltonian Haa we have
disregarded all terms proportional to ωsw/N . The influence of
s-wave scattering has partly appeared as a shift in the side-
mode energies [the third and fourth terms in Eq. (17a)]. Since
h̄ωsw = 2UsnA, where nA = N/Lw2 is the density of atoms, it
is apparent that the energy shift obtained here is the same as that
of Bogoliubov theory [32]. On the other hand the role of Haa in
Eq. (17) for the Bogoliubov side modes is very similar to that
of an optical parametric amplifier (OPA) in an optomechanical
system with the nonlinear gain parameter ωsw [26]. In Sec. V
we will show how this parameter can affect the NMS behavior
of the coupled Bogoliubov mode and the cavity field.

III. DYANAMICS OF THE OPTOMECHANICAL SYSTEM

The dynamics of the optomechanical system described by
Eq. (17) is fully characterized by the following set of nonlinear
QLEs, written in the frame rotating at the input laser frequency,

ȧ = (i�̃c − κ)a − iU0

2
a

×
[√

2N

2
(c10 + c

†
10) + c

†
10c10 + c

†
01c01

]
− η + ξ,

(18a)

ċ10 = −(iω10 + γ )c10 − i

√
2N

4
U0a

†a − iU0

2
a†ac10

− i

2
ωswc

†
10 + f10, (18b)

ċ01 = −(iω01 + γ )c01 − iU0

2
a†ac01 − i

2
ωswc

†
01 + f01,

(18c)

where ω10 = 4ωR + ωsw and ω01 = 4
l2 ωR + ωsw. Here κ and

γ characterize the dissipation of the cavity field and collective
density excitations of the BEC, respectively. The cavity-field
quantum vacuum fluctuation ξ (t) satisfies the Markovian
correlation functions, i.e., 〈ξ (t)ξ †(t ′)〉 = (nph + 1)δ(t − t ′),
〈ξ †(t ′)ξ (t)〉 = nphδ(t − t ′) with the average thermal photon
number nph which is nearly zero at optical frequencies [33].
Besides, f10(t) and f01(t) are the thermal noise inputs for
the two side modes of BEC which also satisfy the same
Markovian correlation functions as those of the optical noise.
The noise sources are assumed uncorrelated for the different
modes of both the matter and light fields.

A. Linearization

Now we are going to study the weak excitations of the
condensate from its ground state. Such excitations include
small deviations of both the atomic wave function and
the optical field from their respective stationary states. So we
decompose each operator in Eq. (18) as the sum of its steady-
state value and a small fluctuation. By substituting a = α + δa,
c10 = √

Nβ1 + δc10, and c01 = √
Nβ0 + δc01 into Eq. (18)

one can obtain a set of nonlinear algebraic equations for the
steady-state values,

α = η√
�2

d + κ2
, (19a)

β1 =
√

2

4

U0α
2√

�
(+)2
10 + γ 2

, (19b)

β0 = 0, (19c)

where we have assumed α,β0, and β1 are real numbers [19]
and �d = �̃c − 1

2NU0β1(β1 + √
2) is the effective detun-

ing, �
(±)
10 = ω̃10 ± 1

2ωsw, and ω̃10 = ω10 + 1
2U0α

2. Equation
(19c) shows that the mean value of the mode c01 is zero.
It is the consequence of the fact that the ground state
of the translationally invariant system is also invariant under
discrete translation [24]. On the other hand, the linearized
QLEs for the fluctuating operators take the following forms:

δȧ = (i�d − κ)δa − i

2
G(δc†10 + δc10) + ξ, (20a)

δċ10 = −(iω̃10 + γ )δc10 − i

2
G(δa + δa†) − i

2
ωswδc

†
10 + f10,

(20b)

δċ01 = −(iω̃01 + γ )δc01 − i

2
ωswδc

†
01 + f01, (20c)

where

G = U0

√
Nα

(
β1 +

√
2

2

)
(21)

is the effective atom-photon coupling parameter. By defining
the quadrature fluctuations,

δXa = 1√
2

(δa + δa†), δPa = 1√
2i

(δa − δa†), (22a)

δXj = 1√
2

(δcj + δc
†
j ), δPj = 1√

2i
(δcj + δc

†
j ), (22b)
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with j = (10,01), the QLEs can be written in the compact
matrix form,

u̇(t) = Au(t) + n(t), (23)

where u = [δXa,δPa,δX10,δP10,δX01,δP01]T is the vector of
continuous variable fluctuation operators and

n(t) = [ξx(t),ξp(t),fx10(t),fp10(t),fx01(t),fp01(t)]T (24)

is the corresponding vector of noises. The 6 × 6 matrix A is
the drift matrix given by

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−κ −�d 0 0 0 0

�d −κ −G 0 0 0

0 0 −γ �
(−)
10 0 0

−G 0 −�
(+)
10 −γ 0 0

0 0 0 0 −γ �
(−)
01

0 0 0 0 −�
(+)
01 −γ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (25)

As is seen from the drift matrix, the side mode (δX01,δP01) has
been decoupled from the optical mode. It is due to the fact that
in the QLEs, Eq. (18c), there is no standard radiation pressure
coupling between the side mode c01 and the optical field.
Instead, it is coupled to the radiation field via the nonlinear
term, − iU0

2 a†ac01 which is as small as 1/
√

N of the radiation
pressure term, and is deleted during the linearization process
(because the mean-field value of this mode, β0, is zero). In this
way the side mode c01 acts as a medium level in the dynamics.

B. Stationary quantum fluctuations

In order to study the stationary properties of the system
it is enough to focus our attention on the subspace spanned
by the optical mode and the side mode c10. It means that
we can consider only the upper block of the drift matrix
of Eq. (25). The system is stable only if the real part of
all the eigenvalues of the matrix A are negative. These
stability conditions can be obtained by using the Routh-
Hurwitz criterion [34]. Due to the linearized dynamics of the
fluctuations and since all noises are Gaussian the steady state is
a zero-mean Gaussian state which is fully characterized by the
4 × 4 stationary correlation matrix (CM) V , with components
Vij = 〈ui(∞)uj (∞) + uj (∞)ui(∞)〉/2. When the system is
stable such a CM is given by [35]

Vij =
∑
k,l

∫ ∞

0
ds

∫ ∞

0
ds ′Mik(s)Mjl(s

′)Dkl(s − s ′), (26)

where M(s) = exp(As) and Dkl(s − s ′) = 〈nk(s)nl(s ′) +
nl(s ′)nk(s)〉/2 is the matrix of stationary noise correla-
tion functions. For the noise diffusion matrix we have
Dkl(s − s ′) = Dklδ(s − s ′), where Dkl = Diag[κ,κ,γ (2nB +
1),γ (2nB + 1)] is the diffusion matrix, with nB =
[exp(h̄ωm/kBT ) − 1]−1 as the mean number of thermal ex-
citations of the Bogoliubov side mode (δX10,δP10) whose
frequency of oscillations is given by

ωm =
√

�
(+)
10 �

(−)
10 . (27)

Therefore, Eq. (26) becomes

V =
∫ ∞

0
dsM(s)DMT (s). (28)

When the stability conditions are satisfied M(∞) = 0 and
Eq. (28) will be equivalent to the following Lyapunov equation
for the steady-state CM,

AV + V AT = −D. (29)

Equation (29) is linear in V and can be straightforwardly
solved. However, the explicit form of V is complicated and
is not reported here.

IV. NUMERICAL SOLUTIONS TO THE MEAN FIELDS
AND FLUCTUATIONS

In this section we first discuss our results based on the
numerical solutions of Eq. (19) for the mean fields and then
solve Eq. (29) to obtain fluctuations in the number of atoms and
photons and their entanglement. We will show how the atom-
atom interaction affects the mean fields, cavity resonance, and
atom-photon entanglement. We analyze our results based on
the experimentally feasible parameters given in Refs. [11,12].

A. The mean-field solution

Here we are going to study the effect of s-wave scattering
on the behavior of the mean-field values of the optical
field and the Bogoliubov side mode c10, given by Eq. (19),
quantitatively. We consider N = 6 × 104 atoms distributed in
the optical cavity of length L = 178 μm with bare frequency
ωc corresponding to a wavelength of λ = 780 nm. The optical
mode is coherently driven at rate η = 80.06ωR with the recoil
frequency for rubidium atoms ωR = 2π× 3.57 kHz and the
one-atom light shift U0 = 0.96 ωR [11,24].

In Fig. 2 we have plotted the mean number of photons and
the fraction of condensate atoms occupying the Bogoliubov
mode c10 versus the normalized atomic detuning �c/ωR at a
fixed temperature of T = 10−7 K, and for two values of s-wave
scattering frequencies ωsw. As is seen the increasing of the
s-wave scattering interaction shifts the resonance frequency
of the cavity to the lower values. Besides, it causes the number
of atoms in the Bogoliubov mode to decrease i.e., leads to the
depletion of this mode. This is in good accordance with the
results obtained from numerical solution of the GPE (Fig. 1 of
Ref. [20]).

From Eq. (19a) one can obtain the resonance condition as

�(Res)
c = NU0

2

(
1 +

√
2β1 + β2

1

)
. (30)

Such a resonance shift has been obtained in Ref. [12] without
considering atomic collisions. As was mentioned in that
reference the BEC acts as a Kerr medium that shifts the empty-
cavity resonance. However, due to the atomic collisions the
Bogoliubov side mode c10 is depleted to other modes, i.e., the
mean value β1 decreases. So a BEC with atom-atom interaction
has a different resonance in comparison to a noninteracting
one. For clarity, we have shown the effect of atom-atom
interaction on the resonance of the cavity in Fig. 3(a). For
a noninteracting BEC, i.e., ωsw = 0, the resonance occurs at
�(Rs)

c = 28966 ωR while for very large values of ωsw it goes
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FIG. 2. (Color online) (a) The mean cavity photon number and
(b) the mean value fraction of atoms in the Bogoliubov side mode
c10 versus the normalized cavity detuning �c/ωR for two values of
ωsw = ωR (thin line) and ωsw = 10ωR (thick line). The parameters
are N = 6 × 104, U0 = 0.96ωR , κ = 363.9ωR , γ = 0.001κ , η =
80.06ωR , and T = 10−7K .

to NU0/2 = 28800ωR . In Fig. 3(b) the effective atom-photon
coupling parameter G (thick line), given by Eq. (21), and the
mean photon number of the cavity (thin line) have been plotted
versus the normalized s-wave scattering frequency. This figure
shows that both the effective atom-photon coupling parameter
and the mean number of photons decrease with ωsw. All of
these reductions are the direct consequence of the resonance
shift exerted by atomic collisions. In the next subsection it will
be shown that increasing the strength of atomic interaction
causes the number of fluctuating photons to decrease. So
the decrease of the total cavity photon number is a sign of
atomic collisions. These results coincide with those obtained
by numerical solution of GPE [27].

B. Fluctuations and entanglement

After calculating the mean-field values we can obtain the
elements of the drift matrix A and solve for the steady
solutions of Eq. (23). As explained before, by solving the
Lyapunov equation [Eq. (29)] we can obtain the correlation
matrix V which gives us the second-order correlations of the
fluctuations. The correlation matrix corresponding to the upper
block of A in Eq. (25) can be written as

V =
(A C
CT B

)
, (31)

(a)
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28 850
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28 950

Ωsw ΩR

cR
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Ω

R

(b)

G ΩR

Α2 103

0 10 20 30 40 50

34

36

38

40

42

44

46

48

Ωsw ΩR

FIG. 3. (Color online) (a) The normalized resonance frequency
of the cavity �(Res)

c /ωR and (b) the normalized effective atom-photon
coupling G/ωR (thick line) and the mean photon number magnified
by 103 (thin line) versus the normalized s-wave scattering frequency
ωsw/ωR . The parameters are the same as those of Fig. 2. The cavity
detuning has been set at �c = 28966ωR .

where A and B represent the correlations of the photonic and
atomic degrees of freedom, respectively, and C describes the
cross correlations. In this way we can calculate the incoherent
excitation number of photons,

δnph = 〈δa†δa〉 = V11 + V22 − 1

2
, (32)

and the incoherent excitation number of atoms in the Bogoli-
ubov side mode,

δnB = 〈δc†10δc10〉 = V33 + V44 − 1

2
. (33)

On the other hand the bipartite entanglement between the
atomic and photonic degrees of freedom can also be calculated
by using the logarithmic negativity [36]:

EN = max[0,−ln2η−], (34)

where η− ≡ 2−1/2[�(V ) −
√

�(V )2 − 4detV ]1/2 is the lowest
symplectic eigenvalue of the partial transpose of the 4 × 4 CM,
V ,with �(V ) = detA + detB − 2detC.

In Figs. 4(a) and 4(b) we have plotted, respectively, the
incoherent excitation number of photons and atoms versus the
normalized cavity detuning �c/ωR for two values of ωsw.
As is seen, fluctuations are small far from resonance but
they increase rapidly near the resonance. On the other hand

013417-6



NONLINEAR EFFECTS OF ATOMIC COLLISIONS ON THE . . . PHYSICAL REVIEW A 87, 013417 (2013)

(a)

28 000 28 500 29 000 29 500 30 000
0.000

0.002

0.004

0.006

0.008

0.010

0.012

c ΩR

Δn
ph

(b)

28 000 28 500 29 000 29 500 30 000
0.0

0.5

1.0

1.5

2.0

c ΩR

Δn
B

(c)

28 000 28 500 29 000 29 500 30 000
0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

c ΩR

N

FIG. 4. (Color online) The incoherent excitation numbers
of the photons (a), the incoherent excitation numbers of atoms in
the Bogoliubov side mode c10 (b), and the entanglement between
the Bogoliubov mode c10 and the optical field (c) versus normalized
cavity detuning �c/ωR for two different values of ωsw = ωR (thin
line) and ωsw = 10ωR (thick line). All parameters are the same as
those of Fig. 2.

increasing atom-atom interaction decreases the fluctuations
in the number of photons and atoms. Since the total number
of photons is the mean value α2 that was obtained in the
previous subsection plus the incoherent excitation number
of photons, we can conclude that the stronger atom-atom
interaction, the weaker optical field of the cavity. In fact
the atom-atom interaction makes larger shifts in the cavity
resonance frequency and consequently reduces the cavity field
intensity. Hence the decrease of the cavity output provides

Δnph 102

ΔnB

EN 103

0.0 0.2 0.4 0.6 0.8 1.0

1.5

2.0

2.5

3.0

T ΜK

FIG. 5. (Color online) The effects of temperature on the inco-
herent excitation numbers of photons (thin line) and atoms in the
Bogoliubov side mode (dashed line) as well as the entanglement
between photons and atoms (thick line). The cavity detuning has
been set at �c = 28900ωR and the s-wave scattering frequency has
been considered to be ωsw = ωR . The other parameters are the same
as those of Fig. 2. For clarity, the values of δnph and EN have been
multiplied by 100 and 1000, respectively.

a direct measure of the atom-atom interaction within the
condensate.

In Fig. 4(c) the entanglement between the Bogoliubov
mode c10 and the optical field has been plotted versus the
normalized cavity detuning �c/ωR for two values of ωsw.
Again, the maximum of entanglement occurs at resonance.
Besides, an increase in the s-wave scattering frequency causes
the entanglement of the atoms and photons to decrease. As
it was mentioned above, an increase in atom-atom interaction
shifts the resonance of the cavity which reduces the number
of photons of the cavity and also causes the depletion of
the Bogoliubov mode. This reduction in the mean values of
photons and atoms leads to a reduction in the effective atom-
photon coupling [Fig. 3(b)] which causes the entanglement of
atoms and photons to decrease.

The thermal effects on the incoherent excitation numbers of
photons and atoms in the Bogoliubov side mode as well as the
entanglement between photons and atoms have been illustrated
in Fig. 5. As is seen from the figure, increasing the temperature
causes the fluctuations of the number of photons and atoms
to increase and on the other hand reduces the atom-photon
entanglement. Furthermore, the thermal effects for the range
of temperatures below 0.1μK are negligible.

V. SUSCEPTIBILITY AND POWER SPECTRUM
OF THE BOGOLIUBOV MODE

Finally, we are going to obtain the power spectrum of
the Bogoliubov side mode c10 and also derive its effective
frequency and damping rate. We will show that the coupling
between the cavity field and the Bogoliubov mode which
behaves like a mechanical mirror, leads to the splitting of
the normal mode into two modes (NMS). A similar theoretical
approach has been done in Ref. [37] for the optomechanical
Bose-Hubbard Hamiltonian (OMBH) by expanding the atomic
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wave field in terms of the Wannier functions which is valid only
for weak atom-field nonlinearity [38]. Instead, here we use the
atomic field expansion, Eq. (12), in the momentum space. For
this purpose, we solve the linearized QLEs for the fluctuations
in the displacement operator δX10 as

δX10(ω) = χ (ω)FT (ω), (35)

where FT (ω) is the Fourier transformation of the fluctuations
in the total force acting on the Bogoliubov mode and χ (ω) is
its susceptibility which are given by, respectively,

FT (ω) = − G(κ − iω)

�2
d + (κ − iω)2

ξx(ω) + G�d

�2
d + (κ − iω)2

ξp(ω)

+ γ − iω

�
(−)
10

fx10(ω) + fp10(ω), (36a)

χ (ω) = �
(−)
10

�2
eff − ω2 − iω�eff

, (36b)

where �eff is the effective frequency of the Bogoliubov mode,

�2
eff = γ 2 + ω2

m + �dG
2�

(−)
10

(
�2

d + κ2 − ω2
)

(
�2

d + κ2 − ω2
)2 + 4ω2κ2

, (37)

and �eff is its effective damping rate,

�eff = 2γ − 2κ�dG
2�

(−)
10(

�2
d + κ2 − ω2

)2 + 4ω2κ2
. (38)

To calculate the spectrum, we need the correlation functions
of the optical noise sources in the frequency domain,

〈ξx(ω)ξx(ω′)〉 = 〈ξp(ω)ξp(ω′)〉 = κδ(ω + ω′), (39a)

〈ξx(ω)ξp(ω′)〉 = 〈ξp(ω)ξx(ω′)〉∗ = iκδ(ω + ω′), (39b)

where we have assumed nph = 0. For the atomic noise sources
in the frequency domain we have

〈fx(ω)fx(ω′)〉 = 2γ
(
nB + 1

2

)
δ(ω + ω′), (40a)

〈fp(ω)fp(ω′)〉 = 2γ
(
nB + 1

2

)
δ(ω + ω′), (40b)

〈fx(ω)fp(ω′)〉 = iγ δ(ω + ω′), (40c)

〈fp(ω)fx(ω′)〉 = −iγ δ(ω + ω′), (40d)

where we have omitted the indices of fx and fp for simplicity.
Here, nB = [exp(−h̄ωm

kBT
) − 1]−1 is the number of thermal exci-

tations for the Bogoliubov mode and ωm is the mechanical Bo-
goliubov frequency of oscillation given by Eq. (27). By using
the relation Sx(ω) = 1

4π

∫
dω′e−i(ω+ω′)t 〈δX10(ω)δX10(ω′) +

δX10(ω′)δX10(ω)〉 we can calculate the power spectrum of
the displacement operator δX10(ω) as follows:

Sx(ω) = 1

4π
|χ (ω)|2

[
4γ

(
nB + 1

2

)
γ 2 + ω2 + �

(−)2
10

�
(−)2
10

+ 2κG2
(
�2

d + ω2 + κ2
)

(
�2

d + κ2 − ω2
)2 + 4ω2κ2

]
. (41)

The modification of the frequency of the Bogoliubov exci-
tations of the condensate due to the radiation pressure given
by Eq. (37) is equivalent to the optical spring effect in cavity
optomechanical systems with movable mirrors [1].
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FIG. 6. (Color online) (a) Normalized effective Bogoliubov
mechanical frequency �eff/ωm, (b) normalized effective Bogoliubov
mechanical damping �eff/ωm, and (c) normalized power spectrum
of the displacement operator of the Bogoliubov mode versus the
normalized frequency ω/ωm for two values of ωsw = 80ωR (thin
line) and ωsw = 140ωR (thick line) and for �c = 28700ωR and
κ = 72.8ωR . The other parameters are the same as those of Fig. 2.

In Figs. 6(a) and 7(a) we have plotted the normalized ef-
fective Bogoliubov mechanical frequency �eff/ωm versus the
normalized frequency ω/ωm for two values of cavity damping
rates κ = 72.8ωR [Fig. 6(a)] and κ = 24.3ωR [Fig. 7(a)],
and for two different values of ωsw = 80ωR (thin line) and
ωsw = 140ωR (thick line). As is seen from both figures, a
higher two-body interaction makes the condensate more robust
and the Bogoliubov frequency of the condensate does not
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FIG. 7. (Color online) (a) Normalized effective Bogoliubov
mechanical frequency �eff/ωm, (b) normalized effective Bogoliubov
mechanical damping �eff/ωm, and (c) normalized power spectrum
of the displacement operator of the Bogoliubov mode versus the
normalized frequency ω/ωm for two values of ωsw = 80ωR (thin
line) and ωsw = 140ωR (thick line) and for �c = 28700ωR and
κ = 24.3ωR . The other parameters are the same as those of Fig. 2.

significantly deviate from ωm. Besides, a decrease in the
damping rate of cavity causes the appearance of the peaks
in the curves.

In Figs. 6(b) and 7(b) the normalized effective Bogoliubov
mechanical damping �eff/ωm has been plotted versus the
normalized frequency ω/ωm for two values of cavity damping
rates κ = 72.8ωR [Fig. 6(b)] and κ = 24.3ωR [Fig. 7(b)].

In the case of Fig. 6(b) where the damping rate of the
cavity is nearly equal to the effective atom-photon coupling
constant (κ � G), the effective damping rate �eff is much
lower compared to the case of Fig. 7(b) where G > κ . It
means that the stronger atom-photon coupling, the higher atom
loss and hence the higher value of the effective damping. An
experimental observation of this phenomenon of light-induced
backaction heating and consequent loss of atoms has been
reported in Ref. [39]. It was also found that the atom loss rate
is increased near the resonance. On the other hand, the effect
of atomic collisions on the effective damping rate has been
demonstrated in Figs. 6(b) and 7(b) which show that a stronger
atom-atom interaction causes the effective damping rate to
be increased near the resonance points. Therefore increasing
the rate of atomic collisions can help us in cooling of the
Bogoliubov mode of the BEC by the radiation pressure.

Finally, we are going to investigate the influence of
atomic collisions on the phenomenon of NMS in the power
spectrum of the Bogoliubov displacement operator. The NMS
is associated with the mixing between the fluctuation of the
cavity field around the steady state and the fluctuations of
the condensate (Bogoliubov mode) around the mean field.
The origin of the fluctuations of the cavity field is the beat
of the pump photons with the photons scattered from the
condensate atoms. The phenomenon of NMS is observable
whenever the energy exchange between the two interacting
modes takes place on a time scale faster than the decoherence
of each mode.

In Figs. 6(c) and 7(c) we have shown the normalized power
spectrum of the displacement operator of the Bogoliubov mode
SX versus the normalized frequency ω/ωm for two values of
cavity damping rate κ = 72.8ωR [Fig. 6(c)] and κ = 24.3ωR

[Fig. 7(c)], and for two values of ωsw = 80ωR (thin line) and
ωsw = 140ωR (thick line). In the case of Fig. 6(c) where the
damping rate of the cavity is nearly equal to the effective
coupling constant of atoms and photons (κ � G), there is no
splitting in the power spectrum (neither for ωsw = 80ωR nor
for ωsw = 140ωR) while in Fig. 7(c) where G > κ the NMS is
appeared for ωsw = 140ωR. So in order to observe NMS firstly
the system should be in the strong coupling regime where the
atom-photon coupling is larger than the decay rates of photons
and atoms. When this condition is fulfilled, the NMS can
be observable with increasing atom-atom interaction. Normal
mode splitting of a system of a large number of atoms coupled
to a ring cavity has been observed experimentally in the strong
cooperative coupling regime [40]. The splitting of the normal
mode has been observed by increasing the number of atoms
which leads to the increase in the s-wave scattering frequency.

VI. CONCLUSIONS

In conclusion, we have done a theoretical investigation on
the optomechanical properties of a one-dimensional Bose-
Einstein condensate inside a driven optical cavity considering
the effects of atomic collisions. Due to the dispersive atom-
photon interaction the atoms develop a band structure in the
optical lattice of the cavity. In the limit of weak photon-
atom coupling the lowest bands n = ±1 can be excited by
fluctuations due to the atom-light interaction. On the other
hand, the atomic collisions scatter the atoms to the higher
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band and also populate states with nonzero quasimomentum.
It has been shown that there is a nonlinear optomechanical
coupling between the nonzero quasimomentum states with the
optical field proportional to 1/

√
N which can be disregarded

in the Bogoliubov approximation where the number of atoms
in the BEC mode is very large. Therefore, there is no radiation
pressure coupling between the atomic modes with nonzero
quasimomentum and the cavity field in the Bogoliubov
approximation.

In this way we have obtained a simplified optomechanical
model where the Bogoliubov side mode c10 is coupled to
the optical field through the radiation pressure term and
the atom-atom interaction Hamiltonian behaves like an OPA
for the Bogoliubov mode with the nonlinear gain parameter
ωsw. It has been shown that in the strong coupling regime
where the effective atom-photon coupling is greater than the
cavity damping rate, an increase in the s-wave scattering

frequency would lead to the NMS in the power spectrum of
the Bogoliubov mode.

Furthermore, the atom-atom interaction causes the de-
pletion of the Bogoliubov mode and also shifts the cavity
resonance frequency which leads to a decrease in the mean
number of cavity photons. Besides, it decreases fluctuations
in the number of photons and atoms. Hence the decrease in
the cavity output provides a direct measure of the atom-atom
interaction within the condensate. On the other hand, a stronger
atomic collision rate causes a decrease in the effective atom-
photon coupling which leads to a decrease in the entanglement
between the Bogoliubv mode and the optical field.
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