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Spin damping in an rf atomic magnetometer

Orang Alem* and Karen L. Sauer
School of Physics, Astronomy, and Computational Sciences, George Mason University, Fairfax, Virginia 22030, USA

Mike V. Romalis
Department of Physics, Princeton University, Princeton, New Jersey 08544, USA

(Received 10 July 2012; published 16 January 2013)

Under negative feedback, the quality factor Q of a radio-frequency atomic magnetometer can be decreased by
more than two orders of magnitude, so that any initial perturbation of the polarized spin system can be rapidly
damped, preparing the magnetometer for detection of the desired signal. We find that noise is also suppressed
under such spin damping, with a characteristic spectral response corresponding to the type of noise; therefore
magnetic, photon shot, and spin-projection noise can be measured distinctly. While the suppression of resonant
photon shot noise implies the closed-loop production of polarization-squeezed light, the suppression of resonant
spin-projection noise does not imply spin squeezing, rather simply the broadening of the noise spectrum with Q.
Furthermore, the application of spin damping during phase-sensitive detection suppresses both signal and noise
in such a way as to increase the sensitivity bandwidth. We demonstrate a threefold increase in the magnetometer’s
bandwidth while maintaining 0.3 fT/

√
Hz sensitivity.
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I. INTRODUCTION

Ideally, a sensor of radio-frequency magnetic fields is
sensitive over a broad bandwidth and has a fast recovery time.
The last requirement is particularly important when pulsed
excitation is used to create the signal, as in detection by nuclear
magnetic or nuclear quadrupole resonance. In conventional
magnetic resonance detection, a coil of wire is used both to
excite the sample and detect the resulting signal. Hoult in
1979 successfully applied negative feedback to damp such a
probe so that the recovery time was reduced but the signal-
to-noise ratio remained the same during data acquisition [1].
While Hoult used negative feedback to change the impedance
of the detection circuit and thus the quality factor Q of
the probe, more recent work has focused on using negative
feedback to generate electromotive force (emf) that directly
opposes the emf already in the coil [2]; both a decrease in
recovery time and an increase in signal bandwidth without the
loss of signal-to-noise ratio was observed. The latter usage
of negative feedback is close in principle to the damping
described here for an atomic system.

Recently, atomic magnetometers using optically pumped
alkali-metal atoms have been shown to be more sensi-
tive to radio-frequency magnetic fields than standard coil
detection [3], particularly at low frequencies as is needed
for low-field magnetic resonance [4–8] or nuclear quadrupole
resonance [9]. Sensitivities as low as 0.2 fT/

√
Hz are achieved

at the expense of operating with a relatively narrow signal
bandwidth, on the order of a half a kHz, or a correspondingly
long alkali-metal spin-spin relaxation time T2 of about a
millisecond [9]. A long T2 also contributes towards long
recovery times. Therefore, for short-lived signals, or those
applications which require good sensitivity over a large
bandwidth, this time constant can be prohibitively long.
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One way to broaden the magnetometer’s sensitivity is to
use continuous quantum nondemolition measurements on a
magnetometer limited predominantly by spin-projection noise,
as was demonstrated by Ref. [10] for a scalar magnetome-
ter. With a spin polarization of 1%, Ref. [10] achieved a
fourfold increase in sensitivity bandwidth while maintaining
a sensitivity of 22 fT/

√
Hz; with higher polarization, they

estimate that a sensitivity ∼0.6 fT/
√

Hz and a twofold increase
in bandwidth can be realized. The magnetometer presented
in this paper has a sensitivity of ∼0.3 fT/

√
Hz and is

dominated by environmental magnetic and photon shot noise.
With these dominant noise sources, we find another way that
sensitivity bandwidth can be broadened without significant
loss of sensitivity—through negative feedback.

To implement negative feedback, the ac signal from the
magnetometer is converted to a magnetic field and applied
back to the magnetometer so as to damp out the transverse
atomic polarization responsible for the signal. In analogy to
Q damping, we term this spin damping. We demonstrate that
spin damping can be used to gain a fast recovery time for
the magnetometer and, for phase-sensitive detection, can be
used to increase the detector bandwidth with negligible loss of
detector sensitivity.

The idea of using negative feedback to push an atomic
spin system back into a longitudinal state was originally
proposed by researchers at Caltech [11]. As in our system,
Faraday rotation is used as a measure of the spin polarization
along the probe laser beam direction, but unlike our system,
the signal, and therefore the feedback field, is inherently dc.
Although they were unable to demonstrate their initial goal of
suppressing spin-projection noise below the standard quantum
limit [12,13], i.e., spin squeezing [14], they did show that
negative feedback impacted the measured noise of the system.
We will demonstrate that for our system under damping, while
the total integrated noise power is reduced for magnetic and
photon shot noise, it remains the same for spin-projection noise
and is therefore, not an example of spin squeezing. Rather the
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spectrum of spin-projection noise is broadened under damping.
Because the different sources of noise behave distinctly from
one another under damping, spin damping permits a way to
measure the spin-projection noise in a spin system, even if it
is much smaller than the other sources of noise.

II. EXPERIMENTAL SETUP

The basic schematic of negative feedback applied to the
atomic system is shown in Fig. 1(b). The magnetic signal is first
encoded on the transverse atomic polarization which is then
measured via the probe light’s polarization. The rotation of
the polarization is subsequently converted to an electric signal
through a balanced polarimeter [15]. Part of this signal is fed
back in the form of a magnetic field to the magnetometer, with
the strength of the damping controlled by an attenuator. The
phase of the signal is adjusted to provide negative feedback;
this is in contradistinction to positive feedback, which has
long been used to create self-oscillating optically pumped
magnetometers [16]. Whereas the goal of using positive
feedback is to extend the signal out in time, negative feedback
is used to damp out any undesirable transients. In effect, the
feedback controls the effective spin-spin relaxation time T2 of
the atomic magnetometer—negative feedback to shorten it and
positive feedback to lengthen it.

Our experimental setup, as shown in Fig. 1(a), is similar
to the scheme used in Ref. [9] to detect nuclear quadrupole

resonance (NQR) signals of ammonium nitrate at its
characteristic frequency of 423 kHz. A set of Barker coils [17],
inside a triple set of μ-metal magnetic shields and an aluminum
rf shield, is used to apply a small static magnetic field of
B0 = 60 μTẑ to tune the resonance of the magnetometer to
423 kHz. In addition, a set of three coils serves to correct for
first-order stray gradients of the static field in ẑ [18,19] and a
pair of saddle coils [20] produces fields in x̂ and ŷ. The saddle
coils not only serve to produce static and rf fields of known
strength for calibrating the magnetometer, but also serve as
an integral part of the feedback mechanism used for spin
damping. As shown in Fig. 1, part of the rf signal from the
magnetometer is applied to one of the saddle coils. The phase
and amplitude of this signal is adjusted to produce negative
feedback of a known strength, to produce a damping field Bfb.

At the center of these electromagnetic coils sits a 4 ×
4 × 6 cm K vapor cell. A nonmagnetic hot air oven, with
four optical windows, directly surrounds the cell and keeps
it at 180◦ ± 1 ◦C. In principle, the temperature of the cell
sets the K number density in the vapor [21]. However, due
to the interaction of the alkali metal with the Pyrex cell
walls [22–24], the number density of the cell is reduced and
varies from cell to cell [25]. For the data presented in this
paper, the K vapor density of 4 × 1013 cm−3 is measured using
the resonant linewidth at 100 kHz in the limit of low pump
and probe power where the broadening is dominated by K
spin-exchange collisions [26–28]. In addition to the K droplets,
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FIG. 1. (Color online) Experimental setup (a) and schematic (b) of the spin-damping mechanism. A perturbing magnetic field B1 sets the
optically pumped potassium atoms precessing around B0. The resulting transverse atomic polarization Px rotates the probe beam’s polarization,
which is detected and converted to an electrical signal Vout by a balanced polarimeter. Part of this electric signal is phase corrected and fed back
through electromagnetic saddle coils to produce a damping field Bfb that is antiparallel to B1, resulting in an active damping of the K transverse
polarization. The strength of the damping is characterized by the open loop gain, D = αβPzγKT2/2.
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the cell contains ∼650 torr of He, to slow the diffusion
to the wall, and ∼60 torr of N2, to serve as a quenching
gas.

The cell is illuminated with two tunable single-mode
continuous-wave diode lasers with a narrow linewidth of
<300 kHz at 770 nm [29] and which provide up to 1 W of
pump and probe light. The K vapor is optically pumped by
two counterpropagating circularly polarized pump beams at
the K D1 line. This configuration, shown in Fig. 1(a), provides
a relatively uniform K polarization along ẑ. The polarization
can be determined from the response of the magnetometer to
a small static magnetic field applied along the probe direction
and the measured atomic density [28]. Typical K polarizations
of at least 75% are readily achieved, with higher polarization
hindered primarily by K film buildup on the cell walls. A
far-off-resonance linearly polarized beam passes through the
vapor cell and probes the net transverse magnetization in x̂.
The resulting Faraday rotation is measured with a balanced
polarimeter. Typically, the probe power incident on the cell
is 30 mW with a wavelength of 769.72 nm. In practice,
the power of the pump beam is then chosen to optimize
the signal, so that we operate close to the maximum T2 of
the magnetometer. Under these conditions, the output from
the balanced polarimeter gives a magnetometer responsivity of
(Vout/Brf) = 0.55 μV/fT and we observe a resonant linewidth
of about 400 Hz, corresponding to a magnetometer Q of
approximately 1000.

The magnetometer output Vout is amplified by a factor of 10
or more before it is recorded by a Tecmag spectrometer using
quadrature detection [30]. The sensitivity of the magnetometer
in this configuration is fundamentally limited by photon shot
noise at 0.1 fT/

√
Hz. However, the measured sensitivity is

limited by the presence of environmental noise, most probably
due to magnetic field noise from the excess K metal within
the cell and the wires adjacent to the cell [31,32]. Optimal
sensitivity of 0.22 ± 0.02 fT/

√
Hz was achieved using a cell

with a small amount of K, which was eventually completely
absorbed by the glass [22,23]. Interestingly, before absorption
and loss of signal, the number density of this cell was
approximately half that of cells with more K. For the data
presented later in this article, we used two cells containing
noticeably more K, and refer to them as cell 1 and cell
2. Due to variations in oven assembly, cell 2 developed
considerably more film on the optical surfaces which we
believed resulted in a worse sensitivity (0.37 ± 0.03 fT/

√
Hz)

and lower polarization (78%) than cell 1, with a sensitivity
of 0.26 ± 0.02 fT/

√
Hz and polarization of 83%. These

differences permitted us to study how the contribution of
environmental noise impacted the spin-damping results.

Under spin damping both the signal and noise measured by
the magnetometer are suppressed. This damping is character-
ized by the damping factor D, or the loop gain of Fig. 1(b). The
damping factor is determined with the coupler and feedback
circuitry disconnected from the output of the magnetometer.
A known voltage V1 at the magnetometer resonance frequency
is applied to the coupler. Under the field produced by V1, the
magnetometer produces a signal which is recorded as V2, and
so the ratio of V2 to V1 is the open loop gain. The damping
factor is adjusted using the variable attenuator/switch.

III. THEORY—SPIN DAMPING IN AN ATOMIC
MAGNETOMETER

The polarization P of N potassium atoms can be defined in
terms of the average electron spin angular momentum 〈S〉,

P ≡ 〈S〉
h̄S

= 1

Nh̄S

N∑
i=1

〈Si〉. (1)

A signal arises when P has a transverse component to B0.
The output of the balanced polarimeter, shown in Fig. 1, is
directly proportional to the transverse polarization along the
probe beam direction

Vout = αPx. (2)

The proportionality constant α can be viewed as the product
of αG, the gain due to the polarimetry circuitry, and αφ given
by the rotation of the probe polarization [33]

φ = αφPx, (3)

αφ = 1

2
nlrecf

(ν − ν0)

(ν − ν0)2 + (�ν/2)2
(4)

for a probe of frequency ν close to ν0, the D1 transition
frequency. In the expression for αφ , n is the K number density,
l is the length of the cell along the probe direction, re = e

mec2

is the classical electron radius, f = 1/3 is the D1 oscillator
strength, and �ν is the optical full-width at half-max (FWHM)
linewidth.

The electrical signal Vout is recorded by the spectrometer.
During spin damping, a fraction of the signal is fed back to a set
of electromagnetic coils, creating a radio-frequency magnetic
field

Bfb = βVout, (5)

where the direction is chosen so as to push 〈S〉 back into
a longitudinal state and the constant β is controlled by the
circuitry of the feedback circuit.

An analogy with the feedback of a finite-gain amplifier [34]
can be made to our system if we look at the steady-
state response of the system to a resonant radio-frequency
field Brf = B1 cos (ωLt) ŷ, where the K Larmor frequency is
ωL = γKB0 and γK = 2π × 700 kHz/G. With this input, and
assuming that the optical pumping rate along ẑ is much larger
than the nutation rate, the response of the K atoms along the
probe direction is

Px = 1
2PzγKT2B1 cos ωLt. (6)

With spin damping turned on, the fraction of this response
returned to the input is αβ as defined by Eqs. (2) and (5). The
transverse polarization is then reduced or damped to

Px = PzγKT2/2

1 + αβPzγKT2/2
B1 cos ωLt. (7)

In analogy with the finite gain amplifier, we therefore label
αβPzγKT2/2 as the open loop gain, or damping factor D, and
the quantity (1 + D) as the return difference; note the resonant
signal amplitude is reduced by the return difference.

More generally, the response of the magnetometer under a
nearly resonant field of B1 cos(ωt)ŷ turned on at time t = 0,
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is

Px = 1

2

[ 1
2γKT2

1 + i(ω − ωL)T2
(eiωt − eiωLt e−(t/T2))PzB1

+ (
P 0

x + iP 0
y

)
eiωLt e−(t/T2)

]
+ c.c., (8)

where c.c. stands for the complex conjugate of the proceeding
expression, and P 0

x and P 0
y represents the initial x and y

polarization, respectively. This expression, as is Eq. (6) for
the resonant steady-state response, is derived in the limit
of high longitudinal polarization, using the optical Bloch
equations [35] for the atomic angular momentum 〈F〉, and
taking 〈S〉/S = 〈F〉/F ; it is equivalent to that found in
Ref. [36] under the same polarization limit.

In the presence of feedback, Bfb = −αβPxŷ is applied to
the magnetometer and an additional T2-type relaxation term
is added to the Bloch terms with a corresponding relaxation
rate of αβPzγK/2. Defining an effective relaxation rate 1

T2d
=

1
T2

+ αβPzγK

2 = 1
T2

(1 + D), the response of the magnetometer
is similar in appearance to Eq. (8):

Px = 1

2

[
1
2γKT2d

1 + i(ω − ωL)T2d

(eiωt − eiωLt e−(t/T2d ))PzB1

+ (
P 0

x + iP 0
y

)
eiωLt e−(t/T2d )

]
+ c.c. (9)

Therefore, the effect of damping is to increase the relaxation
rate by the return difference (1 + D), resulting in a suppressed
signal and quicker response time or broadened bandwidth.
For unwanted initial perturbations of the magnetometer,
represented by P 0

x and P 0
y , damping provides a way to quickly

return the magnetometer to a longitudinal state in preparation
to detect the desired signal clearly. We turn next to see how
spin damping affects noise in the system, and ultimately the
sensitivity of the magnetometer.

Noise is added to the magnetometer at several places—
environmental magnetic, light-shift, and spin-projection noise
are added through the transverse polarization, photon shot
noise is added through the balanced polarimeter, and instru-
mental noise is added through the amplification stage. The first
three represent white noise which becomes colored through the
detection by the magnetometer. The last two are white noise
contributions under normal detection by the magnetometer but
become colored under the presence of feedback.

A. Magnetic noise

We begin by determining the noise in the x polarization
under the effects of magnetic noise—either environmental
noise or light-shift noise masquerading as a fictitious magnetic
field in the direction of the probe beam [27]. The noise
power spectral density in Px , or SPx , can be related to
transverse polarization noise in a frame rotating with the
Larmor frequency through

SPx(ω) = 1
4 [SPx ′ (ω − ωL) + SPy ′ (ω − ωL) + SPx ′ (ω + ωL)

+SPy ′ (ω + ωL)], (10)

where the primed coordinates denote the rotating frame and are
related to the unprimed coordinates through x̂ + iŷ = (x̂ ′ +

iŷ ′)eiωLt . Within the rotating frame, the Fourier transform of
the Bloch equations give the relationship between the power
spectral density of the transverse polarization to that of the
magnetic noise,

SPx ′ (ω) + SPy ′ (ω) = |h(ω)|2[SBx ′ (ω) + SBy ′ (ω)], (11)

where the transfer function is h(ω) = iγK

iω+ 1
T2

Pz. Therefore,

using Eqs. (10) and (11),

SPx(ω) = 1
4 |h(ω − ωL)|2[SBx ′ (ω − ωL) + SBy ′ (ω − ωL)]

+ 1
4 |h(ω + ωL)|2[SBx ′ (ω + ωL) + SBy ′ (ω + ωL)].

(12)

In the limit that ω is close to ωL and ωLT2 	 1, the second term
on the right-hand side can be neglected. In a similar manner
to Eq. (10), we can relate the magnetic noise in the rotating
frame to that of the laboratory frame and SPx

can be simplified
to

SPx(ω) = 1

8

P 2
z γ 2

KT 2
2

(ω − ωL)2T 2
2 + 1

[SBx(ω) + SBy(ω)], (13)

where we have taken as our convention a one-sided power
spectral density [37].

With the addition of spin damping, the transfer function
becomes h(ω) = iγK

iω+ 1
T2d

Pz and the noise power spectral den-

sity becomes as in Eq. (13), but with T2 replaced with T2d .
From Eqs. (9) and (13), the signal-to-noise ratio (SNR) of the
absorptive signal, under steady-state conditions and for long
acquisition time T , is

RSN(ω) = R0
SN√

1 + (ω − ωL)2T 2
2d

, (14)

where R0
SN = (B1

√
T )

√
1
SB

is the resonant SNR and SB =
1
2 [SBx

(ω) + SBy
(ω)] represents the average magnetic noise in

any given direction. From this expression it is easy to see that
the resonant SNR does not depend on damping and that the
FWHM linewidth is

�ω =
√

12

T2d

= (1 + D)
√

12

T2
. (15)

Therefore, the bandwidth of the sensitivity for an absorptive
signal increases as the return difference, without loss of SNR,
as long as the only noise is magnetic noise.

B. Spin-projection noise

We consider, at first, only a single potassium atom in the
cell, but leave off the superscript i for notational simplicity.
As described by Ref. [38], the spin-projection noise associated
with measurement of Sx can be calculated by

SSx(ω) = 2
∫ ∞

0
RSx(t)(e−iωt + eiωt )dt, (16)

where the symmetrized spin-spin autocorrelation function RSx

is given by

RSx(t) = 1
2 Tr

{
ρ(0)

[
SH

x (t)SH
x (0) + SH

x (0)SH
x (t)

]}
. (17)
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In the above expression, ρ(0) is the density matrix at time t = 0
and SH

x is the operator Sx in the Heisenberg representation.
Using the projection theorem, assuming unresolved Zeeman
resonances [36], neglecting the nonresonant cross terms
between the hyperfine manifolds, and including spin-spin
relaxation, we find

RSx(t) = 1

24
Tr

{
ρ(0)F 2

x cos ωLte−(t/T2d )
}
. (18)

Therefore the average power spectral density per atom is

SSx(ω) = 1

23

〈
F 2

x

〉 T2d

1 + T 2
2d (ω − ωL)2

, (19)

where we have taken the limit that ω is close to ωL and
ωLT2d 	 1. The expectation value of 〈F 2

x 〉 is given by [28]

〈F 2
x 〉 = h̄2

2Z

{
a∑

m=−a

eβm[a(a + 1) − m2]

+
b∑

m=−b

eβm[b(b + 1) − m2]

}
. (20)

Here Z = ∑a
m=−a eβm + ∑b

m=−b eβm is the partition function,
β = ln [(1 + Pz)/(1 − Pz)], a = I + 1/2, and b = I − 1/2,
with I = 3/2 being the nuclear spin. While it is clear from
Eq. (19) that the resonant noise density is reduced with spin
damping, the net power is not. Therefore this reduction would
not be considered spin squeezing, rather it represents the
broadening of the spectrum; nevertheless the ability to easily
vary resonant noise and width may be of use in quantum
control.

The noise power spectral density for the polarization along
the probe direction is related to SSx(ω) of Eq. (19) by

S̃Px = 4
SSx(ω)

h̄2N
. (21)

A tilde has been added to this polarization noise to distinguish
it from the polarization noise arising from magnetic noise as
in Eq. (13). Therefore SNR under spin damping is determined
by Eqs. (9) and (21):

RSN = R0
SN√

1 + (ω − ωL)2T 2
2d

√
T2d

T2
, (22)

where the resonant undamped R0
SN is

R0
SN = B1

√
T

[
PzγK

√
NT2

2
〈
F 2

x

〉
/h̄2

]
. (23)

Note the inverse of the square-bracketed expression in Eq. (23)
represents the undamped resonant field sensitivity, or the spin-
projection noise expressed in terms of field. From Eq. (22), the

SNR bandwidth increases as �ω = (1+D)
√

12
T2

, as in the case of
magnetic noise. However, unlike the case of magnetic noise,
this broadening comes at a cost to SNR; the resonant SNR
decreases in proportion to

√
1 + D.

C. Photon shot noise

Through interaction with the K atoms, the polarization
angle of the probe beam after the magnetometer φ is shifted
from its original angle φ0 by φ = φ0 + αφPx . During feedback,
using the optical Bloch equations, and in the limit that ω

is close to ωL and ωLT2 	 1, the Fourier transform of φ is
equal to the transform of φ0 times the transfer function h(ω) =

1
T2

+i(ω−ωL)
1

T2d
+i(ω−ωL)

. Therefore, the power spectral density of φ is

Sφ(ω) =
[

1 + (ω − ωL)2T 2
2

1 + (ω − ωL)2T 2
2d

]
T 2

2d

T 2
2

Spsn(ω), (24)

where Spsn is the standard white photon shot noise.
Therefore, the SNR from photon shot noise alone can be

expressed as

RSN = R0
SN

√
1[

1 + (ω − ωL)2T 2
2

][
1 + (ω − ωL)2T 2

2d

] , (25)

where the resonant SNR under no damping is given by

R0
SN = B1

√
T

[
PzγKT2αφ/2√

Spsn

]
. (26)

From Eq. (25) it easy to see that the resonant SNR does not
change with damping, but the FWHM linewidth of this SNR
modestly increases from 2

T2
with no damping to

√
12

T2
for infinite

damping, with most of the increase occurring for damping
factors under 10.

D. Total noise and bandwidth

The measurement of the noise under spin damping in prin-
ciple permits the identification of the separate contributions of
spin-projection noise SS = α2S̃Px

from Eq. (21), photon shot
noiseSP = α2

GSφ of Eq. (24), and magnetic noiseSB = α2SPx

of Eq. (13). The total magnetometer noise power spectral
density can be expressed as

SV (ω) ≡ SS(ω) + SP (ω) + SB(ω)

= A2
n + (ω − ωL)2T 2

2dB
2
n

1 + (ω − ωL)2T 2
2d

, (27)

where in the second expression the functional dependence on ω

has been made explicit such that A2
n represents the amplitude

on resonance and B2
n the base noise at large off-resonance

values. The two parameters A2
n and B2

n can be expressed in
terms of the resonant noise spectral densities with no damping
applied, denoted in the following by a zero superscript:

B2
n = S0

P , (28)

A2
n = ax2 + bx = (

S0
P + S0

B

)
x2 + S0

Sx, (29)

where x ≡ T2d

T2
= 1

(1+D) . If in addition to these noise sources
there is an out-of-loop noise source, say, for instance, from
the spectrometer itself, both base noise power B2

n and the
amplitude noise A2

n would be increased by this constant noise.
The SNR under the combined noise can be found using

Eq. (27). Both the loss of SNR and the broadening of the
SNR with spin damping depend on the relative amounts of
the different types of noise. In our experimental case, where
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magnetic noise and photon shot noise dominate over spin-
projection noise, we find that broadening with little loss of
SNR can occur for damping factors on the order of 20 or less.

E. Measuring noise

For a finite acquisition time T of the noise signal V (t), the
ensemble average of the periodogram [PT (ω)] can be taken as
a measurement of the frequency distribution of the noise [39]

[PT (ω)] ≡ 1

T
[|F{V (t)}|2]

=
∫ T

−T

(
1 − |τ |

T

)
R(τ )e−iωτ dτ, (30)

where F{V (t)} is the Fourier transform and R(τ ) is the
autocorrelation function of V (t). In the limit that T is much
larger than the characteristic decay time of R(τ ) with τ ,
[PT (ω)] approaches half the power spectral density, 1

2S(ω).
More generally, the integral on the right-hand side of Eq. (30)
can be viewed as the Fourier transform of the autocorrelation
function multiplied by a triangular function, or the power spec-
tral density convoluted with the function T sinc2 [ωT/(2π )].
For finite acquisition times, the features of the power spectral
density are broadened on the order of 1

T
to give [PT (ω)].

In this paper, we focus on the absorptive part of the signal
as measured through quadrature detection, as is typically used
in magnetic resonance techniques. Such phase-sensitive detec-
tion is needed for an optimal signal-to-noise ratio and to distin-
guish the true signal from interfering signals. The noise spectra

for absorptive signals is
√

1
2 [PT (ω)] and therefore, for long T ,

is equivalent to 1
2

√
S(ω). In the next section, however, the pre-

sented noise data is scaled so as to represent
√
S(ω) for ease of

comparison with derived expressions for noise spectral density.

IV. RESULTS

A. Spin damping at long times

When spin damping is applied to the magnetometer, both
the signal and noise are suppressed when resonant with the Lar-
mor frequency of the magnetometer and their effective widths
are broadened, as shown in Fig. 2 for cell 1. For the absorptive
signal the resonant amplitude As is inversely proportional to
the return difference (1 + D), while the FWHM width �s =

1
πT2d

is proportional to the return difference. This is clearly
demonstrated in Fig. 3, where As and �s are determined from
fits of the signal-versus-frequency data to a Lorentzian func-
tion, the form expected from Eq. (9). For clarity, the parameters
in Fig. 3 have been normalized with respect to their undamped
counterparts A0

s and �0
s . Representative absorptive signals and

fits for select damping factors are shown in the inset of Fig. 2.
As evident in Fig. 2, the noise spectra have a very different

functional form from the signal. Fits of these spectra to
the square root of Eq. (27) are depicted as solid lines.
Good agreement between the data and fits are observed,
except for the highest damping factors, where the fit slightly
underestimates the on-resonance amplitude and deviates from
the high off-resonance frequency behavior. The width of the
noise peak or dip is predicted by Eq. (27) to be equal to �n,
which is equivalent to �s , and therefore should increase as
the return difference. The fit parameter �n demonstrates this
predicted behavior in Fig. 3. In contrast, the resonant noise
amplitude An is suppressed as the signal for low damping
factors, but is suppressed less than the signal at higher
damping factors. As explored further below, this behavior is
expected from Eq. (29). The third parameter Bn predicts the
far off-resonant amplitude of the noise corresponding to the
photon shot noise. The slight increase in the measured shot
noise (�25 nV/Hz1/2) is due to additional observed noise

FIG. 2. (Color online) Spectra of measured magnetometer noise (dotted lines) for various damping factors (lower curves are at higher
damping factors), showing suppression of on-resonance noise amplitude An at the higher damping factors to well below photon shot noise,
which is the measured noise with no pump beam (flat red solid curve). Also plotted is the expected photon shot noise (black dashed line). The
noise spectra for each damping factor is fitted to Eq. (27) (solid lines). The inset shows similar suppression of the magnetometer output to an
applied reference rf magnetic field of 209 fT (points with error bars), fitted to a Lorentzian function (solid lines). Acquisition time was 16.4 ms,
more than an order of magnitude larger than K T2. This data is expressed both in volts from the polarimeter output, left axis, and rotation angle
of the probe polarization, right axis.
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FIG. 3. (Color online) The magnetometer signal amplitude sup-
pression, defined as A0

s /As (solid navy circles), and linewidth
expansion, defined as �s/�0

s (open navy circles), scale as (1 + D)
(black line). The on-resonance noise amplitude suppression, A0

n/An

(solid orange squares), is linear at low damping factors (<20) but
clearly reaches a noise limit at higher D, while the expansion of
noise width, �n/�0

n (open orange squares), is linear for the range of
damping factors measured.

from the balanced polarimeter as is measured in the absence
of both probe and pump light.

For comparison, a set of noise measurements is made with
a second K cell, cell 2, which operated with a higher level
of environmental noise. For both cells, the resonant noise
power A2

n is plotted in Fig. 4 as a function of x = 1
1+D

. The
measured noise power is fitted to a quadratic polynomial of
the form ax2 + bx + c, corresponding to Eq. (29). From the
fit we extract the noise contributions, with a corresponding
to S0

P + S0
B , and b, to the spin-projection noise. Parameter

c represents the limit of noise suppression, and may be
due to external noise added outside of the feedback loop or
noise folded back into the spectrum from aliasing effects and
limitations in the spectrometer’s filtering. This noise power is
more than an order of magnitude larger than the noise floor of
the spectrometer.

The values of the fit parameters for both data sets are given
in Table I. The measured spin-projection noise is similar in
magnitude and agrees fairly well with the predicted values.

FIG. 4. (Color online) For cell 1 (open navy circles) and cell 2
(solid orange squares), the plot of resonant noise power A2

n as a
function of suppression, fitted to a quadratic polynomial (solid lines).
The values of all parameters for the two cells are given in Table I.

The calculated noise takes into consideration the reduced
polarizations of 83% and 78% for cells 1 and 2. The quoted
errors for the calculated spin-projection noise are due to the
uncertainty in the parameters n, Pz, T2, and the volume of the
cell. Figure 4 shows that at high damping factors, we are able
to suppress the resonant magnetometer noise power by about
three orders of magnitude below photon shot noise and two or-
ders of magnitude below the undamped spin-projection noise.

Therefore, we have shown that spin damping permits a way
to decouple magnetic and spin-projection noise. These can
be difficult to detangle because they share the same spectral
shape, as opposed to the white noise of photon shot noise.
Furthermore, the power spectral density of the shot noise
is inversely proportional to the probe intensity so that it is
easy to confirm the contribution of photon shot noise from
other potential sources of white noise. Other methods of
clearly identifying the spin-projection noise include varying
the polarization or number density as was done in the recent
work by Vasilakis [28]. The dependence on spin-projection
noise on these parameters is shown in Eq. (23).

The SNR of the magnetometer is simply calculated by
taking the ratio of the fit equations corresponding to the
measured signal and the noise for each D. Figure 5 shows that

TABLE I. Using the fit parameters from the data in Fig. 4, the wings of the noise curve Bn, and the magnetometer responsivity, we find the
resonant noise contributions. The measured and predicted values for spin-projection noise are in reasonable agreement. For the magnetic noise,
which is predominantly environmental, we give as a predicted lower bound the calculated light-shift noise. The measured shot noise is close to
the predicted value. For the prediction of the out-of-loop noise we only give a lower bound corresponding to the base noise of the spectrometer
itself; aliasing effects may account for the observed noise.

Magnetic noise Photon shot Spin-projection Out-of-loop√
a − B2

n noise, Bn noise,
√

b noise,
√

c

Fit parameters (aT/
√

Hz) (aT/
√

Hz) (aT/
√

Hz) (aT/
√

Hz)

Cell 1 Measured 248 ± 19 107 ± 7 35 ± 5 3 ± 1
Predicted >2 ± 1 100 ± 2 24 ± 4 >0.4

Cell 2 Measured 361 ± 28 118 ± 8 31 ± 5 4 ± 1
Predicted >2 ± 1 105 ± 2 26 ± 4 >1.0
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FIG. 5. (Color online) Plot of the measured magnetometer SNR
(open points) and bandwidth (solid points), for both cell 1 (navy
squares) and cell 2 (orange circles), shows good agreement to the
predicted (lines) values. The inset is the magnetometer SNR for
three damping factors (larger widths correspond to higher damping
factors) as a function of frequency for cell 2, and shows that sensitivity
bandwidth can be broadened with little loss of SNR for D � 20.

as the damping is increased, the SNR bandwidth, or sensitivity
bandwidth, increases, but at the same time the resonant SNR
decreases. For damping factors of about 20 or less, however,
this loss of signal is quite small, so that broadening of the
bandwidth in this regime comes with little cost. For cell 1,
a damping factor of 17.5 increases the detection bandwidth
of the magnetometer by a factor of 2.8 over 0.70 kHz with

∼10% loss in on-resonance sensitivity, while cell 2 shows a
bandwidth increase of 3.7× over 0.74 kHz with almost no
loss in sensitivity for D = 20. The difference between the
two data sets can be mostly attributed to the higher level of
environmental noise experienced by cell 2 compared to cell 1.

The increase in bandwidth in an atomic magnetometer can
significantly reduce the detection time when the frequency
of the signal to be detected is not well known. For example,
in NQR detection the resonant frequency of the material is
temperature dependent; ammonium nitrate has a temperature
coefficient of 100 Hz/◦C. Therefore, a factor of 3 increase in
bandwidth without loss in sensitivity is equivalent to a factor
of 3 increase in the acceptable temperature variation of the
substance under detection.

B. Spin damping at short times and in the presence of ringing

Any net magnetization transverse to B0 has a ring down
with the time constant T2. If such a component exists at
the beginning of a measurement the associated ringing can
dwarf the signal of interest, as demonstrated in Fig. 6. This
is particularly detrimental for short data acquisition times
or short-lived signals, as shown in Fig. 7. To illustrate the
potentially catastrophic effects of ringing in a high-Q atomic
magnetometer we apply a long perturbing pulse ending at time
t = 0, the beginning of the data acquisition windows of Fig. 6.
During the first millisecond in Fig. 6(a), the ringing clearly
masks the desired signal, in this case a three times smaller
radio-frequency pulse applied at t = 60 μs.

The application of spin damping in the first 60 μs permits
for the quick damping of the ringing and clear detection

μs (a)

(b)

FIG. 6. (Color online) Plots (a) and (b) demonstrate the application of spin damping with the magnetometer initially in a perturbed state,
a state created by a resonant rf pulse of amplitude 1.13 pT applied for t � 0. (a) The magnetometer response to a 0.37 pT rf signal, applied
at t = 60 μs, is obscured by the transient ringing from the initial perturbed state (dashed line). Application of spin damping during a short
window quickly eliminates the transient and permits the clear observation of the signal (solid line) as compared to when there is no initial
perturbation (dotted line). (b) The ringing transient naturally decays with a time constant of T2 = 0.7 ms (dashed line), but under damping, the
transient decays in less than 60 μs (solid line). However, due to inhomogeneity in B0 across the K cell, a small feedback hump arises after the
damping field is turned off.
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FIG. 7. Results showing that application of spin damping can
reduce the negative effects of perturbation noise and recover the
magnetometer sensitivity. Two forms of damping are tested. Both
start with D = 150 for the first 20 μs of the 60 μs feedback window,
but in one the damping is smoothly reduced to zero, while in the other,
the damping is reduced to 10 and kept at this value throughout the
acquisition window. SNR is measured for a 24 ms (sparse hatching)
and a 1.5 ms (dense hatching) window in the absence, columns 1–3,
and in the presence, columns 4–8, of ringing created by a perturbing
pulse three times larger than the detected signal. As shown in 1–3,
the switching off of damping adds noise, but with damping retained
during acquisition the SNR is regained. Measurement 4 shows the
significant loss of SNR due to noise from an initial perturbation
of the K spins. The SNR is partially regained with damping (5).
The addition of phase cycling (6) or damping during the window
(7) further increases the SNR, and with the combination of the two
techniques (8) the SNR for both window sizes is in agreement with
the SNR when ringing is not present (1).

of the desired signal, shown as a solid line in Fig. 6(a).
Figure 6(b) shows that the ringing decay constant is reduced
by approximately a factor of 50 under the effects of damping.
In both figures, the negative feedback starts at a high damping
factor of ∼150 for approximately the first 20 μs and is
smoothly ramped down to D = 0 over the following 40 μs, so
as to avoid the creation of undesirable transients from the turn
off of damping.

There is, however, a small rise in the magnetometer signal
following the application of feedback; the arrow in Fig. 6(b)
indicates the emergence of this “feedback hump.” Through
modeling, it is determined that this small rise is due to the
inhomogeneity in B0 across the K cell. The applied feedback
field forces the net transverse polarization of the cell to zero.
Some isochromats across the cell become 180◦ out of phase
from one another and once damping is off, individual isochro-
mats with different Larmor frequencies partially rephase and a
small transverse polarization reemerges. For measurements in
which the phase of the signal can be controlled separately from
the perturbation, flipping or cycling the phase of the signal can
be used to cancel the effects of this feedback hump. Such phase
cycling is commonly used in echo experiments in magnetic
resonance to suppress the effect of the transients created
by the refocusing pulse [40]; a simple repetitive sequence
periodically alters the phase of the excitation pulse by 180◦

while keeping the phase of the refocusing pulses constant and
alternatively subtracting and adding the resulting signals.

The ameliorating impact of phase cycling is shown in
Fig. 7, through comparing the SNR data of columns 5 and
7 to columns 6 and 8, respectively. The combination of spin
damping and phase cycling together leads to a strong and
rapid suppression of the transients, at the same time helping
to avoid saturation and a potentially long recovery time of the
spectrometer. Furthermore, the use of an atomic magnetometer
for detection, permits the use of a low-Q probe for excitation
thus preventing long-time ringing of the excitation coil.

In addition to the coherent transient added by the feedback
hump, the turning on and off of spin damping adds noise to the
magnetic field detection, even when the magnetometer begins
in a longitudinal state. This noise can be greatly reduced, but
not eliminated, by shaping the spin damping to turn off gently
as was done for the data in Fig. 6. By comparing the SNR
of a signal acquired without damping, column 1 of Fig. 7, to
SNR with damping applied before data acquisition, column
2, we can see that the loss of SNR is particularly evident for
data acquisition over short times. Note the shorter window
associated with column 1 has a SNR that is nearly a factor
of 5 smaller than the larger window, a result consistent with
theoretical predictions.

One way to avoid the noise associated with switching
damping off is to leave damping on during data acquisition.
As discussed in the previous section, this can be done for low
damping factors without loss of signal and with an increase
in sensitivity bandwidth. The benefits to SNR can be clearly
observed in Fig. 7, by comparing columns 2 and 5 where
there is no damping in the window, to columns 3 and 7 where
damping, D = 10, is left on during the window. Combining
both phase cycling and damping during acquisition, permits
us to retain the sensitivity of the magnetometer even in the
presence of ringing, Fig. 7 column 1 to column 8. Therefore,
and particularly for short windows, as is necessary in magnetic
resonance echo trains, it is important to have both continuance
of damping into the window to avoid switching noise and the
use of phase cycling to minimize the feedback hump. Armed
with both these tools, spin damping promises to be quite useful
in the reduction of unwanted delay, or dead time, before data
acquisition.

V. CONCLUSION

In this work, we have demonstrated that negative magnetic
feedback can effectively be used to rapidly damp the ringing
of the K spins from some unwanted initial perturbation. Under
spin damping the effective T2 can be reduced by more than an
order of magnitude, therefore permitting the clear observation
of short-lived signals, which otherwise would be obscured by
the use of a high-Q atomic magnetometer.

Furthermore, we find that the magnetometer suppresses not
only coherent signals, but also noise. Damping affects the
spectrum of the noise, both amplitude and shape, according to
the type of noise, so that we are able to separately measure
magnetic, photon shot, and spin-projection noise. While the
net power in the magnetic and photon shot noise are reduced
under damping, the power in spin-projection noise remains the
same even as its spectrum is broadened. The magnetic noise
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spectrum also broadens, with the effective T2 simply replacing
the undamped T2 in the spectral shape. The photon shot noise,
however, becomes colored under the presence of negative
feedback, giving the noise spectrum an inverted appearance.
In total, we observe a resonant noise an order of magnitude
lower than the undamped photon shot noise, implying the
closed-loop production of polarization-squeezed light.

For phase-sensitive detection, the signal and noise are
broadened under damping so as to increase the bandwidth
of the magnetometer. For magnetic and photon shot noise,
this increase is not accompanied by loss of SNR, while for
spin-projection noise the resonant SNR decreases as the square

root of the effective T2. Therefore, in our system, which is
dominated by magnetic and photon shot noise, we observed
with damping a three times increase in detection bandwidth
with little degradation to the subfemtotesla sensitivity of the
magnetometer.
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