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Spatial and temporal interference during the ionization of H by few-cycle XUV laser pulses
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We have investigated the ionization of H atoms by few-cycle XUV laser pulses, in particular the interference
between electronic wave packets emitted at different time moments (temporal interference), and the interference
between wave packets emitted at the same time, but following different paths (spatial interference). During the
spatial interference, under appropriate conditions, the holographic mapping (HM) of the target atom’s state is
achieved, which has the potential to become a powerful tool to study atomic structure. First, by using classical
trajectory Monte Carlo calculations, we have confirmed the existence of two distinct types of electron trajectories,
which contribute to the formation of the HM interference pattern. Then, by using ab initio quantum-mechanical
calculations, we have studied how the shape of the HM pattern is influenced by the laser pulse parameters. Finally,
we have identified the optimal laser pulse parameters for the observation of the HM interference in the case of
atomic species with an ionization potential close to 0.5 a.u.
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I. INTRODUCTION

With the recent development of laser technology, few-cycle
laser pulses are routinely produced for a wide range of photon
frequencies [1]. At high field intensities, when such a laser
pulse interacts with atomic systems, the dominant process is
the ionization (above-threshold, tunneling, or over-the-barrier
ionization, depending on the Keldysh parameter [2]). During
and after the ionization, secondary processes also occur, which
have a significant impact on the final momentum distribution
of the electrons. As discussed in detail by Bian et al. [3],
these are the result of interference between electronic wave
packets following different paths. From the numerous possible
scenarios [3], only two have a significant impact (measurable
in experiments) on the final momentum distribution of the free
electrons.

In the first scenario, electronic wave packets emitted
at different parts of the laser pulse (i.e., at different time
moments) interfere, leading to a fringe structure in the elec-
tron energy spectrum [4], consisting of circular interference
maxima and minima, which are perpendicular to the laser
polarization [4,5]. This process can be interpreted as a double-
(multi-) slit interference in time domain [4], and it was
studied in detail by several groups both theoretically [3,5–7]
and experimentally [4,8]. The structure of this interference
pattern can be understood and described accurately in a simple
semiclassical picture [3–5], where the electronic wave packets
with the same asymptotic momentum are emitted at different
time moments. These wave packets follow different paths
under the combined action of the external laser field and
of the core’s Coulomb potential accumulating different final
phases. In the continuum, when they are coherently added,
they amplify or cancel each other out, depending on their
relative phase, leading to a measurable [4,8] fringe pattern in
the electron spectrum.

In the second scenario, electronic wave packets emitted at
the same time (i.e., during the same quarter-pulse cycle) follow
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different paths, accumulating different final phases, leading to
a radial fringe structure in the electron spectra [3,5,9,10]. In
a simplistic picture [3,9,10], the radial fringe structure is a
result of the interference between the direct (i.e., unscattered)
and the scattered wave packets, where the direct wave packet
can be considered as a reference while the scattered wave
packet as a signal wave. In this picture, the interference
fringe structure can be interpreted as the holographic mapping
(HM) of the target atom’s or molecule’s state [10]. This
holographic imaging is strongly related to the laser-induced
electron diffraction (LIED) [11–15], where the electron wave
packets induced by the ultrashort laser pulse are used to
map the structure of the parent ion via electron wave packet
diffraction. From the final electron momentum distribution
resulting from LIED, both structural [11–14] and temporal [15]
information regarding the target atom or molecule can be
extracted using laborious procedures [13]. In contrast to LIED,
in the HM, in addition to the diffracted (scattered) electron
wave packet a reference wave packet is also present, and
the interference between these two leads to a more structured
electron momentum distribution with interference minima and
maxima. Since the location of these interference extrema is
strongly influenced by the short-range potential encoding the
structure of the target atom or molecule, the HM is a potentially
powerful tool to investigate the internal structure of atoms and
molecules.

All previous studies [3,9,10] investigated the HM interfer-
ence effects only in the near-IR and IR photon energy region
(i.e., for ω photon energies smaller than 0.12 a.u.), and in the
many-cycle regime. These studies were mainly focusing on
finding the laser pulse parameters for which the HM pattern
appears without investigating in detail how the shape of the
HM pattern is influenced by these parameters. Due to the
small photon energy and the many field cycles used in the
previous studies, the measured and calculated photoelectron
momentum distributions were narrow, mainly concentrated
around the Oz polarization axis of the laser field, which
allowed only the observation of a few interference extrema. For
a detailed study on the shape of the HM pattern as a function
of laser field parameters (important for its application as a
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tool to investigate atomic and molecular structures), a much
broader continuum electron distribution is needed. This can be
achieved by increasing the photon energy, and by considering
only few-cycle laser pulses. The use of few-cycle pulses, beside
ensuring a wide photoelectron momentum distribution, also
gives us the opportunity to control the electronic dynamics
through the carrier-envelope phase parameter, φ0. By choosing
the proper value for φ0, we have ensured that in the ionization
spectra, the HM pattern became the dominant feature, which
was not achievable with laser pulses used in the previous
studies.

Based on these motivations, in this work we theoretically
investigate the conditions under which the HM appears for
higher photon energies (0.2 a.u. < ω < 0.7 a.u.) during the
ionization of H by few-cycle laser pulses using classical and
quantum-mechanical models. The main goal of our study is to
probe how the shape of the HM interference fringes depends
on the laser field parameters, and to identify the relevant field
parameters determining their shape. A detailed understanding
of the HM for the H atom (i.e., for a simple Coulomb scat-
tering field) is crucial for future applications, since structural
information can be extracted from the HM of more complex
targets by comparing them with the hydrogenic HM.

The article is structured as follows. In Sec. II, we summarize
the theoretical methods used in the present studies, namely the
direct solution of the time-dependent Schrödinger equation
using the time-dependent close-coupling method (TDCC
model), the classical trajectory Monte Carlo method (CTMC
model), and the simple two-path model [10] for the HM.
In Sec. III, the obtained results are presented and discussed.
Snapshots on a typical time evolution of the studied H atom
found in an external few-cycle XUV laser field are presented
discussing the dominant processes as they appear. This is
followed by a study on how the HM interference pattern
is influenced by the laser pulse parameters (i.e., by photon
energy and field intensity). In the last section, final conclusions
are drawn and an outlook on the possible continuation of the
present work is presented.

Throughout the present article, atomic units are used.

II. THEORETICAL METHODS

In this section, the studied system, i.e., the hydrogen atom
in an external electromagnetic field, is presented along with
the classical and quantum-mechanical models used to describe
its time evolution. The Hamiltonian of this system is

Ĥ = p̂2

2m
+ V (�r) + �r · �E(t), (1)

where p̂2/2m is the kinetic energy operator of the electron,
V (�r) = −1/r is the Coulomb potential, and �r · �E(t) is the
interaction between the electron and the external laser field
expressed in length gauge in the framework of the dipole
approximation. Here the external laser field is characterized by
its electric component using a simple plane wave modulated
by a sine-square envelope function as follows:

�E(t) =
{

ε̂E0 sin2
(

πt
τ

)
sin(ωt + φ0) if t ∈ (0,τ ),

0 elsewhere,

FIG. 1. (Color online) The shape of the two-cycle, cosinelike
laser pulses used in our calculations, where T = 2π/ω is the period
of the carrier wave.

where ε̂ is the polarization of the laser field, ω is the frequency
of the carrier wave, φ0 is the carrier-envelope phase, and τ is
the pulse duration.

As discussed in [5], the φ0 carrier-envelope phase is the
critical parameter, which, through the shape of the few-cycle
laser pulse, determines which secondary process is dominant:
for a sinelike pulse, the intercycle interference is dominant,
while for a cosinelike pulse, the HM is dominant. Since the
main goal of the present work is to study the HM, cosinelike
two-cycle laser pulses (see Fig. 1) were used during the
calculations, for which the carrier-envelope phase is

φ0 = −ωτ

2
− π

2
.

A. The TDCC model

The time evolution of the hydrogen atom driven by the
above-presented two-cycle laser pulses is described by the
time-dependent Schrödinger equation

i
∂

∂t
�(�r,t) = Ĥ�(�r,t), (2)

where �(�r,t) is the electronic time-dependent wave func-
tion. Since the exact analytic solution of the Schrödinger
equation (2) is not known, in the present work its direct
numerical solution is performed using the well established
time-dependent close-coupling method [16]. In the TDCC
approach, the time-dependent wave function is expanded into
terms of spherical harmonics,

�(�r,t) =
∑
lm

Rlm(r,t)

r
Ylm(	r ). (3)

By substituting the expansion (3) into the Schrödinger equation
for the Rlm(r,t) radial wave functions, the following set of
coupled partial differential equations (PDEs) is obtained:

i
∂

∂t
Rlm(r,t)

=
∑
l′m′

(
Tlml′m′ + V CP

lml′m′ + V C
lml′m′ + V EL

lml′m′
)
Rl′m′(�r,t),

(4)
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where

Tlml′m′ = −δll′δmm′
∂2

∂r2

is the kinetic energy matrix element,

V CP
lml′m′ = δll′δmm′

l(l + 1)

r2

is the centrifugal potential energy matrix element,

V C
lml′m′ = −δll′δmm′

1

r

is the Coulomb potential matrix element, and

V EL
lml′m′ = rE(t)

√
3(2l + 1)

4π (2l′ + 1)
Cl′m′

10lmCl′0
10l0

is the electron-laser interaction matrix element, with C

being the Clebsch-Gordan coefficients. By using the TDCC
approach, the three-dimensional (3D) Schrödinger equation is
reduced to a finite set of coupled 1D PDEs, which is much
easier to handle than the original problem.

For the discretization of the radial coordinates, we have used
the finite-element discrete variable representation (FEDVR)
method [17,18]. In the present FEDVR approach, we have
divided the radial coordinate into finite elements (FEs),
and inside each FE the radial wave functions Rlm(r,t) are
represented on a local discrete variable representation (DVR)
basis. To ensure the continuity of the wave functions at
FE boundaries, the local DVR basis was built on top of
Gauss-Lobatto quadrature points.

For the temporal propagation of our system, i.e., for the
solution of (4), we have used the standard fourth-order Runge-
Kutta method. From the time-dependent wave functions, the
momentum distribution of the free electrons was obtained
by direct projection into exact continuum eigenstates of the
unperturbed Ĥ0 = p̂2/2m + V (�r) atomic Hamiltonian. At
the end of the laser pulse, this momentum distribution is
equivalent to the ionization probability density measurable
by experiments.

B. The CTMC model

In addition to the exact quantum-mechanical calculations
(TDCC model), classical stochastic calculations within the
framework of the classical trajectory Monte Carlo method
were performed in order to get a deeper insight into the
physics of the investigated processes. The CTMC method
is a nonperturbative method in which classical equations of
motion are solved numerically. A microcanonical ensemble
characterizes the initial state of the target from which indi-
vidual initial conditions of the target are taken. In the present
CTMC approach, Newton’s classical nonrelativistic equations
of motion are solved [19–21] numerically by integrating with
respect to time as an independent variable using the standard
Runge-Kutta method until the real exit channels are obtained.
For the ionization channel, the final energy and the scattering
angles (both polar and azimuthal) of the ionized electron
were recorded, from which the momentum distribution of the
electrons was calculated.

FIG. 2. (Color online) The direct and scattered electron trajecto-
ries in the two-path model.

C. Two-path model

In their recent publication [10], Huismans and co-workers
presented a simple, intuitive model to grasp the essence of
the HM. In this model, an electronic wave packet is formed
(via tunneling or over-the-barrier ionization) at a z0 distance
from the core, which is then returned by the laser field and
scattered on the core considered as a uniform point scatterer.
As indicated in Fig. 2, an electron from this wave packet with
final momentum �k may follow two different paths: a direct or
a scattered one. Within this simplified picture, the difference
between the phases accumulated by the electrons on the two
possible paths can be calculated analytically. Using this phase
difference the pattern resulting from the interference of the
two electron paths can be given as

I (�k) ∼ |1 + eiz0(k−kz)|, (5)

and it is plotted for z0 = 5 a.u. in Fig. 3. The beauty of this
model is that the interference pattern is influenced by only one
relevant parameter, z0. With increasing z0, the density of the
interference fringes also increases.

III. RESULTS AND DISCUSSIONS

To identify the processes occurring during the interaction
of few-cycle XUV pulses with the H atom, we have presented
snapshots on the time evolution of such a system in Fig. 4.

FIG. 3. (Color online) The two-path interference pattern for z0 =
5 a.u.
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FIG. 4. (Color online) Momentum distribution of the continuum electrons as a function of parallel and perpendicular momentum components
at different time moments indicated by the arrows on the laser pulse. Laser pulse parameters: ω = 0.4445 a.u., E0 = 1 a.u., and τ = 28.26 a.u.

The parameters of the laser pulse were chosen as follows: ω =
0.4445 a.u., E0 = 1 a.u., and τ = 4π/ω = 28.26 a.u. On each
snapshot the distribution of the continuum electrons is plotted
as a function of momentum components parallel (kpar) and
perpendicular (kper) to the laser pulse polarization. Above each
momentum distribution, the corresponding time is indicated by
an arrow on the laser pulse.

At the beginning of the laser pulse (t < 5 a.u.), the
continuum electrons show a dipolelike momentum distribution
[see Fig. 4(a)] indicating single-photon ionization. However,
by taking a look at Fig. 5, where the total ionization probability
is plotted as a function of time, we can conclude that the overall
contribution of this single-photon ionization is negligible.
Progressing further in time, we observe a sudden increase in the
strength of the laser field, which drives the large increase in the
total ionization probability observed between t = 5 and 10 a.u.
These photoelectrons are mainly emitted in the direction of
the laser field polarization, and they exhibit a strong forward-
backward asymmetry [see Fig. 4(b)], indicating that the
dominant ionization process is the tunneling and the over-the-
barrier ionization. This newly formed electronic wave packet
is moving under the combined action of the electric fields

generated by the parent ion and the laser pulse. First, under the
action of the strong laser field, it leaves the vicinity of the parent
ion [Fig. 4(c)], and when the direction of the laser field changes

FIG. 5. (Color online) The total ionization probability as a
function of time. Laser pulse parameters: ω = 0.4445 a.u., E0 = 1
a.u., and τ = 28.26 a.u.
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(t ∼ 10 a.u.), it is driven back to the core. Further on, this
returning wave packet is scattered by the parent ion, leading to
the HM interference pattern plotted in Fig. 4(d). This pattern is
similar in structure to the one obtained in the framework of the
simple two-path model shown in Fig. 2. Progressing further
in time, concentric rings of maxima and minima appear in the
ionization probability density [see Fig. 4(e)], which may be
identified as the temporal interference pattern. This pattern is
the result of the interference between electronic wave packets
emitted at different time moments under the action of the
laser field. At this moment, all important features of final
momentum distribution [Fig. 4(f)] are formed, and only minor
modifications in shape are present due to the further quiver
motion of the electrons and due to the electron recapture
at the end (t > 25 a.u.) of the laser pulse. In accordance
with the conclusions of Arbó et al. [5], in the case of our
cosine-shaped pulse, the spatial interference (the radial HM
pattern) is dominant over the temporal interference (concentric
circles), which is barely visible even on a logarithmic scale.

A. Temporal interference effects

As pointed out in the previous section, the concentric circles
of maxima and minima in Fig. 4(f) may be explained as
the result of the interference between the electronic wave
packets emitted at different time moments. In addition to this
qualitative explanation, a more detailed quantitative analysis
can be performed using a strong field approximation (SFA)
approach, where after the ionization the action of the Coulomb
potential is neglected. In this picture, the first electronic wave
packet is emitted at time moment t1 with �k1(t1) momentum,
while the second electronic wave packet is emitted at time
moment t2 with �k2(t2) momentum. To have constructive
or destructive interference between these wave packets, the
following equation has to be satisfied:

�k1(t2) = �k2(t2). (6)

Since in the SFA the Coulomb potential is neglected, we can
write that

�k(t2) − �k(t1) = −
∫ t2

t1

�E(t)dt = �A(t2) − �A(t1), (7)

where

�A(t) = −
∫ t

0

�E(x)dx,

thus the condition (6) for the interference reads

�k1(t1) + �A(t2) − �A(t1) = �k2(t2). (8)

The phase accumulated by the first wave packet in the time
interval [t1,t2] can be calculated as follows:

�φ[�k1(t1),t1,t2] =
∫ t2

t1

�k1(t)2

2
dt, (9)

FIG. 6. (Color online) Solid line: t2 > t1 values for which the
center of the interference circles is located at kz0 = −1.898 a.u.
Dashed line: t2 = t1 line.

which can be expressed as a function of the asymptotic
�k1(t = τ ) electron momentum using Eq. (7):

�φ[�k1(τ ),t1,t2] =
∫ t2

t1

[�k1(τ ) + �A(t)]2

2
dt. (10)

The pattern resulting from the temporal interference within the
framework of the SFA is described by

I (�k,t1,t2) ∼ |1 + ei�φ(�k,t1,t2)|, (11)

which is formed by concentric circles of interference maxima
and minima. By fitting the SFA interference pattern (11)
to the one obtained during the exact TDCC calculations
[Fig. 4(f)], we were able to calculate the t1 and t2 emission
times for the interfering electron wave packets as follows.
First, based on the TDCC results, we have fixed the center of
the interference circles at kz0 = −1.898 a.u., which gave us
a constraint for the t1 and t2 values shown in Fig. 6. From
these {t1,t2} values, we choose those for which the second
SFA minimum matched with the second TDCC minimum.
Applying this approach, we have found two pairs of {t1,t2}
values (see Fig. 7, upper part): {15.25,18.59}, {17.00,20.26},
which reproduced the TDCC interference rings. In the lower
part of Fig. 7 one can observe the SFA extrema rings (indicated
by white circles), which are in good agreement with TDCC
calculations. The small discrepancies which are present can be
explained by the fact that in the SFA approach, the influence
of the Coulomb potential on the final electron momenta
and on the �φ phase shift is neglected. From the obtained
{t1,t2} pairs, in agreement with the findings of [3], we can
conclude that the concentric circles observed in the momentum
distribution of the continuum electrons are the result of the
interference between the electronic wave packets emitted at
opposite half-cycles of the same laser field cycle.

B. Spatial interference effects

As discussed at the beginning of the present section, during
the return of the electronic wave packet formed via tunneling
and over-the-barrier ionization, scattering on the parent ion

013405-5
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FIG. 7. (Color online) SFA interference rings (white circles) on
top of the TDCC ionization probability density expressed as a function
of parallel and perpendicular momentum components. Laser pulse
parameters: ω = 0.4445 a.u., E0 = 1 a.u., and τ = 28.26 a.u. On
the upper figure, the “up arrows” indicate the {15.25,18.59} pairs of
{t1,t2} values, while the “down arrows” indicate the {17.00,20.26}
pairs of {t1,t2} values.

occurs. Under the right conditions, this scattering leads to the
formation of a radial interference pattern [see Fig. 4(d)], which
can be interpreted as the holographic mapping (HM) of the
parent ion’s state [3,9,10]. The formation of the HM pattern
can be explained qualitatively using the simple two-path model
of Huismans et al. [10] presented in Sec. II C. The basic
assumption of the two-path model is that during the scattering,
electrons may follow two different paths: one close to the
core (scattered path) and one far from the core (direct path).
To test the validity of this assumption, we have performed
CTMC calculations. With the exception of the interference
effects, a good overall agreement between the TDCC and
CTMC momentum distributions can be observed (see Fig. 8).
This general agreement allows us to perform detailed analysis
of the CTMC electron trajectories. We further suppose that
the quantum-mechanical electron dynamics is not far from
the classical one. From the calculated CTMC trajectories, we
have selected those which contribute to the formation of the
HM pattern, namely those where the electron is ionized at
the very beginning of the laser pulse and then returned to
the vicinity of the parent ion by the laser field. For each of
those trajectories, we have calculated the value of rmin, which
measures how close the electron drives by the core in the return
phase. If all selected trajectories are considered, the obtained
distribution of the rmin values is broad [see Fig. 9(a)] without
any characteristic feature. However, if we consider only those
CTMC trajectories where the asymptotic momentum is fixed

FIG. 8. (Color online) Ionization probability densities as a func-
tion of parallel and perpendicular momentum components obtained
in the framework of the CTMC and TDCC models. Laser pulse
parameters: ω = 0.4445 a.u., E0 = 1 a.u., and τ = 28.26 a.u.

(these trajectories interfere with each other), the distribution
of the rmin values completely changes. We will have two well
separated groups of trajectories [see Fig. 9(b)]: those with
small rmin considered to be scattered, and those with large rmin

considered to be direct. These findings confirm the assumption
of the two-path model, i.e., the existence of two distinct types
of electron paths during the scattering.

The main prediction of the two-path model is that the
density of the HM interference fringes is determined by
the value of z0, i.e., how far the formed electronic wave
packet departs from the parent ion. The value of z0 depends
mainly on the value of the average value of the electronic
wave packet’s velocity, and on how much time the wave
packet has to depart from the parent ion before it is returned.
According to the finding of Arbó et al. [22], in the bordering
region between tunneling and over-the-barrier ionization,
and in the over-the-barrier ionization regime, the average
velocity of the ionized electrons is mainly determined by
the �p momentum transfer from the half-cycle of the laser
pulse toward the electron. According to Eq. (5), with the

FIG. 9. (Color online) The distribution of the rmin values for (a)
all scattered CTMC trajectories, and (b) scattered CTMC trajectories
with 0.5 < pper < 0.7, and 0.7 < ppar < 0.9. The distributions were
normalized to 1.
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FIG. 10. (Color online) Ionization probability densities as a function of parallel and perpendicular momentum components at different field
intensities, and at fixed ω = 0.4445 a.u.; (a) E0 = 1 a.u.; (b) E0 = 0.75 a.u.; (c) E0 = 0.50 a.u.; (d) E0 = 0.25 a.u.; (e) E0 = 0.10 a.u.

increase of z0 the density of the HM interference fringes also
increases.

In the remaining part of the present work, in the framework
of the TDCC model, we will investigate how the value of z0

influences the HM interference pattern. To achieve this, first we
have fixed the laser field frequency at ω = 0.4445 a.u. and we
have decreased the field strength gradually from E0 = 1 a.u.
down to E0 = 0.1 a.u. By doing so, we have decreased the
average velocity of the wave packet, and implicitly of z0. The
momentum distribution of the free electrons obtained in the
framework of the TDCC model for the chosen intensities is
plotted in Fig. 10, where one can observe that by decreasing
the field intensity (i.e., decreasing z0), the density of the HM
interference fringes also decreases.

Further, we have fixed the velocity of the electronic wave
packet (by fixing the �p ∼ E0T momentum transfer from a
half-cycle of the laser field to the electron), and by increasing
the period of the laser pulse we have increased the time interval
available for the wave packet to propagate away from the
core. This inherently increases the z0 distance reached by the
wave packet before its return. As we have observed previously,
with increasing z0, the density of the HM interference pattern
also increased (see Fig. 11). This behavior is in good qual-
itative agreement with the prediction of the simple two-path
model.

In addition to this qualitative comparison between the
TDCC and the two-path models, we have also performed
quantitative investigations. Since in our TDCC approach in
each time moment we have access to the time-dependent
wave function, we were able to follow in detail the electronic
dynamics. For each set of laser pulse parameters, we have
calculated the maximum distance reached by free electrons

before their return. First, from the full wave function, we have
subtracted the contribution of the bound states (i.e., negative
energy eigenstates of the unperturbed Ĥ0 atomic Hamiltonian)
using the Gram-Schmidt orthogonalization procedure, obtain-
ing �free(�r,t). Then from �free(�r,t) we have calculated the
expected value of z(t):

z(t) = 〈�free(�r,t)|ẑ|�free(�r,t)〉
〈�free(�r,t)|�free(�r,t)〉 . (12)

Since the quiver motion of the electrons is along the polar-
ization of the laser field (along the Oz axis), from z(t) the
value of z0 can be extracted directly. The z0 values obtained
for the laser pulse parameters used in the present work are
presented in Table I. In most of the cases, these z0 values are
supporting the simple classical two-path picture [10] proposed
for the interpretation of the HM’s formation. However, the
z0 values corresponding to Figs. 10(d) and 10(e) are small,

TABLE I. The z0 values obtained for different laser pulse
parameters. The values are expressed in atomic units.

ω τ E0 z0

0.4445 28.26 1.0 8.13
0.4445 28.26 0.75 6.06
0.4445 28.26 0.50 4.02
0.4445 28.26 0.25 2.67
0.4445 28.26 0.10 1.47
0.666 75 18.84 0.5 5.74
0.4445 28.26 1.0 8.13
0.222 25 56.51 1.5 13.07
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FIG. 11. (Color online) Ionization probability densities as a function of parallel and perpendicular momentum components at different
field parameters: (a) ω = 0.666 75 a.u., τ = 18.84 a.u., E0 = 1.5 a.u.; (b) ω = 0.4445 a.u., τ = 28.26 a.u., E0 = 1 a.u.; (c) ω = 0.222 25 a.u.,
τ = 56.51 a.u., E0 = 0.50 a.u.

indicating that the formed free electronic wave packets do
not leave the immediate vicinity of the parent ion at low
intensities. This points out the limits of the HM’s classical
interpretation, since at these intensities the formation of
the spatially separated direct and scattered classical electron
trajectories is no longer possible. In this case, the formation of
the HM interference pattern can be interpreted as a result of
a complex population exchange between the bound and free
parts of the wave function during the rescattering, rather than
as a result of interference between the direct and scattered
electron trajectories.

For each z0 value, we have calculated the two-path HM
pattern using Eq. (5), and we have compared it with the
TDCC HM patterns shown in Figs. 10 and 11. To make
the comparison easier, in Fig. 12 we have plotted a cut from
these HM patterns along a fixed | �p| value for different laser
pulse parameters. We have normalized both the TDCC (thick
line) and the two-path (thin line) curves to their maximum
value. In agreement with the previous deduction, in Fig. 12
we demonstrate that with decreasing z0, the density of the
HM also decreases in both models. We note, however, that
significant discrepancies are also present. Considering any
set of laser field parameters, the TDCC model, compared to
the two-path model, predicts a much denser HM pattern. In
addition to this, the TDCC and two-path HM pattern also
differs in the relative height of the neighboring interference
maxima: In the two-path model, all the interference maxima
have the same height, while in the case of the TDCC model we
have a central maximum at θ = 0 followed by side maxima
with decreasing height. These discrepancies are present due
to the simplicity of the two-path model. In the two-path
model, the distribution of the electrons in the source wave
packet is considered to be uniform. This, together with the
core considered as a uniform point scatterer, leads to the HM
pattern, where each maximum has the same height. The denser
TDCC HM pattern can be explained by the fact that in the
two-path model, the phase accumulated by the electron on the
scattered path is underestimated due to the neglect of the core’s
Coulomb potential. In the framework of the TDCC model,
on the scattered path, the electron in the ingoing phase is
accelerated, while in the outgoing phase it is decelerated to its
initial velocity, leading to a larger average electron velocity and

implicitly to a larger accumulated electron phase compared to
the two-path model.

FIG. 12. (Color online) Ionization probability densities as func-
tion of electron ejection angle for fixed p electron momentum
values and for different laser pulse parameters: ω = 0.4446 a.u.,
τ = 28.26 a.u. (a) E0 = 1.0 a.u., (b) E0 = 0.75 a.u., (c) E0 = 0.5 a.u.,
(d) E0 = 0.25 a.u. The thick line denotes the TDCC, while the thin
line denotes the two-path model results. The θ electron ejection angle
is measured from the laser polarization (i.e., Oz) axis.
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IV. CONCLUSIONS AND OUTLOOK

In the present work, the ionization of the H atom induced
by two-cycle XUV laser pulses in the tunneling and over-the-
barrier regimes was studied. We have investigated in detail
the time evolution of our system, and we have identified
the dominant processes that were present. In addition to the
different ionization mechanisms, we have identified the inter-
ference between electronic wave packets emitted at different
time moments (temporal interference) and the interference
between wave packets emitted at the same time, but following
different paths (spatial interference). Since during the spatial
interference the superposition of a direct (unperturbed) and
a scattered (by the parent ion) wave occurs, the spatial
interference can be considered as the HM of the target atom.
Due to the fact that the HM can be an efficient tool to study
the atomic structure, a significant part of our recent work was
dedicated to studying the properties of the HM interference
pattern in the XUV region using ab initio quantum-mechanical
and classical calculations. Using CTMC simulation, we have
confirmed the existence of two different types of interfering
electron trajectories: the direct ones (far from the parent ion)
and the scattered ones (close to the core). By performing TDCC
calculations for different laser pulse parameters, in agreement
with the simple two-path model of Huismans et al. [10], we
have concluded that the shape of the HM interference pattern is
mainly determined by the z0 parameter, which measures how

far the electronic wave packet departed from the parent ion
before it was driven back by the laser field. We also found that
for an optimal HM pattern, which is not too dense, and also not
too sparse, we should have z0 = 10 ± 5 a.u. This paired with
the other condition for the formation of the HM pattern, i.e.,
the existence of a closely packed electronic wave packet in the
continuum (usually formed via tunneling or over-the-barrier
ionization) fixes the laser pulse parameters as a function of
ionization potential. For atoms with an ionization potential
close to 0.5 a.u. for the experimental observation of the HM
interference pattern, XUV laser pulses are required with a
peak intensity of the order of 1015 W cm−2. This is far from
the experimentally available intensities, but with the further
development of the pulse generation techniques, it may be
available in the near future.
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