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Quantum reflection of antihydrogen from the Casimir potential above matter slabs
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We study quantum reflection of antihydrogen atoms from matter slabs due to the van der Waals–Casimir-
Polder potential. By taking into account the specificities of antihydrogen and the optical properties and width
of the slabs, we calculate realistic estimates for the potential and quantum reflection amplitudes. Next we
discuss the paradoxical result of larger reflection coefficients estimated for weaker potentials in terms of the
Schwarzian derivative. We analyze the limiting case of reflections at small energies, which are characterized
by a scattering length and have interesting applications for trapping and guiding antihydrogen using material
walls.
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I. INTRODUCTION

Quantum reflection is the process of reflection of particles
from an attractive but rapidly varying potential. It has been
studied since the early days of quantum theory [1]. On the
other hand, it is well known that atoms in the vicinity of a
surface experience the long-range van der Waals–Casimir-
Polder (vdW-CP) potential [2]. Quantum reflection occurs
here if the atom enters a region where the potential varies
rapidly compared with the atom’s wavelength. Experimentally,
quantum reflection on the vdW-CP potential has been observed
with slow atoms reflected from a liquid helium surface [3–5] or
from solid surfaces [6,7]. More recent efforts have focused on
quantum reflection from rough or micro- and nanostructured
surfaces [8–10] and on quantum reflection of Bose-Einstein
condensates on flat or nanostructured silicon [11,12].

The theoretical description of quantum reflection has been
the topic of numerous contributions in the past [13–18], which
are presented in some detail in [19]. The particular case of
reflection on a vdW-CP potential created by thin slabs or
graphene sheets has been reported recently in [20]. In addition
it has been put forward that quantum reflection coefficients
can be tuned using external optical fields [21] or via thermal
nonequilibrium effects [22].

In the present paper, we will study the quantum reflection
of antihydrogen atoms H falling on material walls. As H
atoms are annihilated in contact with matter, this case enforces
specific boundary conditions at the material surface [23]. In
particular, the behavior of the short-range atom-wall potential
becomes irrelevant as all antiatoms that come close enough
to the surface are annihilated. This topic is important to the
GBAR Collaboration which aims to measure the gravitational
behavior of H by studying its time of free fall from a
well-defined trap to a matter plate [24]. We will give accurate
estimations for the van der Waals–Casimir-Polder potential
between the antiatoms and the surface as well as for the
associated quantum reflection.

A number of different methods are available to calculate
atom-surface dispersion forces [25–28] (see [29] for a detailed
bibliography). Here we will use the scattering approach
[30,31] which has been developed to calculate Casimir forces
in arbitrary geometries and which can be applied to the study

of vdW-CP forces between an atom and flat or nanostructured
surfaces [32]. In order to obtain accurate estimations, it will
in particular be necessary to take into account the material
properties and the finite thickness of the slabs [33].

In order to explain the paradoxical result that larger
reflections are obtained for weaker potentials, we will discuss
how the quantum reflection occurs when the atoms approach
the surface and draw a relation to the Schwarzian derivative.
We will finally analyze the limiting case of reflections at small
energies, which have interesting applications for trapping and
guiding antihydrogen with material walls [34,35]. Quantum
reflection is characterized by a scattering length which we
will calculate for different materials and different slab widths.
We note at this point that quantum reflection is calculated in
the present paper from a static potential, so that the role of
dissipation in matter is neglected [36].

II. CASIMIR-POLDER POTENTIAL

We use the scattering formalism [30,31] applied here to the
Casimir-Polder potential between an atom and a plate:

V (z) = h̄

∫ ∞

0

dξ

2π
Tr ln(1 − RPe

−κzRAe−κz). (1)

As the quantum reflection process is expected to occur at
distances smaller than 1 μm (more discussion is given below),
and thus smaller than the typical thermal wavelength, this
formula has been written at zero temperature. The matrices
RP and RA describe the reflection of the electromagnetic
vacuum fields on the plate and atom, respectively. They are
calculated for a Wick-rotated complex frequency ω = iξ with
the trace (Tr) bearing on transverse wave vectors k and polar-
izations p = TE,TM. The factor e−κz accounts for propagation
between the atom and plate where κ =

√
k2 + ξ 2/c2 is the

Wick-rotated complex longitudinal wave vector.
We may safely neglect all multiple reflections between the

atom and the surface and thus expand the general scattering
formula (1) to first order in RA. When the scattering on
the atom is described in the dipolar approximation [32], the
potential is read in terms of a dynamic atomic polarizability
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α, given in units of a volume:

V (z) = h̄

c2

∫ ∞

0
dξξ 2α(iξ )

∫
d2k

(2π )2

e−2κz

κ

×
[
ρTE −

(
1 + 2c2k2

ξ 2

)
ρTM

]
. (2)

The ρp denote the electromagnetic reflection amplitudes for
the two polarizations p = TE,TM. We study first the case of
reflection from a semi-infinite bulk, described by the Fresnel
laws expressing continuity relations at the interface:

ρTE
bulk = κ − K

κ + K
, ρTM

bulk = ε(iξ )κ − K

ε(iξ )κ + K
, (3)

where K =
√

k2 + ε(iξ )(ξ/c)2 corresponds to the Wick-
rotated longitudinal wave vector inside the medium, and ε

is the relative dielectric function of this medium (evaluated at
the Wick-rotated complex frequency).

The results presented below use the following optical
response properties:

(1) The atomic polarizability is that of antihydrogen (H),
and is assumed to be the same as that of hydrogen (H) [37].

(2) Perfect mirrors have been used in previous calculations
[18,23,37]

ρTE ≡ −1, ρTM ≡ 1; (4)

they are considered here for the sake of comparison with results
obtained with the real materials discussed below.

(3) Mirrors made of intrinsic silicon are described by a
Drude-Lorentz model [32,33]:

ε(iξ ) = ε∞ + (ε0 − ε∞)ω2
0

ξ 2 + ω2
0

, (5)

with the parameters ε0 = 11.87, ε∞ = 1.035, and ω0 = 6.6 ×
1015 rad s−1.

(4) Mirrors made of amorphous silica are described by a
simple Sellmeier model [38]:

ε(iξ ) = 1 +
∑

i=1,2,3

Bi

1 + (ξ/ωi)2
, (6)

with the parameters B1,2,3 = 0.696 749, 0.408 218, and
0.890 815 and ω1,2,3 = 27.2732 × 1015, 16.2858 × 1015, and
0.190 257 × 1015 rad s−1.

(5) The electronic properties of graphene are described by a
Dirac model leading to the reflection coefficients given in [39].

The potential (2) has well-known asymptotic behaviors at
short and long distances,

V (z) →
z�	

−C3

z3
, V (z) →

z�	
−C4

z4
, (7)

where 	 is a distance scale determined by the characteristic
atomic frequencies which enter the expressions for the po-
larizability or dielectric function. The short-distance limit is
identical to the famous London–van der Waals result while the
long-distance limit is the so-called retarded Casimir-Polder
interaction which takes into account that the finite speed of
light comes into play at large separations [2]. The values given
in Table I are obtained from the exact vdW-CP potential (2)
and given in atomic units.

TABLE I. Coefficients C3 and C4 for the vdW-CP interaction for
H atoms above perfect mirrors and bulk silicon and silica; the values
are given in atomic units Eha

n
0 for Cn (Hartree energy Eh � 4.3597

aJ; Bohr radius a0 � 52.917 pm).

Perfect mirror Silicon Silica

C3 0.25 0.10 0.05
C4 73.6 50.3 28.1

Figure 1 displays the exact vdW-CP potentials obtained
from (2) for H atoms on perfect mirrors and bulk mirrors
made of intrinsic silicon or amorphous silica, described by
Eqs. (4), (5), and (6), respectively. All cases are drawn as ratios
V (z)/V ∗(z) to the retarded CP limit calculated for a perfectly
reflecting wall, V ∗ = −C∗

4/z4 with C∗
4 = 2.5 × 10−57 J m4

(=73.6 a.u.; see Table I). The ratios tend to constant values
C4/C∗

4 at large distances and linear variations C3z/C∗
4 at small

distances. Of course, lesser and lesser reflective materials
produce weaker and weaker CP potentials, from perfect
mirrors to silicon and silica plates.

III. QUANTUM REFLECTION OF H

We will now solve the problem of quantum reflection of H
atoms from the CP potential calculated in the previous section,
starting from free atoms with an energy E > 0 just before they
feel the CP potential. We will also use below the notation h

for the height of free fall of the atoms with the correspondence
E = mgh (supposing h much larger than tens of microns).

The Schrödinger equation may be written

ψ ′′(z) + p2(z)

h̄2 ψ = 0, (8)

where primes denote derivations with respect to z while p2 is
the square of the semiclassical momentum

p(z) =
√

2m[E − V (z)]. (9)

FIG. 1. (Color online) Casimir-Polder potential for H in the
vicinity of a bulk material, drawn as a ratio V/V ∗ with the retarded
potential V ∗ for a perfect mirror; from top to bottom, perfect mirror
(blue), silicon (green), and silica (red).
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The general solution can be expressed, without approximation,
as a superposition of the two WKB waves

ψ (z) = c+(z)√|p(z)|e
iφ(z) + c−(z)√|p(z)|e

−iφ(z), (10)

where φ is the WKB phase (z0 arbitrary)

φ (z) =
∫ z

z0

p(z′)dz′

h̄
. (11)

The Schrödinger equation (8) is obeyed when the amplitudes
c± verify the coupled first-order equations [13]

c′
±(z) = e∓2iφ(z) p′(z)

2p(z)
c∓(z). (12)

As H annihilates as soon as it touches the wall, there cannot
be any wave reflected immediately from the surface z = 0
of the material boundary [23]. This full absorption condition
imposes c+(z = 0) = 0 and we are then free to fix c−(z =
0) = 1. The quantum reflection amplitude r is thus given by the
ratio of the amplitudes c+(z) and c−(z) at the limit z → ∞ [see
Eq. (10)]. Finally, the quantum reflection probability discussed
below is the squared modulus of this amplitude |r|2.

In order to numerically integrate the preceding equations,
it remains to fix the problems arising from the divergence of
the potential in the vicinity of the surface. It will result from
forthcoming discussions that the WKB waves are well defined
near the wall. However, a difficulty arises from the divergence
of the WKB phase φ there. To fix this difficulty, we proceed
as in [23] by studying the analytical form of the solution for
c± close enough to the wall. The potential there takes its van
der Waals approximated form while the energy E becomes
negligible when compared to the potential.

In this limit the functions f±(t) defined by c±(z) =
x3/2f±(t), x = √

8mC3/z, and t = ±2ix satisfy the Kummer
equation

tf ′′
±(t) + (b − t) f ′

±(t) − af±(t) = 0 (13)

with parameters a = 3/2 and b = 4. A pair of independent
solutions is given by Kummer’s confluent hypergeometric
functions M(a,b,t) and U (a,b,t) [40]. On the other hand,
the Schrödinger equation (8) can also be solved close to the
wall. The two counterpropagating waves can be expressed in
terms of the Hankel functions as H

(1)
1 (x)/x and H

(2)
1 (x)/x and

the full absorption condition imposes the requirement that the
second wave has a null amplitude [23]. By comparing this
expression of the wave function with (10) we find that

c+(x) = −2(1 + i)x3/2

[
U

(
3

2
,4,2ix

)

− i
√

π

8
M

(
3

2
,4,2ix

) ]
e−2ix0 , (14a)

c−(x) = −2(1 + i)x3/2U

(
3

2
,4, − 2ix

)
. (14b)

A better behavior of the functions is thus obtained by
changing the variables z → x in the vicinity of matter and
matching the numerical solutions to the known analytical
solutions (14). The results shown below are obtained in this
manner close to the wall, while the variables are switched back
to z when the potential becomes comparable to the energy.

FIG. 2. (Color online) Quantum reflection probability |r|2 as a
function of the free-fall height h for H atoms on bulk mirrors; from
bottom to top, perfect mirror (blue), silicon (green), and silica (red).

We show in Fig. 2 the numerical solutions for the quantum
reflection probability obtained with the exact CP-vdW poten-
tials discussed in the preceding section for H atoms falling on
perfect mirrors and bulk mirrors made of silicon or silica. It
turns out that significant values are obtained for the quantum
reflection probability with the typical numbers considered for
the project GBAR as shown in Table II.

These numbers highlight a striking result of the calculations
which is also emphasized by the use of the same color codes
in Figs. 1 and 2: when going to less and less reflective
materials, i.e., weaker and weaker CP-vdW interactions, one
indeed obtains larger and larger quantum reflection probability
[12,20]. This apparent paradox is analyzed in the next section,
by taking a closer look at the region where quantum reflection
occurs.

IV. BADLANDS CONDITION

We now discuss the so-called badlands condition for effi-
cient reflection, that is, for significant nonadiabatic transitions
beyond the WKB approximation [13,19]. With this aim, we
recall that the WKB approximation ψ̃ , the wavefunction (10)
with constant amplitudes c±, also obeys the Schrödinger
equation

ψ̃ ′′(z) + p̃2(z)

h̄2 ψ̃(z) = 0, p̃2(z) ≡ p2(z) + h̄2

2
Sφ(z). (15)

The difference between (8) and (15) is the extra term in p̃2

with respect to p2, proportional to the Schwarzian derivative

TABLE II. Reflection probabilities for a free-fall height h ∼
10 cm, which corresponds to an energy per unit mass gh ∼ 1 (m/s)2

at the matter plate.

Perfect mirror Silicon Silica

|r|2 14% 20% 32%
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FIG. 3. (Color online) Badlands function Q(z) as a function of
distance to the wall (atomic units) for H dropped from h = 10 cm
on bulk mirrors; from bottom right to top left, perfect mirror (blue),
silicon (green), and silica (red).

of the WKB phase:

Sφ(z) ≡ φ′′′(z)

φ′(z)
− 3

2

(
φ′′(z)

φ′(z)

)2

. (16)

This means that nonadiabatic processes are characterized by
this Schwarzian derivative, similarly to nonadiabatic emission
of photons in vacuum after reflection from moving mirrors
[41,42].

It follows that the WKB approximation is good when the
second term in p̃2 in (15) is much smaller than the first one. It
can be shown that this is the case for the problem being studied
in the present paper for short as well as long distances, which
means that left- and rightward propagation are well defined in
both limits. The nonadiabatic processes giving rise to quantum
reflection occur in the intermediate distance range, and their
efficiency is significant for large values of the quantity

Q(z) ≡ h̄2Sφ

2p2
= h̄2

2

p′′(z)

p(z)3
− 3h̄2

4

(
p′(z)

p(z)2

)2

. (17)

The adiabatic approximation breaks down in regions where
|Q(z)| ∼ 1, which have been dubbed the badlands. Nonadia-
batic quantum reflection happens there, where the notions of
left- and rightward propagation are no longer well defined.

Figure 3 features the numerical evaluation of this badlands
function Q(z) as a function of distance z to the wall (atomic
units), for H dropped from h = 10 cm on perfect, silicon, or
silica mirrors (the same color codes as in Figs. 1 and 2). The
plots clarify two features which explain the apparent paradox
discussed in the preceding section. First, quantum reflection
occurs closer and closer to the wall for weaker and weaker
CP-vdW interaction. Second, the value reached by Q(z) is
thus larger and larger, since the CP interaction gets steeper
and steeper when atoms approach the wall. When considered
together, these two features explain why a weaker potential
leads to a more efficient reflection than a stronger one. In fact,
the quantum reflection probabilities |r|2 (see, for example, the
numbers given in Table II) increase with increasing peak value
of the badlands function Q(z).

FIG. 4. (Color online) Casimir-Polder potential for H in the
vicinity of a silica slab, drawn as the ratio V/V ∗; from top to bottom,
the thickness is infinite (black), 50 nm (magenta), 20 nm (deep blue),
10 nm (light blue), 5 nm (deep green), 2 nm (light green), and 1 nm
(red).

V. REFLECTION ON A THIN SLAB

This discussion suggests that one should try to weaken
further the CP-vdW interaction with the aim of enhancing
quantum reflection [20]. In the present section, we analyze
this idea by studying either slabs having a finite thickness or a
graphene layer.

The calculations proceed along the same lines as previously,
except for the fact that slabs of finite thickness d have smaller
reflection amplitudes than the corresponding bulk materials.
There is a general relation between these amplitudes [33]:

ρ
p

slab = (1 − e−2Kd ) ρ
p

bulk

1 − e−2Kd
(
ρ

p

bulk

)2 . (18)

When the CP-vdW interaction is calculated at distances z

smaller than the thickness d, the results of the bulk are
recovered. This can be understood from the fact that ρ

p

slab
goes to ρ

p

bulk for large values of d (up to exponentially small
corrections). In contrast, the long-distance behavior of the CP
potential is completely changed because the exponential factor
now plays an important role in (18). Even the power-law index
is changed for the potential which now varies as

V (z) →
z�	,d

−C5

z5
. (19)

Figure 4 shows the exact CP-vdW potentials obtained from
(2) for H atoms on slabs of amorphous silica, with different
values for the thickness d. All cases are drawn as ratios of V (z)
with the same reference potential V ∗ already used in Fig. 1.
The ratios tend to the same linear variations C3z/C∗

4 at small
distances as for the silica bulk [bottom (red) curve in Fig. 1]
and to inverse distance laws C5/(C∗

4z) at large distances, with
the value of C5 being proportional to d. This behavior can be
expected from a simple argument where the potential Vslab(z)
at distance z from a slab of thickness d is obtained from the
difference Vbulk(z) − Vbulk(z + d) with Vbulk the potential at
distance z from the bulk. The scaling given by this simple
argument is correct while the value of C5 is not exact.
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FIG. 5. (Color online) Quantum reflection probability |r|2 as a
function of the free-fall height h for H atoms on silica slabs; from
bottom to top, the thickness is infinite (black), 50 nm (magenta),
20 nm (deep blue), 10 nm (light blue), 5 nm (deep green), 2 nm (light
green), and 1 nm (red). The dashed line is the result for quantum
reflection on nondoped graphene.

We depict in Fig. 5 the numerical solution for the quan-
tum reflection probability obtained with the exact CP-vdW
potentials for H atoms falling onto silica slabs with various
values of the thickness (the same color code as in Fig. 4).
As expected, larger and larger values are obtained for the
quantum reflection probability on thinner and thinner silica
slabs, that is, also steeper and steeper CP-vdW potentials. For
a free-fall height h ∼ 10 cm for example, the probability |r|2
reaches ∼50% for 3 nm slabs while it is only 33% for bulk
silica. For comparison we also show the quantum reflection
coefficient for graphene. Interestingly the same high quantum
reflection as on a (not realistic) 1 nm slab can be obtained
with the quantum reflection reaching 61% for nondoped
graphene. This value increases only slightly (�2%) if doping is
included.

VI. LOW-ENERGY LIMIT

We finally discuss the limit of near-threshold quantum
reflection, where the incident atomic energy E goes to zero.
Quantum reflection is thus characterized by a scattering
length [23] which we will calculate in the present section
for the different cases discussed above, with the aim of
optimizing applications for manipulating antihydrogen with
material walls [34,35].

In order to conform to standard notation, we replace p by h̄k

in this section (k is not to be confused with the electromagnetic
wave vector used in the beginning of this paper). The reflection
amplitude r is a function of k which can be written in terms
of a complex-valued function a(k) having the dimension of a
length:

r(k) = − exp[−2ika(k)]. (20)

The real part of a(k) determines the phase at reflection
while its imaginary part determines the quantum reflection

[      ]

[ 
  
  
 ]

FIG. 6. (Color online) Three-dimensional representation of the
variation of the real and imaginary parts of a(k) versus wave vector
for H atoms on bulk mirrors; from top left to bottom right, perfect
mirror (blue), silicon (green), and silica (red).

probability:

|r|2 = exp{(4kIm[a(k)]}. (21)

We show in Fig. 6 the variations of real and imaginary parts
of a(k) versus wave vector (measured in atomic units) for H
atoms falling onto a perfect mirror and bulk silicon and silica
(the same color codes as in Fig. 2). We see that a(k) goes to a
finite value a(0) when k → 0, which is known as the scattering
length; the values of a(0) are collected in Table III.

We also show in Fig. 7 the variations of the real and
imaginary parts of a(k) versus wave vector (measured in
atomic units) for H atoms on silica slabs (the same color codes
as in Fig. 5). Again, a(k) goes to a finite value a(0) when
k → 0, the real and imaginary parts of which are collected in
Table IV.

We observe large variations of these values, which can have
important applications for manipulating H with material walls.
By considering quantum gravitational traps for H bounded
below by the quantum reflection from the CP-vdW potential
and above by gravity, one obtains the following lifetime for the
quantum bouncer in the first gravitational quantum state [34]:

τ = h̄

2mg |Im a(0)| . (22)

The lifetime is thus ∼5 times larger for thin silica slabs than for
the perfect mirrors considered in the calculations of [34]. The
same improvement holds for the width of resonances between

TABLE III. Real and imaginary parts of the scattering length a(0)
for H falling on perfect mirrors, bulk silicon and silica, and graphene
(given in units of a0).

Perfect mirror Silicon Silica Graphene

Re(a) Im(a) Re(a) Im(a) Re(a) Im(a) Re(a) Im(a)

−53.0 −543.0 −97.2 −435.2 −77.0 −272.6 −15.4 −109.7
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[      ]

[ 
  
  
 ]

FIG. 7. (Color online) Three-dimensional representation of the
variation of the real and imaginary parts of a(k) versus wave vector
for H atoms falling onto silica slabs; from top right to bottom left,
the thickness is infinite (black), 50 nm (magenta), 20 nm (deep blue),
10 nm (light blue), 5 nm (deep green), 2 nm (light green), and 1 nm
(red).

quantum states which can be used for precise spectroscopic
determination of the energies of these states, a technique that
could allow a better accuracy for the gravitational behavior of
H atoms in future experiments [35].

The same techniques could also allow the trapping of
antiatoms above curved material surfaces and them guiding
them at will during the longer lifetime achieved thanks to
quantum reflection from steep potentials.

TABLE IV. Real and imaginary parts of the scattering length of
antihydrogen on silicon and silica slabs (given in units of a0).

d (slab Silicon Silica

thickness) Re(a) Im(a) Re(a) Im(a)

1 nm 3.0 −178.1 6.5 −97.9
2 nm 1.6 −231.8 7.5 −130.3
5 nm −6.5 −311.2 3.2 −181.9
10 nm −21.8 −367.8 −9.3 −221.1
20 nm −45.2 −408.0 −29.1 −250.1
50 nm −73.1 −429.7 −53.3 −267.4
100 nm −85.0 −433.7 −64.4 −271.2
Bulk −97.2 −435.2 −77.0 −272.6

VII. CONCLUSION

We have given realistic estimates of the VdW-CP potential
above matter slabs of arbitrary thickness and the corresponding
reflection probability for antihydrogen atoms. From our analy-
sis we deduce that a substantial amount of quantum reflection
is to be expected in the GBAR experiment. We have given a
detailed analysis of the reflection process, solving the paradox
of weaker potentials leading to higher reflection. Finally we
have investigated the low-energy regime of quantum reflection
and given quantitative predictions for the scattering length.
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