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Within the weak-field asymptotic theory, the dependence of the tunneling ionization rate of a molecule in
a static electric field on its orientation with respect to the field is determined by the structure factor for the
highest occupied molecular orbital (HOMO). An accurate determination of this factor, and hence the ionization
rate, requires accurate values of the HOMO in the asymptotic region. Techniques for calculating the structure
factors for molecules in the Hartree-Fock approximation are discussed. For diatomics, grid-based numerical
Hartree-Fock calculations which reproduce the correct asymptotic tail of the HOMO are possible. However,
for larger molecules, to solve the Hartree-Fock equations one should resort to basis-based approaches with too
rapidly decaying Gaussian basis functions. A systematic study of the possibility to reproduce the asymptotic tail
of the HOMO in calculations with Gaussian basis sets is presented. We find that polarization-consistent basis
sets with quadruple or pentuple-zeta quality greatly improve the tail of the HOMO, but only when used with
variationally optimized exponents. This methodology is validated by considering the CO molecule for which
reliable grid-based calculations can be performed. The optimized Gaussian basis sets are used to calculate the
structure factors for the triatomic molecules CO2 and OCS. The results are compared with available experimental
and theoretical results.
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I. INTRODUCTION

Tunneling ionization of atoms and molecules by intense
low-frequency laser pulses launches a variety of processes of
current interest in strong-field physics and attoscience [1,2].
Accurate tunneling ionization rates are naturally required
for the analysis of experimentally observable photoelectron
and harmonic generation spectra and retrieving the target
structure information (see, e.g., Refs. [3–9] and references
therein). This paper continues our previous work on the
weak-field asymptotic theory (WFAT) of tunneling ionization
of molecules [10,11], focusing on techniques for calculating
the molecular structure factors.

The theoretical description of ionization of an atomic target
by a laser pulse depends critically on the laser parameters. In
the adiabatic regime, that is, for sufficiently low frequency and
high intensity, ionization occurs by tunneling in a static field
equal to the momentary value of the laser field [12]. Treating
ionization in an oscillating laser field as that in a static
field is one of the approximations of the WFAT. The second
approximation is that the field amplitude is assumed to be much
smaller than the characteristic atomic field, which corresponds
to a deep tunneling regime. These conditions on the laser
parameters are specified below. The third approximation
concerns the description of the target and amounts to
the single-active-electron approximation. Under these
approximations, Smirnov and Chibisov developed a theory
of tunneling ionization of atoms [13]. For decades, the lack
of spherical symmetry of one-electron molecular potentials
hindered the extension of this theory to molecules. Such an
extension became possible in the framework of the method
of adiabatic expansion in parabolic coordinates [10,14].

The WFAT developed in Ref. [10] generalizes the results of
Ref. [13] to arbitrary molecules. An application of this theory
to the analysis of experimental photoelectron spectra of C2H4

was demonstrated in Ref. [15]. We mention that another
approach to the theory of tunneling ionization was developed
in Ref. [16] on the basis of the Keldysh approximation [17].
Other recent theoretical developments for molecules include
the semiclassical propagation method [18,19] and a mixed
momentum and coordinate space approach [20].

Within the WFAT, the ionization rate as a function of
field F is given by an exponential factor multiplied by an
asymptotic series in powers of F [10]. The exponential factor
rapidly decays as the binding energy of the active orbital
grows, so the dominant contribution to tunneling ionization
comes from the highest occupied molecular orbital (HOMO).
In the leading-order approximation, the dependence of the
ionization rate on F factorizes from the dependence on the
orientation of the molecule with respect to the field [10].
The field-dependent factor is a simple function of F ; the
dependence on the orientation is represented by the structure
factor for the HOMO. The structure factor does not depend on
F and is a property of the HOMO like other related properties,
such as polarizability and dipole moment. A peculiarity of this
property is that it is determined by the asymptotic behavior of
the HOMO at large distances from the molecule. The structure
factor for the molecule under investigation is necessary to
implement the WFAT. The issue of calculating the molecular
structure factors has already been addressed in Ref. [11].
This issue may seem to be technical, but the correspond-
ing techniques must be developed to make the application
of the WFAT to particular molecules of current interest
possible.
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The structure factors can be calculated by quantum chem-
istry methods. The Hartree-Fock (HF) approximation is central
for quantum chemistry approaches to molecular electronic
structure calculations and is consistent with the present
single-active-electron approximation. There exist different
approaches to solving the HF equations numerically. For
diatomic molecules, the HF equations can be efficiently
solved by a finite-difference grid-based method employing
separation of variables in prolate spheroidal coordinates, as
implemented in the X2DHF program [21,22]. As shown in
Ref. [23], the asymptotic tail of HF orbitals can be accurately
obtained by this method. In Ref. [11], the X2DHF program
was used to calculate structure factors for the HOMO in a
number of diatomic molecules. However, for larger molecules
consisting of three and more atoms such a grid-based method
is generally not possible because of the difficulty in calculating
multicenter integrals. An expansion in a basis set with
relatively few basis functions centered on each atom presents
an attractive alternative and is indeed the standard approach in
modern computational quantum chemistry [24,25]. The basis
functions are chosen as Gaussians due to their convenience
for calculating multicenter integrals, and Gaussian basis-set
HF equations are solved in standard software packages such
as GAUSSIAN [26] and GAMESS [27]. Meanwhile, Gaussians
decay too rapidly in the asymptotic region. The present work
explores the possibility to use Gaussian basis-set quantum
chemistry methods to describe the asymptotic tail of the
HOMO and hence the possibility to accurately calculate the
structure factors for multiatomic molecules.

This paper is organized as follows. In Sec. II, we summarize
the formulas defining the tunneling ionization rate and struc-
ture factor within the WFAT [10,11]. In Sec. III, we present and
discuss our results. To introduce and validate our methodology,
we consider a diatomic molecule, CO, for which the structure
factors obtained by the grid-based numerical HF [21,22] and
the Gaussian basis set [26,27] methods can be compared. Then
we investigate the dependence of the asymptotic form of the
HOMO on the ionization potential and describe a procedure
for extracting the structure factor. At the end of Sec. III, we
consider triatomic molecules, CO2 and OCS, for which a fairly
accurate description of the asymptotic tail of the HOMO is
obtained using a polarization-consistent Gaussian basis set
with optimized exponentials. The conclusions and an outlook
are given in Sec. IV.

II. WEAK-FIELD ASYMPTOTIC THEORY

In this section, we summarize the formulas needed to
evaluate the tunneling ionization rate from a given HOMO
within the WFAT [10]. We choose a geometry where the
external electric field F is always pointing in the positive
direction of the z axis of the laboratory frame, so F = F ez

with F > 0, while the molecule can be rotated with respect to
the laboratory frame. Let r and r′ = R̂r be the coordinates
of the active electron measured from the center of mass
of the molecule in the laboratory and a molecular frame,
respectively, where R̂ describes a rotation from the laboratory
to the molecular frame. To find the ionization rate, one needs
the field-free energy E0 < 0, orbital ψ0(r′), and dipole moment
μ′ of the HOMO in the molecular frame, where (atomic units

are used throughout)

μ′ = −
∫

ψ∗
0 (r′)r′ψ0(r′) dr′. (1)

The corresponding orbital and dipole moment in the laboratory
frame are ψ0(R̂r) and μ = R̂−1μ′. Here we consider only
linear molecules; similar formulas for the general case of
nonlinear molecules are summarized in Ref. [11]. For linear
molecules, the y ′ and z′ axes of the molecular frame are chosen
to coincide with the laboratory y axis and the molecular
symmetry axis, respectively. Then the orientation of the
molecule is determined by a single angle β ∈ [0,π ], that
between the positive directions of the z and z′ axes, and R̂

is a rotation about the y = y ′ axis by this angle.
The ionization rates of atoms and molecules in the single-

active-electron approximation can be calculated numerically
for arbitrary values of the field F by the method of adiabatic
expansion in parabolic coordinates (ξ,η,ϕ) [10,14,28]. For
weak fields satisfying F � Fc, where Fc is a boundary
between the tunneling and overbarrier regimes of ionization,
the problem can be treated analytically. The total ionization
rate in the weak-field limit is given by [10]

�(β) =
∞∑

nξ =0

∞∑
m=−∞

�nξ m(β) + O(�2), (2)

where �nξ m(β) is the partial rate for ionization into a channel
with parabolic quantum numbers nξ and m. The asymptotics
of �nξ m(β) for F → 0 has the form [10]

�nξ m(β) = |Gnξ m(β)|2Wnξ m(F )[1 + O(F )], (3)

where Gnξ m(β) is the structure factor,

Gnξ m(β) = lim
η→∞ Gnξ m(β,η), (4)

given by the asymptotic value of the structure function [29],

Gnξ m(β,η) = e−κμzη1+|m|/2−Z/κeκη/2

×
∫ ∞

0

∫ 2π

0
φnξ |m|(ξ )

e−imϕ

√
2π

ψ0(R̂r) dξ dϕ, (5)

and Wnξ m(F ) is the field factor,

Wnξ m(F ) = κ

2

(
4κ

2

F

)2Z/κ−2nξ −|m|−1

exp

(
−2κ

3

3F

)
. (6)

Here κ = √
2|E0|, Z is the charge in the Coulomb tail of the

one-electron potential supporting the orbital ψ0(r′), μz is the z

component of μ, and φnξ |m|(ξ ) is a parabolic channel function,

φnξ |m|(ξ ) = κ
1/2(κξ )|m|/2e−κξ/2

√
nξ !

(nξ + |m|)! L(|m|)
nξ

(κξ ),

(7)

where L(α)
n (x) are the generalized Laguerre polynomials [30].

As can be seen from Eq. (3), in the leading-order approxima-
tion the partial rate �nξ m(β) factorizes into two factors, one that
depends only on the orientation angle β and one that depends
only on the field F . The orientation-dependent structure factor
Gnξ m(β) is the most important characteristic which should be
extracted from the HOMO. Its dependence on β is contained
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in μz and ψ0(R̂r) in Eq. (5). The field factor Wnξ m(F ) is a
simple function which depends on the molecule only via Z

and κ. We note that Gnξ m(β), and hence �nξ m(β), are invariant
under translations of the coordinate origin of the HOMO [10],
as they should be.

The different channels (nξ ,m) have different powers of
F in Eq. (6). In the leading-order approximation, when the
correction O(F ) in Eq. (3) is neglected, one can retain only
the dominant term in Eq. (2), which corresponds to the channel
with the smallest values of nξ and m. For linear molecules, the
unperturbed orbital ψ0(r′) is characterized by the projection
of the electronic angular momentum onto the molecular axis,
which is denoted by M . The energy E0 of the unperturbed state
does not depend on the sign of M , so the states with M 	= 0 are
degenerate. This degeneracy is removed by an arbitrarily weak
field, provided that the molecular axis does not coincide with
the direction of the field. The correct unperturbed states are
certain linear combinations of the two degenerate states [31].
In the present geometry, the molecular axis is rotated by an
angle β in the xz plane of the laboratory frame. Then one of
these states is even with respect to the xz plane, and the other
is odd. The states with M = 0 (σ states) belong to the class
of even states. For even states, the dominant channel is (0,0),
and we have

�even(β) ≈ |G00(β)|2W00(F ). (8)

For odd states G00(β) = 0; hence the dominant channels are
(0, ± 1), and we have

�odd(β) ≈ 2|G01(β)|2W01(F ). (9)

In the particular case of states with |M| = 1 (π states), the
orbital ψ0(r′) has a nodal plane. For β = 0, the nodal plane of
an even state coincides with the yz plane, and the nodal plane
of an odd state coincides with the xz plane. In this case it is
convenient to identify the states by the nodal plane and denote
even and odd states by (yz) and (xz), respectively. We will use
this notation in Sec. III in the discussion of the results.

The structure factor Gnξ m(β) for the dominant channel
as a function of the orientation angle β can be expanded in
terms of an appropriate set of standard functions. This helps to
compress the information needed for applications and facilitate
its exchange between researchers. It is convenient to present
Gnξ m(β) in the form [11]

Gnξ m(β) = ip
∞∑

l=|M−m|
C(l)

nξ m
�l|M−m|(β), (10)

where �lm(β) is given in terms of the associated Legendre
polynomials P m

l (x) by

�lm(β) =
√

(2l + 1)(l − m)!

2(l + m)!
P m

l (cos β). (11)

For even states M � 0, m � 0, and p = 0; for odd states
M � 1, m � 1 [from Gnξ 0(β) = 0 we have C

(l)
nξ 0 = 0], and

p = 1. The structure coefficients C(l)
nξ m

in expansion (10) can
be tabulated for the molecules under investigation and then
used for calculating the structure factors Gnξ m(β). Given
these coefficients, the application of the WFAT becomes
straightforward.

In the preceding discussion, we assumed that the molecule
is oriented at a fixed angle β with respect to the field. Although
in this work we focus on orientation-resolved structure factors
and rates, it is worthwhile to briefly discuss how to apply
the WFAT under realistic experimental conditions, where the
orientation is never perfect [32]. The ionization rate for a given
orientation distribution P (β) can be obtained by averaging
Eq. (2) over P (β). We thus find from Eqs. (8) and (9)

〈�even〉 ≈ 〈|G00|2〉W00(F ), 〈�odd〉 ≈ 2〈|G01|2〉W01(F ),

(12)

where

〈|Gnξ m|2〉 =
∫ π

0
|Gnξ m(β)|2P (β) sin βdβ. (13)

The orientation-averaged structure factor (13) for the dominant
channel describes tunneling from the HOMO of a partially
oriented molecule. This is a characteristic of the molecule that
can be determined under realistic experimental conditions.

Finally, we specify the region in the space of laser
parameters where the WFAT applies. This region is defined
by

F � Fc ≈ κ
4

8|2Z − κ(m + 1)| , ω � F 2

κ
4
. (14)

The first of these conditions guarantees that the laser field
amplitude F is much smaller than the critical field Fc for
a given channel (0,m), and hence the correction term O(F )
in Eq. (3) can be neglected [10,28]. The second condition
justifies the adiabatic approximation [12], when ionization in
an oscillating laser field F (t) with frequency ω can be treated
as that in a static field equal to the momentary value of F (t).

III. RESULTS AND DISCUSSION

To implement the WFAT, the asymptotic behavior of the
HOMO ψ0(R̂r) at large η is needed [see Eqs. (4) and (5)].
We first consider the diatomic CO molecule where grid-
based numerical HF (X2DHF) calculations can be performed
[21,22]. These calculations are accurate to large η, and the
quality of basis-set quantum chemistry calculations using,
e.g., GAUSSIAN [26] or GAMESS [27] can be investigated. We
then consider the dependence of the asymptotic form on the
ionization potential using the examples of atomic He and Be.
Then the extraction procedure for obtaining the structure factor
is described. Finally, the results for the orientation dependence
of the structure factors are shown for CO2 and OCS. These
latter molecules are considered due to the strong current
interest stimulated by the existence of conflicting experimental
and theoretical data.

A. Convergence studies for the CO molecule

In this section, we use the CO molecule as an example to
explore the possibilities for HF calculations performed with
a Gaussian basis set to reproduce the asymptotic part of the
HOMO. The HOMO of CO has σ symmetry, and according
to the discussion in Sec. II, the dominating channel is (0,0).
As an accurate reference for the study, we use the results of
X2DHF. For CO we use R = 2.132178 a.u., and the X2DHF
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FIG. 1. (Color online) The value of the structure function
G00(β = 180◦,η) [see Eq. (5)] as a function of η for the CO
HOMO of σ symmetry. The solid blue reference curve uses the
HOMO obtained by X2DHF [21,22]. The dashed red curve uses
the HOMO from GAUSSIAN [26] with the standard TZV basis set.
The dotted black curve uses the HOMO from GAUSSIAN with the
standard aug-cc-pVTZ basis set. The nuclei are fixed at the distance
R = 2.132178 a.u.

calculations give the HOMO energy E0 = −0.55493 a.u., the
total energy −112.7908947 a.u., and the dipole moment of the
HOMO μ′ = 1.71735 a.u., pointing from the C end to the O
end in the center of mass.

In the discussion of the results, we first focus on the
structure function Gnξ m(β,η) defined by Eq. (5). The qual-
ity of the asymptotic part of the HOMO obtained using
standard Gaussian basis sets is shown in Fig. 1. Figure 1
contains the results for the G00(β = 180◦,η) function based
on HOMOs obtained in three different ways: with X2DHF

and by expansion in a triple-zeta valence (TZV) [33] and an
augmented correlation-consistent triple-zeta (aug-cc-pVTZ)
[34,35] standard Gaussian basis set as provided by the built-in
basis sets in, e.g., GAUSSIAN and GAMESS [26,27]. It is seen that
the TZV and aug-cc-pVTZ follow the X2DHF result only up to
η � 5 a.u. The TZV result drops off rapidly and approaches a
vanishing value for G00 which is far from the accurate result
of the X2DHF calculation. The rapidly vanishing value for G00

reflects that Gaussian basis functions fall off too rapidly and
are unable to describe the asymptotic part of the HOMO. The
aug-cc-pVTZ result, on the other hand, provides G00 values
that oscillates around the reference value up to η � 10 a.u.

The requirement for an accurate representation of the
asymptotic region of the HOMO (and the aug-cc-pVTZ result)
suggests that basis sets augmented with diffuse functions
should be used. The polarization-consistent basis sets have
been optimized for density-functional theory, which have very
similar basis-set requirements as HF, and are available in
five different quality levels from (unpolarized) double-zeta
to (polarized) pentuple-zeta quality (pc-n, n = 0–4) [36] and
with the option of augmenting with diffuse functions (aug-pc-
n) [37]. It has been shown that these basis sets are capable
of reproducing grid-based numerical HF energies for diatomic
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FIG. 2. (Color online) The value of the structure function
G00(β = 180◦,η) [see Eq. (5)] for the CO HOMO of σ symmetry.
The solid blue reference curve uses the HOMO obtained by X2DHF

[21,22]. The dashed red curve uses the HOMO from GAUSSIAN [26]
with an aug-pc-1 basis set. The dotted green curve uses the HOMO
from GAUSSIAN with a aug-pc-2 basis set. The solid magenta curve
with plus signs uses the HOMO from GAUSSIAN with a aug-pc-3
basis set. The solid black curve uses the HOMO from GAUSSIAN

with a aug-pc-4 basis set. The nuclei are fixed at the distance R =
2.132178 a.u.

systems to micro-Hartree accuracy [38]. It was thus anticipated
that they should provide a systematic way of approaching the
X2DHF results.

In the following calculations, all basis sets have been used
in their uncontracted forms. Analytical gradients of the HF
energy with respect to basis-function exponents have been
calculated with the DALTON program [39]. Basis exponent op-
timizations have been done using a pseudo-Newton-Raphson
method. Starting values were taken from the standard pc-n
basis sets [36].

The results using the uncontracted versions of the aug-pc-n
(n = 1,2,3,4) basis sets are shown in Fig. 2. While there
clearly is a systematic improvement as the basis-set quality
is increased, it is also evident that erratic oscillations occur
for large η values for all the basis sets. The regular (unaug-
mented) pc-n basis sets also display oscillations, although
not as pronounced (not shown). The origin of this oscillatory
behavior was traced to the fact that the molecular orbitals are
expanded in a basis set with fixed (predetermined) exponent
values for each basis function optimized for the individual
atoms. The nonconvergent nature of the G00 value as the
size of the basis set is increased is unusual, as essentially all
contemporary electronic structure calculations using Gaussian
basis functions employ basis sets with fixed exponent values,
and it is generally agreed that this provides a robust method
for calculating a large variety of properties [24,25]. For this
particular property, however, the use of standard basis sets
causes problems, which can be understood as follows. For
a given quality basis set, the resulting HF wave function
approximates the grid-based numerical HF result to a given
accuracy, which can be quantified by how close the total energy
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is to the value of the latter approach. A basis set capable of
reproducing the grid-based HF energy to within (say) 10−3 a.u.
will provide a correspondingly accurate wave function in
the region where the wave function contributes at least by
10−3 a.u. in terms of energy, which corresponds to an η value
of (say) 10 a.u. The variational procedure for determining
the basis-function coefficients will ensure the optimum linear
combinations of all basis functions in this energy-important
region. The asymptotic behavior is determined exclusively by
the most diffuse basis functions (smallest exponents), but their
coefficients are determined by their energy contribution in
the energy-important core-valence region. Any fixed exponent
basis set will be (slightly) nonoptimum for the particular
molecular system, and the most diffuse basis functions may
thus serve to patch deficiencies in the remaining basis set in
the core-valence region, and this leads to erratic behavior in
the asymptotic region.

The above analysis suggests that it should be possible to
achieve a stable and systematic convergence of the structure
function G00(β,η) to the grid-based numerical HF result by
employing a sequence of basis sets where all exponents are
fully (variationally) optimized with respect to the total energy.
This procedure is illustrated in Fig. 3. In addition to results
from exponent-optimized versions of the pc-n (n = 1,2,3,4)
basis sets, we have included results from a pc-5-type basis
set which is 22s14p8d5f 3g2h1i in composition [38]. The
total energies are 7 × 10−2, 4 × 10−3, 1 × 10−4, 9 × 10−6,
and 1 × 10−7 a.u. above the X2DHF value, respectively. As
the basis set approaches the grid-based numerical HF limit
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FIG. 3. (Color online) The value of the structure function
G00(β = 180◦,η) [see Eq. (5)] as a function of η for the CO
HOMO of σ symmetry. The solid blue reference curve uses the
HOMO obtained by X2DHF [21,22]. The dashed red curve uses
the HOMO from GAUSSIAN [26] with an optimized pc-1 basis set.
The dotted green curve uses the HOMO from GAUSSIAN with an
optimized pc-2 basis set. The solid magenta curve with plus signs
uses the HOMO from GAUSSIAN with an optimized pc-3 basis set.
The dot-dashed black curve uses the HOMO from GAUSSIAN with an
optimized pc-4 basis set. The solid black curve uses the HOMO from
GAUSSIAN with an optimized pc-5 basis set. The nuclei are fixed at
the distance R = 2.132178 a.u.

in an energetic sense, the outermost basis function exponents
gradually become smaller. This reflects that a closer agreement
with the grid-based numerical HF energy requires a better
representation of the orbital at larger distances. There is thus
a clear correlation between the energy convergence and how
far out the asymptotic region of the wave function is accurate.
Furthermore, with the optimized exponents the prediction of
the structure factor at larger η decays smoothly to zero, rather
than displaying erratic oscillations. The former just reflects
that Gaussian functions decay too fast compared to the correct
exponential asymptotic behavior displayed by the grid-based
approach.

B. Dependence on ionization potential

The asymptotic region of the HOMO should display an
exponential decay. Basis sets that produce the same accuracy
in terms of energy relative to the HF limit for systems with
different ionization potentials should thus display an accurate
large-η behavior to different maximum η values. This is shown
in Figs. 4 and 5 for the He and Be atoms with four different
optimized basis sets producing energies within 10−2, 10−4,
10−6, and 10−8 a.u. of the corresponding HF limits. The
HOMO energies are −0.918 a.u. and −0.309 a.u., and Eq. (5)
indicates that the maximum η value for a given energy accuracy
should be related by a factor

√
0.918/0.309 � 1.7. This is

indeed observed in Figs. 4 and 5.
The combination of Figs. 3, 4, and 5 shows that the use

of basis sets that are fully optimized with respect to basis-
function exponents produces reliable behavior for the structure
factor out to a well-defined maximum η value. The use of
standard fixed exponent basis sets will, in general, produce
unpredictable results at moderate to large η. The performance
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FIG. 4. (Color online) The value of the structure function G00(η)
[see Eq. (5)] as a function of η for the 1s electron in the He atom.
The solid blue curve uses the HOMO from GAUSSIAN [26] with a
basis with 5 s orbitals. The dashed red curve uses the HOMO from
GAUSSIAN with a basis with 9 s orbitals. The dotted green curve uses
the HOMO from GAUSSIAN with a basis with 13 s orbitals. The solid
black curve uses the HOMO from GAUSSIAN with a basis with 18 s

orbitals.
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FIG. 5. (Color online) The value of the structure function G00(η)
[see Eq. (5)] as a function of η for the 2s electron in the Be atom.
The solid blue curve uses the HOMO from GAUSSIAN [26] with a
basis with 8 s orbitals. The dashed red curve uses the HOMO from
GAUSSIAN with a basis with 12 s orbitals. The dotted green curve uses
the HOMO from GAUSSIAN with a basis with 18 s orbitals. The solid
black curve uses the HOMO from GAUSSIAN with a basis with 24 s

orbitals.

for a given system will depend on how close the standard
exponent values are to the fully optimized ones, but since
these are system dependent, the same basis set will produce
results of different quality for different systems. Employing
basis sets with molecule-specific optimized exponents will
secure a monotonic improvement with increasing basis size.
In the following we will use the most accurate pc-n (n = 4,5)
results to extract the value of the structure factor.

C. Extraction of the structure factor and results for CO

In this section, the procedure for the extraction of the
structure factor is described using the example of CO where
accurate grid-based X2DHF results are available. We fix β

and expand the structure function Gnξ m(β,η) of Eq. (5) as
a polynomial in 1/η and consider the asymptotic expansion

Gnξ m(β,η) = Gnξ m(β) +
n∑

j=1

c
(nξ m)
j (β)

(
1

η

)j

, (15)

where the leading-order constant term Gnξ m(β) is the structure
factor of Eq. (4) for the orientation β of the molecule with
respect to the field. It is seen from Figs. 1–3 that there is
an extended η region with a stable value of G00(β,η) for
the X2DHF results, and we choose 20 sampling points in the
range of η ∈ [20; 70] a.u. to fit the structure function with the
asymptotic polynomial expansion in Eq. (15) for n = 1, . . . ,7.
The result of this procedure is shown in Fig. 6 by the flat curve
with circles. The point corresponding to n = 0 is obtained
as the G00 value at η = 70 a.u. The minor variation in the
result for G00(β,η) with changing n is an indication of a
well-converged result.

Turning to the results obtained using the HOMO from the
Gaussian basis-set calculation, we see from Fig. 3 that even
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n

 X2DHF
 PC4-opt
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FIG. 6. (Color online) The dependence of the structure factor
G00(β) [see Eq. (4)] on the method used to obtain the HOMO of CO
(X2DHF [21,22], circles; GAUSSIAN [26] with an optimized pc-4 basis
set, squares; and an optimized pc-5, diamonds) and the order n of the
polynomial in 1/η [see Eq. (15)] in the asymptotic expansion.

the most accurate basis set only covers an η range up to 15 a.u.
before a drop-off related to the Gaussian basis occurs. We
illustrate the associated problems considering only the most
accurate pc-4 and pc-5 basis sets. As indicated by the curves
in Fig. 3, for the pc-4 HOMO the range η ∈ [5; 10] a.u. can be
used, while for the pc-5 HOMO the range η ∈ [5; 15] a.u. can
be used for the fit to Eq. (15). As shown by the scattering of
the squares and diamonds in Fig. 6, the pc-4 and pc-5 results
obtained in this way are quite sensitive to the order of the
expansion, in contrast to the grid-based result. The problem
stems from the much narrower plateau-like interval available
for fitting. Based on the spirit of an asymptotic expansion,
we therefore choose to fit with only the constant term in the
expansion in Eq. (15) by taking the value of the structure
function G00(β,η) at the maximum η with coinciding pc-4
and pc-5 results. This procedure, i.e., taking the G00(β) value
at the maximum η where the pc-(n − 1) and the pc-n results
coincide, will be followed below for the HF calculations with
Gaussian basis sets for CO2 and OCS.

We now turn to a discussion of the orientation dependence
of the tunneling ionization rate using the outlined procedure.
In Fig. 7 we show the orientation dependence of the structure
factor |G00(β)|2 for the (0,0) channel for CO using the X2DHF

HOMO and the optimized pc-4 and pc-5 Gaussian basis sets.
The agreement between the pc-4 and pc-5 results is satisfying,
while there is a deviation at the quantitative level between these
and the X2DHF results. We find, as in previous studies [11], that
ionization occurs most likely when the field points from the
O end to the C end. This prediction of the WFAT is opposite
to what is observed experimentally [40–42]. The experiment
in Ref. [42], however, was carried out with a central wave
length of 790 nm and for peak intensities between 4 × 1014

and 2 × 1015 W/cm2. These laser parameters place the experi-
mental conditions outside the validity range of the WFAT [see
Eq. (14)], and the disagreement shows that it is necessary for
theory to consider higher-order effects in the field.

In Table I, we give the structure coefficients [see Eq. (10)]
obtained by the fitting procedure applied to the X2DHF HOMO
of CO. The values for C

(l)
00 are slightly different from the values

given in Table IV of Ref. [11], where the fitting was performed
including only up to linear order, n = 1 in the expansion of
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FIG. 7. (Color online) The dependence of the structure factor
on the angle β between the internuclear axis and the electric field
for the HOMO in CO of σ symmetry. The C (O) atom is on the
negative (positive) z axis in the molecular fixed frame. The solid black
curve uses the HOMO wave function obtained by X2DHF [21,22].
The dashed red curve uses the HOMO from GAUSSIAN [26] with an
optimized pc-4 basis set. The dot-dashed blue curve uses the HOMO
from GAUSSIAN with an optimized pc-5 basis set. The nuclei are fixed
at the distance R = 2.132178 a.u.

Eq. (15). The results for the orientation dependence of G00

with the present and the previous [11] structure coefficients
from the X2DHF calculation cannot be discriminated on the
scale of the figure, but the present set is more accurate and is
included for future reference.

D. Results for OCS and CO2

Having established that fully optimized Gaussian basis sets
are capable of reproducing the correct asymptotic behavior
of the HOMO to useful η values, we applied the same
methodology for the CO2 and OCS molecules, where exper-
imental data are available but where grid-based numerical
HF results are not. For these molecules we use the HF

TABLE I. Structure coefficients [see Eq. (10)] for the HOMO of
CO of σ symmetry (R = 2.132178 a.u., E0 = −0.55493 a.u., μ′ =
1.72735 a.u.) obtained from the X2DHF HOMO [21,22]. a[b] = ab.

l C
(l)
00

0 3.347
1 −1.002
2 0.821
3 −0.458
4 0.169
5 −0.479[−1]
6 0.113[−1]
7 −0.227[−2]
8 0.398[−3]
9 −0.620[−4]
10 0.866[−5]
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FIG. 8. (Color online) The value of the structure function
G00(β,η) [see Eq. (5)] as a function of η for the CO2(yz) HOMO of
πg symmetry and for three different orientations β of the internuclear
axis with respect to the direction of the electric field using the HOMO
obtained by GAUSSIAN [26] with the optimized pc-4 basis set. The
distance from C to O is R = 2.19605 a.u.

results with the optimized exponents in the pc-4 basis set.
For CO2 (distance from C to O R = 2.19605 a.u.) the HOMO
energy is E0 = −0.54490 a.u. For OCS (z′[O] = −3.19847
a.u., z′[C] = −0.98957 a.u., z′[S] = 1.97032 a.u.) the HOMO
energy is E0 = −0.42178 a.u., and the dipole of the HOMO
is μ′ = −0.88069 a.u. and points from the S end to the O end,
in agreement with previous findings [43–45].

Figures 8 and 9 show the G00(β,η) function for different
values of β for the CO2(yz) and the OCS(yz) orbitals of πg

and π symmetry, respectively. The value used for the structure
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1 β=π/4
β=π/2
β=3π/4

OCS(yz)

G
00
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FIG. 9. (Color online) The value of the structure function
G00(β,η) [see Eq. (5)] as a function of η for the OCS(yz) HOMO of
π symmetry and for three different orientations β of the internuclear
axis with respect to the direction of the electric field using the
HOMO obtained by GAUSSIAN [26] with the optimized pc-4 basis
set. The O (S) atom is on the negative (positive) z′ axis in the
molecular fixed frame. z′[O] = −3.19847 a.u., z′[C] = −0.98957
a.u., z′[S] = 1.97032 a.u.
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TABLE II. Structure coefficients for the HOMO of CO2 of πg symmetry (distance from C to O R = 2.19605 a.u., E0 = −0.54490 a.u.)
and for the HOMO of OCS of π symmetry at z′[O] = −3.19847 a.u., z′[C] = −0.98957 a.u., and z′[S] = 1.97032 a.u. (E0 = −0.42178 a.u.,
μ′ = −0.88069 a.u.) obtained using GAUSSIAN [26] with an optimized pc-4 basis set. a[b] = ab.

l C
(l)
00 [CO2(yz)] C

(l)
01 [CO2(xz)] C

(l)
00 [OCS(yz)] C

(l)
01 [OCS(xz)]

0 −0.762
1 4.419 −1.093 3.038
2 2.658 1.470 1.471
3 0.518 0.690 0.757
4 0.294 0.352 0.268
5 0.202[−1] 0.123 0.759[−1]
6 0.116[−1] 0.340[−1] 0.164[−1]
7 −0.696[−4] 0.749[−2] 0.147[−2]
8 0.156[−3] 0.105[−2]
9 −0.317[−3]

factor is obtained as discussed in connection with Fig. 6, and
the values for the structure coefficients are given in Table II.
Based on the comparison between the X2DHF and the basis-set
HF results in the CO case, we estimate the structure factor for
these triatomics to have an error of ∼10%, which is a signifi-
cant improvement compared to existing technology using HF
calculations and conventional TZV or aug-cc-pVTZ basis sets.

Figure 10 shows the dependence of the structure factor
for CO2 in the dominating (0,0) channel for the CO2(yz)
HOMO and in the dominating (0,1) channel for the CO2(xz)
HOMO. The double-peaked structure in the dominating (0,0)
channel is characteristic for a molecule with π symmetry.
The minima at β = {0◦,180◦} and β = 90◦ in this channel
are due to nodal planes along and perpendicular to the
molecular axis, respectively. Note that in order to obtain the
orientation-dependent channel-specific tunneling ionization
rate of Eq. (3), the structure factors in Fig. 10 (and in Fig. 11
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2
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 m=1, CO
2
(xz)  (×0.2)

FIG. 10. (Color online) The dependence of the structure factors
on the angle β between the internuclear axis and the electric field
for the two degenerate HOMOs in CO2 of πg symmetry. CO2(yz)
[CO2(xz)] denotes that the nodal plane of the π orbital is in the yz

(xz) plane. Solid black curve, m = 0; dashed red curve, m = 1. The
distance from C to O is R = 2.19605 a.u.

below) should be multiplied by the field factor W0m(F ) of
Eq. (6). Since W01(F ) = [F/(4κ2)]W00(F ) and the factor
F/(4κ2) � 1 in the weak-field limit for typical values of κ ,
this multiplication results in a suppression of �01 compared to
�00 for nonvanishing G00 (see also the discussion in Ref. [11]).

The CO2 molecule has attracted attention since experiments
appeared showing that the rate peaks at β = 45◦ [46,47].
In contrast the molecular Ammosov-Delone-Krainov (MO-
ADK) result [48] predicted a peak at around �25◦ [46] or
β � 33◦ [49–52] depending on the procedure used for the
extraction of the asymptotic properties used for the evaluation
of the tunneling rate, while a tunneling theory based on a mixed
position and momentum space approach predicts β � 45◦
[20]. Another approach to the tunneling problem based on
semiclassical propagation of the HOMO from a surface and to
large distances was considered in Refs. [18,19] and provided
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 m=1, OCS(xz)  (×0.1)

FIG. 11. (Color online) The dependence of the structure factors
on the angle β between the internuclear axis and the electric field
for the two degenerate HOMOs in OCS of πg symmetry. OCS(yz)
[OCS(xz)] denotes that the nodal plane of the π orbital is in the yz (xz)
plane. Solid black curve, m = 0; dashed red curve, m = 1. The O (S)
atom is on the negative (positive) z′ axis in the molecular fixed frame.
z′[O] = −3.19847 a.u., z′[C] = −0.98957 a.u., z′[S] = 1.97032 a.u.
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a maximum in the rate for CO2 for β � 25◦–30◦ [19]. In
Ref. [11], using an aug-cc-pVTZ basis, a maximum in the rate
was found at ∼32◦. With the current pc-4 basis set giving an
improved description of the asymptotic form of the HOMO,
we find a maximum in the rate at �39◦. This variation reflects
the sensitivity of the WFAT to the quality of the asymptotic
form of the HOMO. We note that CO2 has also been consid-
ered theoretically by solving the time-dependent Schrödinger
equation (TDSE) in various approximations, and also in this
case no clear conclusion can be drawn: TDSE results within the
single-active-electron approximation predicted β � 45◦ [53],
multiple-orbital TDSE calculations predicted β � 40◦ [54],
the multielectron TDSE approach predicted β � 35◦ [55],
and a time-dependent density-functional theory calculation
predicted β � 40◦ [56]. Recent experimental results indicate
that contributions from lower-lying orbitals may be involved
[57].

Figure 11 shows the orientation dependence of the structure
factor in the dominating channel for OCS(yz) [(0,0) channel]
and for OCS(xz) [(0,1) channel] obtained with the pc-4 basis
set. Focusing on the main contribution to the rate [the (0,0)
channel], we see three minima at β = 0◦,61◦, and 180◦. These
are due to the nodal plane along the internuclear distance and
a nodal cone at around 61◦ for the HOMO of π symmetry.
The maximum in the signal is at �27◦, where the dipole of
the HOMO (pointing from the S end to the O end) has a
component antiparallel to the direction of the field, and the
ionization potential of the HOMO is decreased by the Stark
shift, −μ · F. For the orientations with β ∈ [90◦; 180◦] the
dipole of the HOMO has a component parallel with the field,
and the ionization potential is increased by the Stark shift.
The result in Fig. 11 shows that the OCS molecule ionizes
most readily when the dipole of the HOMO has a component
antiparallel to the field direction, i.e., when the electron that
tunnels leaves from the O end in the direction opposite to
the field. This finding is consistent with previous combined
experimental and theoretical work on strong-field ionization of
OCS in circularly polarized fields [43,44,58]. For strong-field
ionization by linearly polarized pulses the experimental result
for the alignment-dependent ionization yield in OCS shows
a maximum when the ionizing field is perpendicular to the
internuclear axis [45]. Figure 11 shows that this finding
contrasts the prediction of the WFAT. One possible reason
for this difference lies in the role of excited states. As
discussed in Ref. [45], it is expected that excited states are

more readily populated in linearly polarized fields than in
circularly polarized fields. Ionization taking place through
excited states will modify the orientation-dependent yield,
as seen, e.g., in TDSE calculations within the single-active-
electron approximation in CO2 [53]. Disagreement between
photoelectron angular distributions and theory for strong-field
ionization of the CS2 molecule in linearly polarized fields was
previously attributed to the participation of excited states in
the ionization dynamics [59].

IV. CONCLUSION AND OUTLOOK

We find that it is possible to calculate the asymptotic
behavior of the wave function in the form of the HOMO for HF
wave functions with Gaussian basis functions for expanding
the molecular orbitals, such that a reasonable accuracy can be
obtained for extracting structure factors. A calibration study for
the CO molecule, where grid-based numerical HF results are
available, unexpectedly showed that it is necessary to employ
basis functions with exponents that are fully optimized with
respect to the energy in order to obtain stable results. By using
a hierarchical sequence of fully optimized basis sets, it is
possible to calculate structure factors for molecular systems in
general, as illustrated by the results for CO2 and OCS [60]. The
main computational problem for expanding the methodology
to larger systems is the necessity to fully optimize all exponents
of basis sets of at least pentuple-zeta quality, which is a
large nonlinear optimization problem. This challenge can,
however, be dealt with and the present work therefore outlines
an accurate methodology that can be extended to general
molecules. In particular the tunneling rates of the WFAT will be
useful for the description of the tunneling step in laser-induced
scattering spectroscopy of larger molecules where much less
is known about dynamics and correlations out of equilibrium.
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