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Long-range one-dimensional gravitational-like interaction in a neutral atomic cold gas
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A quasiresonant laser induces a long-range attractive force within a cloud of cold atoms. We take advantage of
this force to build in the laboratory a system of particles with a one-dimensional gravitational-like interaction, at
a fluid level of modeling. We give experimental evidences of such an interaction in a cold Strontium gas, studying
the density profile of the cloud, its size as a function of the number of atoms, and its breathing oscillations.
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I. INTRODUCTION

When interactions between the microscopic components
of a system act on a length scale comparable to the size of
the system, one may call them “long range”: for instance,
the inverse-square law of the gravitational force between two
point masses which is one of the most celebrated and oldest
laws in physics. In the many particles world, it is responsible
for dramatic collective effects such as the gravothermal
catastrophe [1] or the gravitational clustering which is the
main mechanism leading to the formation of the structure
of galaxies in the present universe. Beyond gravitation,
such long-range interactions are present in various physical
fields, either as fundamental or as effective interactions: in
plasma physics [2], two-dimensional (2D) fluid dynamics [3],
degenerated quantum gases [4], ion trapping [5], to cite only
these works. Long-range interactions deeply influence the
dynamical and thermodynamical properties of such systems.
At the thermodynamic equilibrium, long-range interactions are
at the origin of very peculiar properties, especially for attractive
systems: The specific heat may be negative; canonical (fixed
temperature) and microcanonical (fixed energy) ensembles are
not equivalent. These special features have been known for a
long time in the astrophysics community, in the context of
self-gravitating systems.

After the seminal works of Lynden-Bell and Wood [6] and
Thirring [7], many contributions followed on this subject (see,
for instance, [8] for a recent review), so that the equilibrium
characteristics of attractive long-range interacting systems are
theoretically well established. This situation is in striking
contrast with the experimental side of the problem: There
is currently no controllable experimental system exhibiting
the predicted peculiarities. There have been some proposals to
remedy this situation: O’Dell et al. [4] have suggested creating
an effective 1/r potential between atoms in a Bose-Einstein
condensate using off-resonant laser beams; more recently,
Dominguez et al. [9] have proposed taking advantage of
the capillary interactions between colloids to mimic two-
dimensional gravity, and Golestanian [10] has suggested

*julien.barre@unice.fr
†bruno.marcos@unice.fr
‡david.wilkowski@ntu.edu.sg

experiments using thermally driven colloids. However, these
proposals have not been implemented yet, and so far the dream
of a tabletop galaxy remains elusive.

The key results of this paper are to show some exper-
imental evidences of a gravitational-like interaction in a
quasi-one-dimensional (hereafter 1D) test systems consisting
in a cold gas of Strontium atoms in interaction with two
contra-propagating quasiresonant lasers. To our knowledge, it
is the first experimental realization of the 1D gravitational toy
model, which can be compared with the theoretical predictions
developed for more than 50 years by the astrophysical and
statistical physics community. In the stationary regime, the
cloud spatial distribution is in agreement with the well-known
sech2 law for the 1D self-gravitating gas at thermal equilibrium
[11]. Moreover, the long-range attractive nature of the force
is confirmed studying the cloud’s size dependency as a
function of the number of atoms. Out of equilibrium, the
breathing oscillation frequency increases with the strength
of the interaction as it should be for attractive interactions.
Quantitatively our experimental results are in agreement with
the expected 1/rα force with α = 0.

The paper is organized as follows. In Sec. II, we start
from the radiation pressure exerted by the lasers and explain
under which circumstances this force becomes analog to a 1D
gravitational force. We then make some definite theoretical
predictions on the size, density profile, and oscillation fre-
quency of the interacting atomic cloud. The experimental setup
is described in Sec. III. In the same section, the experimental
results are compared with the theory.

II. MODEL AND THEORETICAL PREDICTIONS

The gravitational potential U (r) between two particles
can be expressed through the Poisson equation ∇2U (r) =
ADGmδ(r), where G is the coupling constant, m the mass
of the particle, and AD a numerical constant which depends
on the dimension. The solution of the Poisson equation for
the interpaticle potential U (r) in three dimensions is the
well-known

U (r) = Gm

r
, (1)

and in 1D,

U (r) = Gm|r| (2)
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(for a review on 1D gravitational systems see, e.g., [12]). After
using a mean-field approach (see below), we will show that
such a potential should be at play in our experiment, under
precise circumstances (see Sec. II B).

We start considering a quasi-1D {cold atomic gas + 1D
quasiresonant laser beams} system; an atomic gas, with a linear
density n(z), is in interaction with two contra-propagating
laser beams. The two beam intensities I+(z) and I−(z),
where I+(−∞) = I−(+∞) ≡ I0, respectively, propagating in
the positive and negative direction, are much smaller than
the atomic line saturation intensity Is . Thus the atomic dipolar
response is linear. The radiation pressure force of the lasers on
an atom, having a longitudinal velocity vz, is given by [13]

F±(z,vz) = ±h̄k
�

2

�2

4(δ ∓ kvz)2 + �2

I±(z)

Is

, (3)

where h̄ is the reduced Planck constant, � the bare linewidth of
the atomic transition, k the wave number, and δ the frequency
detuning between an atom at rest and the lasers. For a cloud
of N atoms, the attenuation of the laser intensity is given by

dI± = ∓ σ±
2πL2

⊥
NI±n(z)dz, (4)

where n(z) is the normalized linear density profile and

σ± = 6π

k2
�2

∫
g(vz)

4(δ ∓ kvz)2 + �2
dvz (5)

is the average absorption cross section for a single atom.
g(vz) is the normalized longitudinal velocity distribution and
2πL2

⊥ is the transverse section of the cloud. At equilibrium
g(vz) is an even function so σ− = σ+ ≡ σ . The optical depth
is defined as

b = σ

2πL2
⊥

N

∫ +∞

−∞
n(z)dz = σN

2πL2
⊥

. (6)

Atoms also experience a velocity diffusion due to the ran-
dom photon absorptions and spontaneous emissions: This is
modeled by a velocity diffusion coefficient D introduced in
Eq. (7). In experiments, δ < 0 such that the force, given
in Eq. (3), is a cooling force counteracting the velocity
diffusion. We now describe the N atoms by their phase space
density in 1D, f (z,vz,t). As in [14], we write a Vlasov
Fokker-Planck equation,

∂f

∂t
+ vz

∂f

∂z
− ω2

zz
∂f

∂vz

+ 1

m

∂

∂vz

{[F+(z,vz) + F−(z,vz)]f }

= D
∂2f

∂v2
z

, (7)

which is, for most of the cases, a reasonable modeling of long-
range force systems in the mean-field approximation (see, e.g.,
[15]). The second term in Eq. (7) is an inertial one, whereas
the third one describes a harmonic trapping force being a good
approximation of the dipolar trap used in the experiment [16].
Indeed the dipolar potential, in the longitudinal axe of interest,
can be written as

Udip(z) = −U0

1 + (
z
zR

)2 , (8)

with zR = 1.2 mm, U0 = 1
2kBTtrap, and Ttrap = 20 μK. The

observed rms longitudinal size being Lz � 400 μm, it is
reasonable to perform a Taylor expansion around z = 0 to
get the harmonic approximation:

Udip(z) ≈ −U0

[
1 −

(
z

zR

)2]
, (9)

having a characteristic frequency,

ωz =
(

kBTtrap

mz2
R

)1/2

. (10)

The fourth term of Eq. (7) contains the mean-field force
F± divided by the atomic mass m. The right-hand side
describes a velocity diffusion. The use of a one-dimensional
model is justified by the fact that the ratio between the rms
transverse L⊥ and longitudinal Lz size of the cloud measured
in the experiment is L⊥/Lz ≈ 2 × 10−2. Equation (7) neglects
atomic losses and dependencies in position and velocity of the
velocity diffusion coefficient.

One notes that the attractive force coming from the beams
absorption [Eqs. (3) and (4)] is known since the early days of
laser cooling and trapping [17]. However, in an usual three-
dimensional (3D) setting this attractive force is dominated by
the repulsive force due to photons reabsorption [18], which,
in the small optical depth limit, may be seen as an effective
repulsive Coulomb force. By contrast, in a 1D configuration
with an elongated cloud along the cooling laser beams, the
probability of photon reabsorption is reduced by a factor of
the order of L⊥/Lz, in comparison with the isotropic cloud
having the same longitudinal optical depth. In our experiment,
the reduction factor is about 2 × 10−2, so that the repulsive
force can be safely ignored. Similar but weaker reduction of
the probability of photons reabsorption is also expected for
the 2D geometry, which opens the possibility of experimental
systems analogous to 2D self-gravitating systems.

A. Fluid approximation

In order to solve Eq. (7) we assume that the system can be
described using a fluid approach: The velocity distribution
at time t does not depend on the position, except for a
macroscopic velocity u(z,t). We write then the one point
distribution function f as

f (z,vz,t) = mNn(z,t)
1

	(t)
g

(
vz − u(z,t)

	(t)

)
. (11)

The velocity distribution g(vz) is even, centered around u; the
velocity dispersion is characterized by a time modulation 	(t).
Integrating Eq. (7) over dvz and over vzdvz, we obtain the fluid
equations:

∂n

∂t
+ ∂

∂z
(nu) = 0 (12)

∂(nu)

∂t
+ ∂

∂z

[(
u2 + 	(t)2

∫
v2

z g(vz)dvz

)
n

]
+ ω2

zzn

− 1

m
n

∫
(F+ + F−)g

(
vz − u(z,t)

	(t)

)
	(t)dvz = 0.

(13)
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B. Stationary solution

We first look for a stationary solution; this imposes u =
0 and 	 = 1. Equation (12) is then automatically satisfied;
Eq. (13) for the stationary density n(z) reads

v̄2
z

∂n

∂z
+ ω2

zzn − 1

m
n

∫
[F+ + F−]g(vz)dvz = 0, (14)

where we have used the notation
∫

v2
z g(vz)dvz = v̄2

z .
Equation (4) is easily integrated, yielding

I+(z) = I0e
−b

∫ z

−∞ n(s)ds, (15)

I−(z) = I0e
−b

∫ +∞
z

n(s)ds . (16)

The exponentials are expanded up to first order, according to
the small optical depth hypothesis b � 1:

I+(z) 	 I0

(
1 − b

∫ z

−∞
n(s)ds

)
(17)

I−(z) 	 I0

(
1 − b

∫ +∞

z

n(s)ds

)
. (18)

Introducing these expressions for I± into Eq. (14), we obtain
finally

v̄2
z

∂n

∂z
+ ω2

zzn − NCn

∫ +∞

−∞
sgn(s − z)n(s)ds = 0 , (19)

where

C = 3h̄�

2mkL2
⊥

I0

Is

(
σ

k2

6π

)2

. (20)

Equation (19) is equivalent to an equation describing the
stationary density of an assembly of N trapped particles of
mass m, with gravitational coupling constant G, in an external
harmonic trap of frequency ωz, in a heat bath at temperature
T , with the correspondence:

v̄2
z ↔ kBT

m
, (21a)

C ↔ Gm, (21b)

where kB is the Boltzmann constant. Two characteristic lengths
are identified,

Lni =
√

kBT

mω2
z

(22)

is the characteristic size of the noninteracting gas in its external
harmonic holding potential. Using Eq. (10) we get

Lni =
√

T

Ttrap
zR. (23)

The other characteristic length Li is associated with the
interaction strength:

Li = kBT

NCm
. (24)

Using these notations we write Eq. (19) as

∂n

∂z
+ zn

L2
ni

− n

Li

∫ +∞

−∞
sgn(s − z)n(s)ds = 0. (25)

The first term of (25) favors the density spreading. In contrast
with the 2D and 3D cases, it always prevents the collapse
of the cloud [19]. The second term describes an external
harmonic confinement coming from the dipole trap in the
experiment. The third term is the attractive interaction due
to laser beam absorption. It corresponds to a 1D gravitational
potential expression in Eq. (2). If the inequality Li � Lni is
fulfilled, Eq. (25) is the one expected for a 1D self-gravitating
gas at thermal equilibrium [11]. It yields the profile:

n(z) = 1

4Li

sech2

(
z

2Li

)
. (26)

A generalization of Eq. (25) is written as

∂n

∂z
+ 1

kBT

∂Udip

∂z
n − An

∫ +∞

−∞
|s − z|−αsgn(s − z)n(s)ds

= 0, (27)

including the exact form of the dipole trap (8), and the variation
of the interaction exponent α of a 1/rα attractive force. This
expression is used to compare theory with experiments in
Sec. III. A is a free parameter controlling the interaction
strength, and thus the width of the equilibrium profile.

C. Breathing oscillations

To probe the dynamics of the system, we now go back to
Eqs. (12) and (13), linearizing these equations with respect to u

and 	 − 1, for small amplitude oscillations. One notes that this
approximation is much less restrictive than linearizing with
respect to the velocity vz. We then compute

∫
[F+ + F−]f dvz:∫

[F+ + F−]f dvz 	 c1(I+ − I−)n + c2(I+ + I−)nu

+c3(	 − 1)(I+ − I−)n, (28)

where the constants ci involve integrations with respect to
vz. The first term is the gravitational-like force, as in (19) with
n(z) replaced by the time-dependent density n(z,t). The second
one is a friction, which a priori depends weakly on z through
I+ + I−. Since I+ − I− is of order b � 1, the third term, of
order b(	 − 1), is neglected. We assume that the dynamics is
captured by a single parameter λ(t), using the ansatz [20]:

f (z,vz,t) = mNn(z/λ)g(λvz − λ̇z). (29)

When compared with (11), this amounts to assuming the
following: u = λ̇

λ
z,	 = 1/λ. We introduce the notations 〈·〉

and 〈·〉0 for the spatial average of a quantity over the density
at time t and the stationary density, respectively. Then

〈z2〉 = λ2〈z2〉0, 〈zu〉 = λλ̇〈z2〉0, 〈u2〉 = λ̇2〈z2〉0. (30)

We note that Eq. (12) is automatically satisfied by the ansatz
(29). To obtain an equation for λ, we integrate Eq. (13) over
zdz. We obtain, for λ close to 1 (small amplitude oscillations):

λ̈ + κλ̇ + ω2(λ − 1) = 0, (31)

with κ an effective friction and a breathing oscillation
frequency:

ωbr = ωz(3(p − 1) + 4)
1
2 . (32)
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p measures the compression of the cloud:

p = L2
ni

L2
z

. (33)

In experiments where the effective friction is rather small,
Eq. (32) is expected to be a fair approximation for the breathing
oscillation frequency. More generally, assuming a power law
two-body interaction force in the gas 1/rα , the simple relation
for ωbr in the weak damping limit becomes [20]

ωbr = ωz [(3 − α)(p − 1) + 4]
1
2 . (34)

This formula relates ωbr to α and p, and will be used in
Sec. III D. Equation (34) was derived in [20] assuming a ve-
locity independent interaction term, which would be obtained
by linearizing the radiation pressure force (3) in velocity. This
is not a reasonable approximation in our experiments [21], but
we have shown here that (34) is still expected to provide a
reasonable approximation for the breathing frequency in the
limit of small optical depth.

III. EXPERIMENTS

A. Experimental setup

The sample preparation is done in the same way as depicted
in [22]. More details about laser cooling of Strontium in a
magneto-optical trap (MOT) can be found in [23]. After laser
cooling, around 105 atoms at T 	 3 μK are loaded into a far
detuned dipole trap made of a 120-mW single focused laser
beam at 780 nm. Analyses are performed using in situ images
taken with a CCD at different instances of the experimental
sequence. The longitudinal profile is obtained averaging over
the irrelevant remaining transverse dimension. We directly
measure the longitudinal trap frequency ωz = 6.7(0.5) Hz
from relaxation oscillations of the cold cloud (see example
of temporal evolutions in Fig. 1). The radial trap frequency
ω⊥ = 470(80) Hz is deduced from cloud size measurements.
The beam waist is estimated at 23(2) μm leading to a potential
depth of Ttrap 	 20 μK.

Fifty milliseconds after loading the dipole trap (corre-
sponding to t = 0 in Fig. 1), a contra-propagating pair of
laser beams, red-detuned with respect to the 1S0 → 3P1

intercombination line at 689 nm (radiative lifetime: 21 μs),
is turned on for 400 ms. These beams, aligned with respect to
the longitudinal axis of the cloud, generate the effective 1D
attractive interaction. When the 1D lasers are on, we apply
a B = 0.3 G magnetic bias field, for two important reasons:
First, the Zeeman degeneracy of the excited state is lifted such
that the lasers interact only with a two-level system made out
of the m = 0 → m = 0 transition which is insensitive to the
residual magnetic field fluctuation. Second, the orientation of
magnetic field bias, with respect to the linear polarization of
the dipole trap beam, is tuned to cancel the clock (or transition)
shift induced by the dipole trap on the transition of interest [22].

The temperature along the 1D laser beams, in our experi-
mental runs, is found to be in the range of 1–3 μK. Even at such
low temperatures, and in sharp contrast with standard broad
transitions, the frequency Doppler broadening kv̄z remains
larger than �. As a direct consequence, the optical depth b

depends on the exact longitudinal velocity distribution g(vz)

FIG. 1. (Color online) (Top) Typical temporal evolutions of Lz the
rms longitudinal size of the atomic cloud for three different 1D beam
intensities. The laser detuning is δ = −5� for all curves. (Bottom)
The center-of-mass (Cdm) position of the atomic gas without the 1D
lasers (I = 0). The y-axis origin is arbitrary.

[see Eqs. (5) and (6)] which are not necessarily Gaussian [22].
Since we measure only the second moment of the distribution
g(vz), namely, v̄z or T , one has enough control to assert the
b � 1 limit, thus the occurrence of the self-gravity regime.
However, we can perform only qualitative tests of our theory
described in Sec. II B.

At t = −50 ms, the MOT cooling laser beams are turned
off, leaving the trapped atomic cloud in an out-of-equilibrium
macroscopic state. Without the 1D lasers, we observed a
weakly damped oscillation of the breathing mode and of the
center-of-mass position (blue circles in Fig. 1). One notes
that damping is caused by anharmonicity of the dipole trap
and not by thermalization of the gas which is negligible on
the experimental timescale. In the presence of the 1D laser
beams, overdamped or underdamped oscillations of the cloud
are observed.

B. Stationary state’s density profile

Let us first consider the stationary state in the overdamped
situation (red circles in Fig. 1). After the transient phase (t <

30 ms), the rms longitudinal size of the atomic gas reaches a
plateau at a minimal value of Lz 	 120 μm with T 	 2 μK.
The slow increase of the cloud’s size after the plateau (t >

150 ms) goes with an increase of the temperature up to 4 μK at
the end of the time sequence. The origins of the long time scale
evolution are not clearly identified, but it is most likely due to
coupling of the longitudinal axis with the uncooled transverse
dimensions because of imperfect alignment of the 1D laser
beams with the longitudinal axis of the trap and nonlinearities
of the trapping forces. At the plateau where temperature is
around 2 μK the noninteracting gas is expected to have an
rms longitudinal size of Lz = Lni 	 370 μm. Hence, a clear
compression of the gas by a factor of three is observed. It is due
to the attractive interaction induced by the absorption of the 1D
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FIG. 2. (Color online) Density linear distribution for N = 105.
The black circles are the experimental data with I = 0.02Is , δ =
−6�, and b 	 0.4. The profiles were symmetrized to improve the
signal-to-noise ratio. The curves are least-square fits of the data using
Eq. (27) containing the exact form of the dipole trap and a two-body
interaction force 1/rα . The fits are performed for each α by fixing
the normalization and varying the interaction strength.

laser beams. Moreover, the estimated optical depth is b < 0.6.
We then approach the two previously mentioned conditions—
b � 1 and Lz � Lni—for being in the 1D self-gravitating
regime as discussed in Sec. II B. In Fig. 2, where b 	 0.4, we
test the effective interaction in the gas by assuming a power
law two-body interaction force in the gas 1/rα and fitting the
experimental linear density distribution for different values of
α in the presence of a dipolar trap; α = 0 corresponds to 1D
gravity. We see that the best fit seems to be for α ∈ [0,1/2].

In the absence of the 1D laser beams, we have checked that
the experimental linear density distribution has the expected
profile of a noninteracting gas in our dipole trap having a
zR = 1.2(1) mm Rayleigh length.

C. Cloud’s longitudinal size

In the self-gravitating regime a 1/N dependency of Lz is
expected at fixed temperature [see Eq. (26) and the definition
of Li]. Figure 3 shows that the cloud’s size Lz is in agreement
with this prediction for two temperature ranges: 1.5(2) μK
(blue circle) and 2.1(2) μK (red star). Fits correspond to the
blue dashed line for 1.5(2) μK and the red dashed line for
2.1(2) μK. The fitting expression is

N = a
(
1
/
Lz − Lz

/
L2

ni

)
, (35)

where a and Lni are free parameters depending on the
temperature of the gas. If Lni � Lz, the self-gravitating regime
is recovered in the fitting expression. However Eq. (35) takes
into account the presence of a harmonic trap. Equation (35)
can be simply derived using the generalized virial theorem
[see Eq. (11) in Ref. [24]] and it is in perfect agreement
with numerical integrations of Eq. (25). The fits give Lni 	
0.5 mm, slightly larger than the expected value of Lni at
these temperatures. The 1/N dependency of Lz in the self-
gravitational regime is consistent with a long-range interaction
with α = 0. Unfortunately as discussed above, the residual
Doppler effect prevents a quantitative comparison with the
prediction of our model.

1 2 3 4 5 6
0

2

4

6

8

10

12

14

1/L
z
 (1/mm)

N
 (

10
4 )

FIG. 3. (Color online) Dependency of the longitudinal size of the
cloud with the number of atoms for δ = 5.7(5)� and I = 0.3Is . The
blue circle (red star) data points correspond to temperature 1.5(2) μK
[2.1(2) μK]. The optical depth is in the range of 0.6–0.2 according
to atom number variations. The blue and the red dashed lines are fits
using Eq. (35).

D. Breathing oscillations

Let us now consider the evolution of the trapped cold
cloud in the underdamped situation (as an example, see green
circles in Fig. 1). Without the 1D lasers, the ratio of the
eigenfrequencies of the breathing mode ωbr and the center
of mass ωz is found to be close to two, as expected for a
noninteracting gas in a harmonic trap. As an example the blue
curve, shown in Fig. 1, gives ωbr/ωz = 1.9(1). If now the
attractive long-range interaction is turned on, ωbr is expected
to follow Eq. (34) whereas ωz should remain unchanged.

Figure 4 summarizes the comparisons between the mea-
sured ratio (ωbr/ωz)2 and the predictions deduced from the
relation (34). p is computed from the experimental data in
the stationary state. We expect α = 0, however, to judge the
nature of the long-range attractive interaction; three plots,
respectively, for α = 0,1, and 2 are shown. If the α = 2
case can be excluded, the experimental uncertainty does not
allow one to clearly discriminate between α = 0 and α = 1.
In conjunction with Fig. 2, we conclude that the system is

FIG. 4. (Color online) Comparison for α = 0, 1, and 2 of the
experimental ratio (ωbr/ωz)2 and the predictions deduced from the
relation (34). The values of p are measured on the experiment.
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reasonably well described by a gravitational-like interaction,
α = 0.

IV. CONCLUSION AND PERSPECTIVES

In this paper, we give strong indications of an 1D
gravitational-like interaction in a Strontium cold gas induced
by quasiresonant contra-propagating laser beams. First, we
show that in the self-gravitating limit, the density distribution
follows the theoretically expected profile. Moreover, the
scaling of the cloud size with the number of atoms follows
the predicted 1/N law. Finally, the modification of breathing
frequency of the cloud, due to the long-range interaction, is
correctly described by a self-gravitating model.

Other phenomena can also be investigated, for example,
in relation with plasma physic; Landau damping should be

observed studying the return to equilibrium of the system
after various perturbations. Moreover, the actual experimental
system could be easily extended to 2D geometry suggesting
interesting consequences: By contrast with the 1D case, a 2D
self-gravitating fluid undergoes a collapse at low enough tem-
perature, or strong enough interaction. Hence, it is conceivable
that an experiment similar to the one presented in this paper,
in a pancake geometry, would show such a collapse [25].
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