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Photoionization of confined Ca in a spherical potential well
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The photoionization cross section of the Ca atom, confined by a spherical annular potential, has been calculated
using a modification to the Belfast R-matrix code for a variety of depths of the confining potential. The results
show that the external potential affects the cross section, which is dominated by doubly excited autoionizing
states, quite significantly, causing much of the oscillator strength to move into the discrete region of the spectrum.
In addition, increasing well depth causes a level crossing between the first two excited states of Ca+, thereby
changing the ordering of resonances dramatically. The calculation for free Ca shows excellent agreement with
experiment.
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I. INTRODUCTION

Confined atoms are of increasing interest in connection with
fundamental studies of physical systems, particularly in regard
to the changes in their static and dynamic properties. They are
also of applied interest to other fields of science and technology
since these confined atoms are predicted theoretically to
exhibit new and unique properties that are potentially relevant
to a wide range of applications [1–4]. Among the important
properties of confined atoms is the response of such systems
to ionizing electromagnetic radiation, i.e., the photoionization
process. While there have been a number of such studies
(mostly theoretical) [5], the field is still in its infancy, and
much remains to be learned. In addition, most of the theoretical
studies model the effects of confinement, by the fullerene
C60, for example, using an attractive spherical potential well,
which is a reasonable approximation in many cases. To get
a clearer physical picture of how the confining well affects
the photoionization properties of the confined atom, it is of
interest to do the calculation not only for the free atom or for
the atom confined by the model potential at its full depth but
also for a series of intermediate depths in order to investigate
the evolution of the cross section.

Since experimental results are limited, it is highly desirable
to use a theoretical methodology whose results are assessable.
To do that, a case should be chosen where reliable experimental
and/or theoretical data exist for the free atom. Then, if the
calculation agrees with experiment for the free atom, it is not
unreasonable to suppose the results in the confining potential
are reliable as well. Since resonances provide excellent
markers to follow the evolution, an atom should be chosen
for which the cross section is abundant with resonances.

The Ca atom fills the bill on both counts. The photoion-
ization of the outer shell of neutral calcium has been studied
using different methods in the past [6–8], and experimental
data exist [9–11]. Three-state R-matrix calculations were
found to be quite successful in describing the complex
resonance structure endemic in outer-shell photoionization
of free Ca [6]; thus, the R-matrix method was selected to
perform the calculations. Specifically, we have carried out
similar three-state R-matrix calculations. However, we used a
somewhat more comprehensive treatment by including more

states in the configuration-interaction (CI) expansions and
more correlation orbitals in the basis set in order to study the
response of the Ca atom. The R-matrix code was then modified
to add the attractive well in order to study the photoionization
of confined atoms [12].

II. THEORETICAL DETAILS

The processes included in the present outer-shell photoion-
ization of Ca are given by

hν + Ca(3s23p64s2) → Ca+(3s23p64s 2S) + kp

→ Ca+(3s23p64p 2P ) + (ks,kd)

→ Ca+(3s23p63d 2D) + (kp,kf ). (1)

The R-matrix methodology consists of initial calculations for
the N-electron Ca+ wave functions followed by calculations
for the (N + 1)-electron bound Ca and free e−+ Ca+ wave
functions. Confinement effects are modeled, as in previous
studies [13], via a short-range spherical potential

Vext(r) =
{−U0 rc � r � rc + � ,

0 otherwise.
(2)

The inner radius of the confining potential is given by rc =
5.80 a.u., the thickness of the well is � = 1.89 a.u., and
the depth of the well is increased incrementally from zero
to a maximum value of U0 = 0.604 Ry, corresponding to the
optimized C60 value [14].

Since the orbitals for the N -electron wave function are
obtained from the Hartree-Fock (HF) and multiconfiguration
Hartree-Fock (MCHF) equations, the additional potential is
included in the MCHF atomic structure codes [16] (see
Chapter 4 in Ref. [15] for details) via the modification(

d2

dr2
+ 2

r
{Z − [Y (nl; r) + Vext(r)]} − l(l + 1)

r2
− εnl,nl

)

×P (nl; r) = 2

r
X(nl; r) +

∑
n′ �=n

λn′P (n′l; r),

where P (n′l; r) is a radial orbital, Y (nl; r) is the sum of the
direct terms, X(nl; r) is the exchange term, and λn′ are off-
diagonal Lagrange parameters to ensure orthogonality among
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FIG. 1. (Color online) Smoothed potential wells (with γ = 0.1)
plotted vs. the actual modified HF and MCHF energy mesh points.

one-electron orbitals of the same angular momentum. The
MCHF code was originally designed to work with free atomic
systems using logarithmic radial mesh points. However,
atomic orbitals become more diffuse with the inclusion of an
additional attractive potential well. Thus, further modification
of the code was necessary in order to employ a finer mesh for
representing these diffuse orbitals and their variations in the
neighborhood of the external potential well. Lastly, in order
to avoid any possible numerical difficulties arising from a
steplike, discontinuous potential, a smoother Woods-Saxon-
type model potential [17] is used in place of Vext(r) in all HF
and MCHF calculations, viz.,

Vext(r) → −U0

[
1

1 + e
( r−rc

γ
)
− 1

1 + e
( r−[rc+�]

γ
)

]
,

with γ = 0.1. Various smoothed potentials are shown in Fig. 1.
For the present calculations, the 1s through 4p orbitals

are treated as spectroscopic and are obtained by solving the
HF equations, including the appropriate potential well, for the
ground state of Ca+. The 4d , 4f , 5s, 5p, and 6s pseudo-
orbitals, on the other hand, are used for additional correlation
and are optimized on the CI energies of the 3p64p and 3p63d

excited states, using a frozen-core approximation for the 1s

through 3p orbitals. We have found that the energy splitting
between the Ca+ 3p64s and 3p63d states is very sensitive
to the choice of CI, a point that has also been discussed in
earlier photoionization work [6]. We find that it is necessary to
include configurations that have significant contribution to the
3p63d state. We have carefully constructed our CI complexes
for the N -electron target states and optimized the correlation
orbitals to achieve the best agreement with the NIST energies.
In order to keep the computational requirements manageable,
we treat the inner n = 1 and n = 2 subshells as closed. The
CI complexes for each of the 3p64s, 3p64p, and 3p63d

states are constructed by considering all possible single- and
double-electron promotions consistent with (1) only single
promotions out of each of the 3s and 3p subshells and (2) a
maximum double occupancy of the 4p and 3d subshells. The
numbers of 3p63d and 3p64p configurations used are 365
and 255, respectively. The 4d , 4f , 5s, and 5p pseudo-orbitals
are determined by optimizing the average term energies of
the 3p64s and 3p63d states with relevant statistical weights

of 2.0 and 10.0, respectively, and the 6s pseudo-orbitals are
determined by further optimization on the 3p64s state, freezing
all other orbitals.

To calculate the photoionization cross sections, we have
employed the Belfast atomic R-matrix codes [18–20], with
additional modifications to include the cage potential as
follows (see Ref. [12] for more complete details). Given the
Hamiltonian for an (N + 1)-electron system

HN+1 =
N+1∑
i=1

[
− 1

2
∇2

i − Z

ri

+
∑

j

1

rij

]
, (3)

the R matrix is computed from knowledge of the eigenval-
ues and eigenvectors of the Hamiltonian matrix, which is
computed with respect to a basis ψα of (N + 1)-electron
configurations:

Hαβ = 〈ψα|HN+1|ψβ〉 . (4)

The ψα are constructed from Slater determinants of one-
electron basis states ui(r)Ylimi

(
), and the evaluation of
the Hamiltonian matrix elements thus requires in turn the
computation of one-electron and two-electron (Slater) radial
integrals, the former taking the simple form

Iji =
∫ a

0
uj (r)

[
−1

2

d2

dr2
+ li(li + 1)

2r2
− Z

r

]
ui(r) . (5)

By including the cage potential, the total Hamiltonian is
modified as

H modified = HN+1 +
N+1∑
i=1

Vext(ri) , (6)

and since the cage potential is a one-electron, spherically
symmetric operator, its effect on the Hamiltonian matrix
evaluation is simply to modify the one-electron integrals by
the additional term

Imodified
ji = Iji +

∫ a

0
uj (r) [Vext(r)] ui(r)

= Iji − U0

∫ rc+�

rc

uj (r)ui(r). (7)

Thus, the modification procedure we employ for including the
cage potential simply consists of adding to every one-electron
integral an additional overlap term. These integrals are easily
identified in the subroutine ONEELE of the R-matrix module
STG1 [19]. We note that this modification is performed for
all orbitals, physical, pseudo, and continuum alike. Thus, in
addition to modifying the outermost, photoionized electron,
the inner atomic electrons are also affected, and thus the
target state from which the outer electron scatters is modified
accordingly.

The wave functions for the initial and final (N + 1)-electron
systems are calculated using the same one-electron orbitals as
for the N-electron core states, with 40 additional continuum-
basis orbitals for each orbital angular momentum l � 4. The
R-matrix radius, which encompasses all the bound orbitals,
is taken to be a = 18.1 a.u. in the free-atom (U0 = 0) case,
whereas it is reduced to a = 17.4 a.u. for the deepest well
(U0 = 0.604 Ry) due to orbital contraction by the additional
attractive well. The calculated ionization potential of free Ca
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TABLE I. Free Ca and Ca+ energies (Ry).

State HFa HFb CIa CIb NIST

Ca (3p64s2) −0.4410 −0.4479 −0.4493
Ca+ (3p64s) 0.0000 0.0000 0.0000 0.0000 0.0000
Ca+ (3p63d) 0.1524 0.1574 0.1202 0.1247 0.1247
Ca+ (3p64p) 0.2076 0.2130 0.2180 0.2303 0.2309

aPrevious R-matrix results [6].
bPresent results.

is 0.4479 Ry, in good agreement with the NIST value of
0.4493 Ry. Inclusion of the well potential increases this value
to 0.6192 Ry for the deepest well.

III. RESULTS AND DISCUSSION

A. Evolution of the Ca+ wave function with
increasing well depth

The free-atom (U0 = 0) wave functions for Ca+ were first
computed using HF and MCHF methods, and the resultant
energies are compared to earlier R-matrix results [6] and
NIST energies in Table I. It is seen that the present excitation
and ionization energies are in excellent agreement with NIST
energies. These calculations were then extended to include
the potential well at increasing depths in the range 0 � U0 �
0.604 Ry, and the subsequent evolution of the 4s, 3d, and 4p

orbitals is found to migrate from the inner atomic region to the
confining potential well, as indicated in Fig. 2. Furthermore,
this migration of amplitude from inner to outer regions is seen
to be more prominent for the 4p orbital than for the 4s and 3d

orbitals, and this turns out to have an important effect on the
Ca+ energy ordering and, consequently, on the photoionization
cross section.

As the orbital probability amplitude migrates outward
with increasing well depth, the corresponding Ca+ energies
decrease as well. This can be easily understood by considering
the electron number within the well, which is defined as

n∗ ≡
∫ rc+�

rc

|�(r)|2 dr .

FIG. 2. (Color online) The 4s, 3d , and 4p one-electron wave
functions for different values of the well depth U0 (Ry).

FIG. 3. Absolute energies (Ry) and electron numbers n∗ for the
target states and ionization potential obtained from multiconfiguration
calculations as a function of depth of the confining well U0 (Ry).

In terms of this parameter, the additional contribution to the
total energy from the well is given by

�E = 〈�(r)|Vext(r)|�(r)〉 = −U0n
∗ ,

and thus the more rapid migration of the 4p state corresponds
to a greater increase in n∗ and therefore a greater decrease
in energy, resulting in a crossing of the 3d and 4p levels, as
shown in Fig. 3 and listed more quantitatively in Table II.
It is also found that the Ca 3p64s2 energy decreases more
rapidly than the Ca+ 3p64s energy due to the lowering by
the well of two 4s electronic energy contributions, and thus
the Ca(3p64s2) → Ca+(3p64s) ionization potential increases
with increasing well depth, as indicated in Fig. 3. This results
in a higher-energy photoionization threshold, further changing
the qualitative appearance of the photoionization cross section,
as discussed below.

B. Evolution of the photoionization cross section with
increasing well depth

R-matrix calculations for the free Ca atom case were
performed in both length and velocity gauges; since the two
results are in very good agreement, only the length results

TABLE II. Target state and ionization potential (IP) energies (Ry)
as a function of U0.

U0
2S 2D 2P IP

0.000 0.0000 0.1247 0.2302 0.4478
0.144 0.0000 0.1310 0.2142 0.4726
0.288 0.0000 0.1397 0.1931 0.5064
0.432 0.0000 0.1519 0.1669 0.5515
0.604 0.0000 0.1711 0.1315 0.6224
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FIG. 4. (Color online) Comparison between experiment [11] and
calculated photoionization cross sections for free Ca. The theoretical
cross sections are convoluted with a FWHM Gaussian of 0.01 eV to
simulate the experimental resolution.

are shown in Fig. 4, where they are seem to be in excellent
agreement with the available experimental results [11]. This
gives confidence that, using exactly the same theoretical
methodology, our calculations should also be reliable for
U0 > 0.

To investigate how the external well affects the photoioniza-
tion cross section, we have performed R-matrix calculations for
gradually increasing well depths 0 � U0 � 0.604 Ry. These
results are shown in Fig. 5, where it is clear that the confining
potential alters the cross section dramatically. Both length
and velocity results are shown and are in reasonably good
agreement with each other, a necessary (but not sufficient)
condition for calculational accuracy. With increasing depth
of the confining well, the ionization threshold increases in
energy. Consequently, significant oscillator strength moves
into the discrete region (note the reduction of cross-section
scale in Fig. 5 with increasing well depth). For example,

FIG. 5. (Color online) Calculated photoionization cross sections
for Ca confined with varying well depths in length and velocity
gauges.

FIG. 6. Total and partial oscillator strengths in the continuum
from threshold to a photon energy of 10.8 eV as a function of the well
depth.

the prominent 3d5p resonance, which appears just above
threshold for the free atom, is dramatically different for even
the shallowest well. Furthermore, the region between the two
excited 3d and 4p thresholds shrinks with increasing well
depth, and eventually, these two states cross, as noted above.
This narrowing is seen to affect the spectrum strongly; above
the crossing, which includes the two deepest wells, the overall
qualitative appearance of the cross section differs completely
from that for the cases below the level crossing. Thus, it is
evident that these doubly excited resonances are affected very
strongly by the confining potential well.

Going back to the point about the movement of oscillator
strength into the discrete region, with increasing well depth, it
is of interest to analyze this quantitatively. The total oscillator
strength in the continuum, in the region from threshold to a
photon energy of 10.8 eV, has been calculated, along with the
partial oscillator strengths to the excited 2P and 2D channels.
The results are shown in Fig. 6, where the loss of continuum
oscillator strength with increasing well depth is clear. The total
is seen to drop by roughly an order of magnitude from the free
atom to the deepest well case. This puts a quantitative face on
the qualitative observation made in connection with Fig. 5. Fur-
ther, the inset shows that the oscillator strengths of the 2P and
2D excited channels switch values when the crossing occurs.

To show in more detail what occurs with the advent of
the external potential well, the cross section for the deepest
well, U0 = 0.604 Ry, is shown in Fig. 7 with the resonances

FIG. 7. (Color online) Photoionization cross section for Ca
confined with U0 = 0.604 Ry.
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analyzed. Comparing these results to the free atom case shown
in Fig. 5 reveals that a number of resonances are missing
from the confined cross section. In addition, owing to the
level crossing of the 2P and 2D states of Ca+, the order of
the resonances changes completely, thereby explaining why
the cross sections for well depths above the crossing look so
different from those below the crossing.

We have also analyzed the computed resonances of Ca
confined in the deepest well (U0 = 0.604 Ry) using the QB

program [21,22]. Those resonances which have been identified
in the cross-section profile are shown in Fig. 7 and are to be
contrasted with the resonance identifications and orderings in
Fig. 4 for the free atom.

IV. CONCLUSION

The near-threshold photoionization cross section of a Ca
atom, located at the center of a spherical annular potential
well, is found to change significantly from the free Ca result.
The threshold energy increases with well depth, and much of
the oscillator strength, as well as the lower-energy resonances
themselves, moves into the discrete region. In addition, a level
crossing, as a function of well depth, changes the resonance

spectrum dramatically. Since there is nothing special about
Ca, it is likely that these effects will ensue for any atom whose
spectrum is dominated by doubly excited resonances, as well
as those with low-lying excited states of the ion.

These calculations were performed with a version of the
Belfast R-matrix code [12]. These same codes were also used
for the photoionization of free Ca, giving quite good agreement
with experiment: the most accurate theoretical results on
the near-threshold photoionization of free Ca reported to
date. The advantage of using the R-matrix methodology for
studying the effects of confinement is that this method is
much more versatile than some of the other methods that
have been brought to bear on the problem; specifically, the
R-matrix method applies equally well to open- and closed-
shell atoms, and furthermore, both doubly excited states and
ionization plus excitation can be included. We are currently
at work on applying the R-matrix method to other confined
systems.
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