
PHYSICAL REVIEW A 87, 012707 (2013)

Diffractive scattering of three particles in one dimension: A simple result for weak violations
of the Yang-Baxter equation
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We study scattering of three equal-mass particles in one dimension. Integrable interactions are synonymous
with nondiffractive scattering, meaning that the set of incoming momenta for any scattering event coincides with
the set of outgoing momenta. A system is integrable if the two-particle scattering matrix obeys the Yang-Baxter
equation. Nonintegrable interactions correspond to diffractive scattering, where the set of outgoing momenta
may take on all values consistent with energy and momentum conservation. Such processes play a vital role
in the kinetics of one-dimensional gases, where binary collisions are unable to alter the distribution function.

When integrability is broken weakly, the result is a small diffractive scattering amplitude. Our main result
is a simple formula for the diffractive part of the scattering amplitude, when the violation of the Yang-Baxter
equation is small. Although the derivation is given for δ-function interactions, the result depends only on the
two-particle scattering matrix, and should therefore also apply to finite-range interactions close to integrable.
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I. INTRODUCTION

A. Background

In classical mechanics, there is an unambiguous notion of
complete integrability, namely, that a system with N degrees
of freedom must have N (Poisson) commuting constants of
motion [1]. Finding the appropriate analog of this idea in
quantum mechanics turns out to be frustratingly difficult: see
Ref. [2] for a recent discussion of the pitfalls encountered.

In Ref. [3], Sutherland persuasively advocates a definition
of integrability that applies equally well to both classical and
quantum systems of equal-mass particles that can move far
away from each other [usually in one dimension (1D)], out
of the range of any interaction between particles. In this
asymptotic region, the momentum of each individual particle
is conserved. Scattering processes where the particles begin
and end in the asymptotic region are therefore characterized
by the initial {ki} and final {k′

i} set of momenta. An integrable
system is then understood to be one in which these two sets
are identical. In the classical case, this means that varying
the “impact parameters” for the scattering problem does not
change the set of final momenta, while in the quantum case,
the scattering amplitude vanishes for all other assignments of
momenta to the outgoing particles. Note that in either case,
the identity of these two sets does not exclude momenta from
being exchanged among the particles undergoing scattering.
In analogy with optics, scattering with this character is called
nondiffractive.

Despite being superficially rather different, it is not hard
to see that these two notions of integrability coincide in the
classical case. Whatever the general form of the N constants
of the motion for the N particles undergoing scattering, they
must be equivalent to (i.e., functionally dependent upon)
the N momenta in the asymptotic region, which are therefore
unchanged after scattering. In quantum mechanics, the Bethe
ansatz is the nondiffractive form of the N -particle wave
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function that forms the foundation for the study of integrable
systems in one dimension.

For N = 2 particles, energy and momentum conservation
guarantee {k1,k2} = {k′

1,k
′
2}. The distinction between inte-

grable and nonintegrable systems therefore appears first for
N = 3 particles. For an incoming plane wave ei(k1x1+k2x2+k3x3),
we write the scattered wave in the asymptotic region as

�3(x1,x2,x3) →
∑
P

AP exp[i(kP 1x1 + kP 2x2 + kP 3x3)]

+
∫

P,E fixed
dk′

1dk′
2dk′

3 Adiff(k
′
1,k

′
2,k

′
3)

× exp[i(k′
1x1 + k′

2x2 + k′
3x3)]. (1)

The first term involves a sum of the N ! = 6 permutations of
the incoming momenta, with an amplitude AP for each. This
part is the Bethe ansatz wave function, and for an integrable
system there is nothing more (strictly we must write an
expression of this form in each of the six asymptotic regions,
xQ1 � xQ2 � xQ3, for all six permutations Q, but we do not
include this extra detail for now). The second term, appearing
only for nonintegrable systems, is the diffracted wave, i.e., a
superposition of plane waves where the momenta are restricted
to a (1D) manifold of fixed total momentum P = ∑3

i=1 ki

and energy E = ∑3
i=1

k2
i

2m
. The amplitude Adiff(k′

1,k
′
2,k

′
3) is

the diffraction amplitude.
For a nonintegrable Hamiltonian, the three-body problem is

intractable, even in one dimension. However, a system that is
close to integrable, that is, whose Hamiltonian deviates only a
little from that of an integrable model, is expected to display a
small amount of diffractive scattering. While the primary goal
of this work is to obtain the diffraction amplitude for three
particles in this limit, we also seek an understanding of why
diffraction is sometimes absent. In the theory of integrable
systems, a distinguished role is played by the Yang-Baxter
equation, a relation obeyed by the two particle S-matrix of
an integrable Hamiltonian. In deriving our result, we will see
how the violation of the Yang-Baxter equation gives rise to
diffraction.
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Our result yields valuable insight into how the defin-
ing characteristic of integrable systems breaks down upon
changing the Hamiltonian. A more practical motivation is
provided by recent experiments on one-dimensional ultracold
atomic gases [4], showing essentially no relaxation towards
an equilibrium state. Recall that in a three-dimensional gas,
the dominant process of equilibration is binary collisions
between gas particles, whose effect on the evolution of the
distribution function is described by the Boltzmann equation.
In one dimension, such collisions result in k1 = k′

1, k2 = k′
2,

or k1 = k′
2, k2 = k′

1, which does not alter the distribution of
particles in momentum space and therefore cannot lead to
equilibration. Evidently diffractive scattering is required, and
three-particle collisions will be the most important at low
density [5,6]. We defer to Sec. III further discussion of kinetics
due to three-particle collisions.

To what extent are one-dimensional atomic gases described
by integrable Hamiltonians, or those close to integrable? As
shown in Ref. [7], tight confinement in the two transverse
directions allows the interaction between a pair of atoms to be
described by a δ function,

V (x1 − x2) = g12δ(x1 − x2). (2)

A gas of atomic bosons, therefore, provides (ignoring any
confining potential along the length of the gas) a realization
of the Lieb-Liniger model of the 1D Bose gas [8], soluble
by the Bethe ansatz. To destroy integrability, one may add
external potentials, introduce a more complicated (finite-
range) interaction between the particles, or consider multiple
species. While species with different masses certainly lead
to diffractive scattering (as the above considerations should
make clear), a more relevant situation in ultracold physics is
to consider different internal states of the atoms (e.g., different
hyperfine states), in which cases all masses remain identical.
However, the interparticle interaction is dependent upon the
species involved, and this again leads to a nonintegrable
Hamiltonian. Since the variation in the interaction strengths is
typically on the order of a few percent, this provides a natural
setting for the question of how weak violations of integrability
give rise to diffractive scattering.

B. δ-function potentials and the relation to diffraction
from a wedge

Motivated by the above discussion, we take as our principal
example the three-particle Hamiltonian

H = p2
1 + p2

2 + p2
3 + g12δ(x1 − x2) + g13δ(x1 − x3)

+ g23δ(x2 − x3). (3)

All masses are equal to 1/2, and we will assume without loss
of generality that all three particles are distinguishable—the
scattering amplitude for the case where two particles are
identical bosons or fermions can be constructed later by
symmetrizing or antisymmetrizing the solution. The simplicity
of Eq. (3) is deceptive: other than the case g12 = g13 = g23

soluble by the Bethe ansatz, only a few other special cases
have been solved to date [9–12]. The general formulation of
the problem given in Refs. [12,13] is forbiddingly complex,
involving the solution of a system of functional equations
[see Eq. (15)]. In contrast, we are interested in finding

FIG. 1. (Color online) Geometrical description of three-particle
scattering in real space. Left: Particles interact on the three planes
defined by xi = xj . Right: Projection along the center-of-mass motion
in the (1,1,1) direction. The six sectors correspond to different
ordering of the three particles on the line, given by a three-digit
code.

the diffraction amplitude when g12 ∼ g13 ∼ g23. Numerical
treatments of various aspects of the scattering problem can be
found in Refs. [14–16].

For Eq. (3), the result could be obtained using perturbation
theory, starting from the Bethe ansatz form of the wave
function. However, such an approach makes no explicit
connection to the violation of the Yang-Baxter equation,
and obscures the fact that the diffraction amplitude can be
expressed using only two-particle scattering data. This last
feature strongly suggests that the result is applicable to
finite-range interactions close to integrable and not just to δ-
function interactions. As an example, the interaction potential
V (x1 − x2) = g12 sinh−2(x1 − x2) is integrable [3], so a small
deviation from this potential will introduce a correspondingly
small amount of diffractive scattering, described by our main
result of Eq. (31).

The solution of the three-body problem is greatly facilitated
by the use of the following picture [9]. By momentum
conservation, the wave function has only trivial dependence
on the (1,1,1) direction in (x1,x2,x3) space, corresponding
to center-of-mass motion, and we may restrict our attention
to the plane perpendicular to this direction. In this plane,
the surfaces x1 = x2, x1 = x3, and x2 = x3 appear as three
lines at angle π/3 to each other, cutting the plane into six
sectors corresponding to the six possible permutations of the
positions of the particles on the line (Fig. 1). The Hamiltonian
describing propagation in the plane is just the two-dimensional
Laplacian, with the δ-function interactions corresponding to
boundary conditions at the surfaces. We note that the effect
of different masses may be incorporated into this picture by
rescaling the spatial coordinates, so that the kinetic energy in
the center-of-mass frame is isotropic, at the expense of altering
the angles between the three planes.

C. The Yang-Baxter equation and its geometrical meaning

Let us try to describe the above two-dimensional wave prob-
lem using geometrical optics. We first find the transmission
and reflection coefficients for each of the three surfaces, which
are defined by the following two-particle wave function:

�2(xi,xj )

=
{
ei(k1xi+k2xj ) + rij (k1,k2)ei(k1xj +k2xi ), xi < xj

tij (k1,k2)ei(k1xi+k2xj ), xi > xj .
(4)
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(a)

α

π/3 + α

π/3 − α

x2 = x3

x1 = x2
x1 = x3

(b)

α

π/3 + α

π/3 − α

(c)

α

π/3 + α

π/3 − α

FIG. 2. Three rays arriving in sector 123 at the same angle, and departing in sector 213, again at the same angle. The paths (a) and (b)
contribute to the outgoing wave to the right of the dotted line, while to the left only (c) contributes.

A straightforward calculation using the Hamiltonian given by
Eq. (3) yields

tij (k1,k2) = k1 − k2

k1 − k2 + igij

, rij (k1,k2) = −igij

k1 − k2 + igij

.

(5)

Equation (4) describes a collision in which transmission leads
to the particle with momentum k1 overtaking the particle with
momentum k2. When tracing rays in the two-dimensional
picture, then, this means that k1 − k2 = 2k sin α > 0, where
0 � α � π is the angle between the ray and the plane,
and k =

√
E − P 2/3 is the magnitude of the momentum

in the center-of-mass frame. We will, therefore, write the
transmission and reflection as a function of α as

tij (α) = 2k sin α

2k sin α + igij

, rij (α) = −igij

2k sin α + igij

. (6)

With this convention fixed, we consider different ray
trajectories with the same arrival and departure angles (Fig. 2).
All three rays illustrated have the same path length, so the
difference in their associated amplitudes arises entirely from
the reflections and transmissions each experiences. For the
outgoing wave front to the right of the dotted line, two
trajectories contribute, depending on whether the wave is first
transmitted or reflected, so the overall amplitude is the sum

t12(α)r13(π/3 + α)r12(π/3 − α)

+ r12(α)r23(π/3 + α)t12(π/3 − α), (7)

with 0 < α < π/3. To the left of the dotted line, only one
trajectory contributes, with amplitude

r23(π/3 − α)t12(π/3 + α)r13(α). (8)

If the amplitudes in Eqs. (7) and (8) are equal, then it is
plausible that the outgoing wave in sector 213 can be written
as a plane wave with amplitude equal to this common value.
Returning to the three-particle picture: if the incoming wave in
sector 123 corresponds to ei(k1x1+k2x2+k3x3), then the outgoing
wave in sector 213 corresponds to A231e

i(k2x1+k3x2+k1x3), where
the subscript 231 on the amplitude indicates how the momenta
have been permuted. Comparing with Eq. (1), we see that this
corresponds to one term of the Bethe ansatz wave function.

For the outgoing rays corresponding to the other per-
mutations of the momenta, one could draw similar sets of
trajectories. Once again, if equality holds between amplitudes
for rays contributing to different parts of the outgoing wave
front, then it seems plausible—and we will show explicitly

later—that the Bethe ansatz gives the complete form of the
wave function. That is, there is no diffraction.

The required equality of Eqs. (7) and (8) for arbitrary α is
(one component of) the Yang-Baxter equation. Evidently, it is
unlikely to be satisfied for an arbitrary set of reflection and
transmission coefficients. However, for Eq. (6), it is satisfied
when (and only when) g12 = g13 = g23.

What happens in the general case? In qualitative terms, the
wave fronts to the right and left of the dotted line in Fig. 2
will not “match,” having different amplitudes. As we move
away from the geometrical optics limit, we expect diffraction
to smear out this discontinuity, which sheds light on the
connection between the violation of the Yang-Baxter equation
and the appearance of diffractive scattering. We next turn to
the main tool that will be used to make this connection precise.

D. Sommerfeld integral

When the Bethe ansatz does not work, we need a more
general representation of the wave function. This is provided
by the Sommerfeld integral, which provides a representation
of the wave function �Q(r,φ) in sector Q, expressed in polar
coordinates [17]

�Q(r,φ) = 1

2πi

∫
γ

e−ikr cos αAQ(α + φ)dα. (9)

It is straightforward to verify that Eq. (9) satisfies the
2D Helmholtz equation [∇2 + k2]�Q = 0, as long as the
integrand vanishes at the endpoints. The contour γ must be
chosen accordingly. Additionally, we require that there is only
an outgoing diffracted wave. The choice shown in Fig. 3 [18]

FIG. 3. (Color online) Contour γ = γ+ ∪ γ− in the α plane for
the Sommerfeld integral given by Eq. (9) [18].
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has the required properties, as may be seen by writing it as∫
γ

=
∮

γ+−γ (−π)+γ−−γ (π)
+

∫
γ (−π)

+
∫

γ (π)
.

The first integral may be evaluated using the residue theorem,
while the second and third pass through the saddle points of
the integrand at φ = ±π , and so may be evaluated at large r

to give [19]

�Q(r,φ) −→
r→∞

∑
i

ResAQ(α)|
α=φ

(i)
Q
e−ikr cos(φ(i)

Q −φ)

+ei(kr+π/4)

√
2πkr

DQ(φ), (10)

where we have defined the diffraction amplitude DQ(φ) ≡
AQ(φ − π ) − AQ(φ + π ), and {φ(i)

Q } give the locations of the
poles of AQ(α) that are contained within the closed contour
(after translation by −φ). Comparison with Eq. (1) allows
us to identify the first term of Eq. (10) with the Bethe ansatz
contribution, while the second term is the diffracted wave. Note
that the saddle point at α = 0 would give rise to an incoming
wave, which is the reason for its exclusion.

While one is tempted to think of Eq. (9) as representing
a superposition of plane waves with different wave vectors,
with amplitude AQ(α) at angle α + π [20], Eq. (10) makes
it clear that the existence of a diffracted wave is intimately
connected with the absence of periodicity in α. Furthermore,
as φ changes, one pole may move outside of the closed contour,
while another may move a distance 2π away moves inside.
When AQ(α) is not periodic, the resulting switching of the
residues contributing to the first term of Eq. (10) corresponds
to crossing the dotted line in Fig. 2, where the amplitude
within the geometrical optics approximation changes abruptly.
The resulting jump in the wave amplitude on crossing this
line—not a true discontinuity but smeared on the scale of
the wavelength—is a distinctive feature of the breaking of
integrability in the far field.

We will see in Sec. II B that in this language, the
Yang-Baxter equation appears as a condition for the
periodicity of AQ(α).

E. Outline of this paper

After this lengthy introduction, let us outline the structure of
the remainder of this paper. In the next section, we will obtain
a system of functional equations obeyed by AQ(α) and show
how the Yang-Baxter equation corresponds to periodicity of
AQ(α), as well as finding the explicit form of these functions
in the integrable case. This is a vital step in the subsequent
derivation of our result for weak violations of the Yang-Baxter
equation. In the case of attractive interactions, two- and
three-particle bound states can form. In the integrable case,
the collision of a two-particle bound state with another particle
does not lead to disintegration, even when kinematically al-
lowed. Breaking integrability allows this process to occur, and
we find the amplitude for this process. In Sec. III, we discuss
the formulation of kinetic theory with three-particle collisions.

II. DERIVATION OF THE MAIN RESULT

A. The system of equations for AQ(α)

The wave functions in the different sectors are subject to the
boundary conditions of continuity at the line xi = xj between
two sectors and the condition on the normal derivative,

∂�

∂n

∣∣∣∣
+

−
= gij�(xi = xj ). (11)

In polar coordinates, this becomes

1

r

∂�

∂φ

∣∣∣∣
+

−
= gij�. (12)

We are going to substitute this into the Sommerfeld integral
representation of Eq. (9), which we rewrite using the symmetry
of the contour as

�Q(r,φ) = 1

2πi

∫
γ+

e−ikr cos α[AQ(α + φ) − AQ(φ − α)]dα.

(13)

This allows us to use the nullification theorem proved in
Ref. [18], which tells us that if an integral of the form∫
γ+

e−ikr cos αf (α) dα = 0, for f (α) odd (and obeying certain
technical conditions at +i∞), then f (α) = 0. In this way, we
can convert boundary conditions on �Q(r,φ) to conditions on
AQ(α).

We orient each sector in a standard way, measuring the
angle of our polar coordinates from the bisector of the wedge
(Fig. 4). The above boundary conditions give relations between
AQ(α) and AQ′ (α) in neighboring sectors, which we write for
the sake of definiteness for sectors 123 and 213 of Fig. 1,

A213(α − π/6)

= t12(α)A123(α + π/6) − r12(α)A213(−α − π/6),

A123(π/6 − α)

= t12(α)A213(−α − π/6) − r12(α)A123(α + π/6).

(14)

FIG. 4. (Color online) Interpretation of Eq. (14) in terms of
scattering amplitudes. Note that angles are measured from the line
bisecting each sector.
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(a)

α + π/6

−α + π/2

α − 5π/6

α − π/6

(b)

α + π/6

π/6 − α

α − 5π/6

α − π/2
(c)

−α − 5π/6

−α − π/2

α + π/6

α + 7π/6

FIG. 5. The three rays considered in Sec. I C, now labeled with the arguments of the amplitude AQ(α) describing each.

We can express this equation and the five others arising from
the other boundaries in a compact form,⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−A123(π/3 − α)

A213(α − π/3)

−A231(π/3 − α)

A321(α − π/3)

−A312(π/3 − α)

A132(α − π/3)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

= S1(α − π/6)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

A123(α)

−A213(−α)

A231(α)

−A321(−α)

A312(α)

−A132(−α)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(15)⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−A123(α − π/3)

A213(π/3 − α)

−A231(α − π/3)

A321(π/3 − α)

−A312(α − π/3)

A132(π/3 − α)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

= S2(α − π/6)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

A123(−α)

−A213(α)

A231(−α)

−A321(α)

A312(−α)

−A132(α)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where the matrices S1,2(α) are

S1(α) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

r12(α) t12(α) 0 0 0 0

t12(α) r12(α) 0 0 0 0

0 0 r23(α) t23(α) 0 0

0 0 t23(α) r23(α) 0 0

0 0 0 0 r13(α) t13(α)

0 0 0 0 t13(α) r13(α)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(16)

S2(α) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

r23(α) 0 0 0 0 t23(α)

0 r13(α) t13(α) 0 0 0

0 t13(α) r13(α) 0 0 0

0 0 0 r12(α) t12(α) 0

0 0 0 t12(α) r12(α) 0

t23(α) 0 0 0 0 r23(α)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(17)

Equations (15) have a natural interpretation in terms of
reflection and transmission (Fig. 4) [21]. They relate AQ(α)
at an infinite discrete set of α values, which correspond to six
different rays (Fig. 6). Each ray corresponds to an infinite set
of amplitudes with α differing by multiples of 2π .

Equations (15) and (16) are written in the reflection diago-
nal representation, as the entries of our vectors of amplitudes
always correspond to the same sectors. In the transmission

diagonal representation, the entries would correspond to the
rays of Fig. 6.

B. Yang-Baxter equation and AQ(α) in the integrable case

We are now in a position to see how our earlier informal
discussion of the Yang-Baxter equation (Sec. I C) reappears
in this formalism. By keeping track of the arguments of the
AQ(α) that appear in Eq. (15) and the other five relations, we
can trace the amplitude corresponding to each of the rays in
Fig. 5, the same rays we traced before. We see that in the first
two cases, the final ray amplitude is A213(α − 5π/6), while
in the third, it is A213(α + 7π/6). As we saw in Sec. I C, the
combined amplitude for the first two diagrams is

t12(α)r13(π/3 + α)r12(π/3 − α)

+ r12(α)r23(π/3 + α)t12(π/3 − α), (18)

while for the third it is

r23(π/3 − α)t12(π/3 + α)r13(α). (19)

Equality of these two amplitudes is then a necessary condition
for A213(α − 5π/6) = A213(α + 7π/6), i.e., periodicity of
AQ(α).

To determine that these relations are sufficient seems
daunting at first, as we have to keep track of six sets of
amplitudes in six different sectors. However, inspection of
the rays in Fig. 6 shows that scattering follows a well-defined
order, which provides a great simplification.

α
α − π/3

π/3 − α

−α

FIG. 6. (Color online) All of the rays generated by scattering.
Each of the six directions is present in each sector.
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Each boundary between sectors corresponding to a collision
of two particles has three vertices on it, corresponding to three
different scattering events. Scattering proceeds in the same
order at each boundary. Thus we only need to keep track of

six amplitudes at a time, which are mapped by the S matrix
into six others. After scattering three times, the rays are in the
sector opposite to where they started. Scattering three times
more will bring them back to their original sectors.

These six scatterings map the amplitudes as follows:⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A123(α)

−A213(−α)

A231(α)

−A321(−α)

A312(α)

−A132(−α)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

S1(α−π/6)−→

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−A123(π/3 − α)

A213(α − π/3)

−A231(π/3 − α)

A321(α − π/3)

−A312(π/3 − α)

A132(α − π/3)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

S2(α−π/2)−→

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A123(α − 2π/3)

−A213(2π/3 − α)

A231(α − 2π/3)

−A321(2π/3 − α)

A312(α − 2π/3)

−A132(2π/3 − α)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

S1(α−5π/6)−→

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−A123(π − α)

A213(α − π )

−A231(π − α)

A321(α − π )

−A312(π − α)

A132(α − π )

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

S2(α−7π/6)−→

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A123(α − 4π/3)

−A213(4π/3 − α)

A231(α − 4π/3)

−A321(4π/3 − α)

A312(α − 4π/3)

−A132(4π/3 − α)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

S1(α−3π/2)−→

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−A123(5π/3 − α)

A213(α − 5π/3)

−A231(5π/3 − α)

A321(α − 5π/3)

−A312(5π/3 − α)

A132(α − 5π/3)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

S2(α−11π/6)−→

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A123(α − 2π )

−A213(2π − α)

A231(α − 2π )

−A321(2π − α)

A312(α − 2π )

−A132(2π − α).

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (20)

Equation (20) shows that periodicity of the AQ(α) is guaran-
teed if (it is convenient to shift α → α + π/6)

S2(α − 5π/3)S1(α − 4π/3)S2(α − π )S1(α − 2π/3)

×S2(α − π/3)S1(α) = 1. (21)

Noting that S1,2(α) is 2π periodic, and S1,2(α∗ + π ) =
S−1

1,2(α), this is equivalent to

S1(α − 2π/3)S2(α − π/3)S1(α)

= S2(α)S1(α − π/3)S2(α − 2π/3), (22)

which is the Yang-Baxter equation. Parts of this equation are
trivial. For example, one can stay in the same sector only
by undergoing three reflections, so the diagonal elements
of the equation are always satisfied. Likewise, one can
only get to the opposite sector with three transmissions.
The nontrivial elements are those that connect neighboring
sectors, and these correspond to the equality of Eqs. (18)
and (19) (and the corresponding relations for other neighboring
sectors).

Verifying that the matrices given by Eq. (16) satisfy Eq. (22)
for the case g12 = g13 = g23 is now a straightforward (if
lengthy) exercise.

Now that we have a solution of the Yang-Baxter relations,
we still need to find an explicit form for AQ(α). From the
discussion of Sec. I D, we know that the Bethe ansatz form
arises solely from the pole contributions to the Sommer-
feld integral. Thus, we seek functions with the following
properties:

(1) AQ(α) are analytic and periodic with period 2π .
(2) Simple poles located at angles corresponding to the

direction of the incoming wave, and the five other angles

connecting by scattering (note that there may be other
poles off the real α axis coming from the scattering ma-
trix, which will play a role when we consider attractive
interactions).

(3) Residues of the poles related by the equations of
Sec. II A [Eq. (15)].

Why is a relation between the residues enough to guarantee
that Eq. (15) is satisfied for all α? We know that in the periodic
case, the Sommerfeld integral is given only by its residues.
Thus we can invoke the nullification theorem once more to
argue that if the residues have been chosen correctly, then the
solution must be correct.

To take a simple example, consider the impenetrable case
gij → ∞. Then all reflection amplitudes rij = −1. Fixing the
sector to be 123, we seek a function with a pole at α = φ0

with unit residue, corresponding to an incoming wave at angle
φ0 + π . Using Eq. (15), we see that there should be poles with
residue +1 at α = φ0 − 2π/3 and φ0 − 4π/3, and all angles
differing by multiples of 2π , and poles with residue −1 at α =
π/3 − φ0, π − φ0, and 5π/3 − φ0, and all angles differing by
multiples of 2π .

One way to construct an analytic function with the
correct properties is via the function p(α) ≡ 1

2 cot(α/2) =∑∞
n=−∞

1
α+2πn

having a set of poles with unit residue at
α = 2πn for integer n. Then the function

Aimp
123(α)

= p(α − φ0) − p(α − π/3 + φ0) + p(α + 2π/3 − φ0)

−p(α − π + φ0) + p(α + 4π/3 − φ0)

−p(α + φ0 − 5π/3) (23)
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has the correct poles and residues. Simplifying gives

Aimp
123(α) ≡ 3 cos 3φ0

sin 3α − sin 3φ0
, (24)

which one may verify has the desired properties. This result
was originally obtained by Sommerfeld [17], and it should
be clear that it works for arbitrary wedge angles 	 by the
replacement 3 → π/	 [with diffraction occurring when π/	

is noninteger, so that Aimp(α) is not periodic in 2π ].
The extension to the general case soluble by the Bethe

ansatz should now be clear. The residues are related to one
another as implied by Eq. (15). Denoting the residue by

RQ(α) ≡ ResAQ(α), we have, for example,⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

R123(π/3 − φ0)

R213(φ0 − π/3)

R231(π/3 − φ0)

R321(φ0 − π/3)

R312(π/3 − φ0)

R132(φ0 − π/3)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

= S1(φ0 − π/6)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

R123(φ0)

R213(−φ0)

R231(φ0)

R321(−φ0)

R312(φ0)

R132(−φ0)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (25)

[note the absence of the minus signs relative to Eq. (15)] and
similarly for the S2 equation, after which one constructs the
2π -periodic analytic function

AB
Q(α) ≡

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

RQ(φ0)p(α − φ0) + RQ(π/3 − φ0)p(α − π/3 + φ0)

+RQ(φ0 − 2π/3)p(α + 2π/3 − φ0) + RQ(π − φ0)p(α − π + φ0)

+RQ(φ0 − 4π/3)p(α + 4π/3 − φ0) + RQ(5π/3 − φ0)p(α + φ0 − 5π/3), Q = 123,231,312

RQ(−φ0)p(α + φ0) + RQ(−π/3 + φ0)p(α + π/3 − φ0)

+RQ(−φ0 + 2π/3)p(α − 2π/3 + φ0) + RQ(−π + φ0)p(α + π − φ0)

+RQ(−φ0 + 4π/3)p(α − 4π/3 + φ0) + RQ(−5π/3 + φ0)p(α − φ0 + 5π/3), Q = 213,321,132.

(26)

(the B is for Bethe). As we argued above, Eq. (26) must satisfy
Eq. (15) at all α. Additionally, we have verified this using
MATHEMATICA.

By construction, the Sommerfeld integral of Eq. (26)
reproduces the Bethe ansatz solution with no diffracted wave.
To describe an incoming wave at angle φ0 + π in the 123
sector, we choose

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

R123(φ0)

R213(−φ0)

R231(φ0)

R321(−φ0)

R312(φ0)

R132(−φ0)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

0

0

0

0

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (27)

To deal with the case where two of the particles are identical
bosons or fermions requires an incoming wave of appropriate
symmetry.

C. Diffractive scattering for weak violations
of the Yang-Baxter equation

We now move on to the case where the Yang-Baxter
equation (22) is not satisfied. This problem is much more
difficult: we must solve the functional relations given by
Eq. (15) without the condition of periodicity in α. For this
reason, only a few special cases have been worked out in
detail [9–12].

However, there is a simple result that we can write down
with little effort in the case that the Yang-Baxter equation

is nearly satisfied. Recall that the diffracted wave has the
form

ei(kr+π/4)

√
2πkr

DQ(φ), (28)

where DQ(φ) ≡ AQ(φ − π ) − AQ(φ + π ). This quantity is
small because AQ(α) is almost periodic. Using Eq. (20), we
have that

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−A123(π − φ)

A213(φ − π )

−A231(π − φ)

A321(φ − π )

−A312(π − φ)

A132(φ − π )

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= S1(φ − 2π/3)S2(φ − π/3)S1(φ)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A123(φ)

−A213(−φ)

A231(φ)

−A321(−φ)

A312(φ)

−A132(−φ)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(29)
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and ⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−A123(−π − φ)

A213(φ + π )

−A231(−π − φ)

A321(φ + π )

−A312(−π − φ)

A132(φ + π )

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

= S2(φ)S1(φ − π/3)S2(φ − 2π/3)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

A123(φ)

−A213(−φ)

A231(φ)

−A321(−φ)

A312(φ)

−A132(−φ)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(30)

are almost equal. In the first approximation, then, we can take⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

D123(−φ)

D213(φ)

D231(−φ)

D321(φ)

D312(−φ)

D132(φ)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

= [S1(φ − 2π/3)S2(φ − π/3)S1(φ) − S2(φ)S1(φ − π/3)S2(φ − 2π/3)]

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

AB
123(φ)

AB
213(−φ)

AB
231(φ)

AB
321(−φ)

AB
312(φ)

AB
132(−φ)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (31)

where we have substituted the Bethe ansatz form of AQ(α).
Equation (31) is the main result of this paper. It gives a

compact expression for the amplitude of the diffracted wave,
valid when the quantity in square brackets (which measures the
violation of the Yang-Baxter equation) is small. Substituting
the transmission and reflection amplitudes given by Eq. (6),
one finds that this quantity is first order in the deviation of the
interaction constants from the integrable point g12 = g13 =
g23 �= 0,∞. Starting from zero interaction, the diffraction
amplitude is bilinear in the interaction constants, consistent
with the perturbation theory of Ref. [22]. For interaction
constants close to infinite, the diffraction amplitude is bilinear
in 1/gij . This is to be expected since the interaction potential
gij δ(xi − xj ) may be replaced with −(1/gij )δ′′(x1 − x2) for
wave functions that vanish at coincident points.

D. Attractive interactions: Scattering to and from bound states

With attractive interactions, two- and three-particle bound
states appear. A two-particle bound state appears as a surface
wave on one of the boundaries between sectors. Motion along
the boundary corresponds to relative motion of the bound pair
and unbound particle. A surface wave corresponds to a pole in
AQ(α) located at complex φ

(i)
Q . Bearing in mind Eq. (10), we

have

φ
(i)
Q =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

π/6 + iϕ incoming at angle φ = π/6,

−π/6 − iϕ incoming at angle φ = −π/6,

7π/6 − iϕ outgoing at angle φ = π/6,

5π/6 + iϕ outgoing at angle φ = −π/6,

(32)

where ϕ > 0, and the signs are chosen in order that the wave
decays as we move away from the boundary. For instance, an
incoming wave at angle φ = π/6 has the form

e−ikr cos(π/6+iϕ−φ) = e−ikr cosh ϕ cos(φ−π/6) × e−kr sinh ϕ sin(π/6−φ),

(33)

which describes a wave with the wave vector having com-
ponents k cosh ϕ inwards along the boundary, and ik sinh ϕ

perpendicular to it. The second factor is nothing but the
two-body bound-state wave function, which allows the identi-
fication ϕ = − arcsinh(g/2k).

In the integrable case, inelastic processes in which a
bound pair forms or disintegrates cannot occur. Breaking
integrability leads to a nonzero amplitude for such processes.
To demonstrate these facts requires that we first find the analog
of the Bethe solution given by Eq. (26) for the motion of bound
pairs.

If we start from an incoming surface wave at φ = π/6 in
the 123 sector, Eq. (20) maps the amplitude within this sector
at the following arguments:

π/6 + iϕ → π/6 − iϕ → −π/2 + iϕ → 5π/6 − iϕ

→ −7π/6 + iϕ → 3π/2 − iϕ, (34)

before we repeat ourselves [due to periodicity of AQ(α)].
Inspection of the imaginary parts of the waves reveals that
only the underlined amplitudes correspond to waves that decay
appropriately at large r . Thus there must be no residue at the
other values.

To check that this is so, we start with

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

R123(π/6 + iϕ)

R213(−π/6 − iϕ)

R231(π/6 + iϕ)

R321(−π/6 − iϕ)

R312(π/6 + iϕ)

R132(−π/6 − iϕ)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

1

0

0

0

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (35)

corresponding to an incoming bound state of particles 1 and
2 at the boundary of sectors 123 and 213. We immediately
run into a problem if we try to map forwards through the
chain of Eq. (20) because S1(iϕ) is evaluated at the pole
corresponding to the two-body bound state. So instead we map
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backwards, e.g.,⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

R123(π/6 + iϕ)

R213(−π/6 − iϕ)

R231(π/6 + iϕ)

R321(−π/6 − iϕ)

R312(π/6 + iϕ)

R132(−π/6 − iϕ)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

S2(−2π/3−iϕ)−→

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

R123(3π/2 − iϕ)

R213(−3π/2 + iϕ)

R231(3π/2 − iϕ)

R321(−3π/2 + iϕ)

R312(3π/2 − iϕ)

R132(−3π/2 + iϕ)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(36)

In this way, one verifies that the three “forbidden” arguments
of Eq. (34) indeed have zero residue.

With the residues in hand, one constructs the Bethe function
in the usual way [cf. Eq. (26)]. The absence of diffraction
means that no disintegration of the bound state occurs,
although nontrivial rearrangements are possible. For instance,
the outgoing wave at angle −π/6 in sector 123, corresponding
to the argument −7π/6 + iϕ in Eq. (34), describes a bound
state of particle 2 and 3, so that the process

(1,2) + 3 −→ (2,3) + 1

is allowed. Note also that reflection of the bound state from
the single particle does not occur.

When the Yang-Baxter equation no longer holds, our result
given by Eq. (31) gives the leading-order diffraction amplitude
describing the disintegration of the bound state upon collision
with the other particle.

III. CONCLUSION

The “quantum Newton’s cradle” [4] presumably owes
its remarkable features to the distribution function of a
1D gas being unaffected by binary collisions, as described
in Sec. I. If an experiment of this type were performed
using a gas consisting of more than one species, in which
the interaction constants were not all strictly equal, then
the three-body diffractive scattering described in this work
would lead to relaxation, which would provide a controlled
demonstration of the violation of integrability. In conclusion,
we briefly sketch how our result is incorporated into the kinetic
description.

Ignoring the possibility of coherence between different
particle species (i.e., off-diagonal elements of the density
matrix), the state of such a gas is described by distribution
functions fi(k,x,t), where the index i ranges over the different
particle species, and the Boltzmann equation takes the general
form

dfi

dt
= Icoll,i[{fj }]. (37)

Binary collisions do contribute to the collision integral on
the right-hand side because two particles of different species
may bounce off each other, changing their respective fi’s.
However, the two-body collision integral will disappear from
the equation for the total occupancy

∑
i fi , which can only be

affected by diffractive scattering of three or more particles.

(k1, k2, k3)
(k1, k2, k3)

FIG. 7. (Color online) Geometry of three-particle scattering in
momentum space. Allowed values of the three momenta before and
after collision lie on the intersection of the sphere of fixed energy
and the plane of fixed momentum. The radius of the resulting circle
fixes the center-of-mass momentum k, while the angle between the
two points defines φ and the sector Q.

As an illustration, the three-body collision integral
describing the change in the occupancy of species 1 due to
collisions with species 2 and 3 takes the form (restoring all
dimensionful factors)

− h̄

2πm

∫
dk2dk3

(2π )2

∑
Q

∫ π/6

−π/6
dφ |DQ(φ,k)|2

×[f1(k1)f2(k2)f3(k3) − f1(k′
1)f2(k′

2)f3(k′
3)]. (38)

Equation (38) is written for a Boltzmann (nondegenerate)
gas for brevity, and only the momentum arguments of
the distribution functions are shown. To understand the
relationship of the angle φ and wave vector k to the momenta,
recall that momentum and energy conservation imply

k1 + k2 + k3 = k′
1 + k′

2 + k′
3 = P,

(39)
k2

1 + k2
2 + k2

3 = k′2
1 + k′2

2 + k′2
3 = 2mE.

This tells us that in three-dimensional momentum space, the
allowed values lie on the intersection of the sphere of radius√

2mE and the plane parallel to the (1,1,1) direction at a
distance P/

√
3 from the origin (Fig. 7) [23]. This is a circle

of radius k =
√

2mE − P 2/3, and the angle φ and sector Q

are determined from the angle between the points (k1,k2,k3)
and (k′

1,k
′
2,k

′
3) on this circle.

The simplest prediction that we can make on this basis is
that for a two-component Bose gas, the relaxation rate of the
overall distribution function will be ∝ n1n

2
2 + n2n

2
1 = (n1 +

n2)n1n2, where n1,2 are the densities of the two components.
The kinetics of three-body collisions has been studied

recently in the context of transport phenomena in quantum
wires [22,24–27]. Most of these studies examine small
departures from equilibrium and hence deal with the linearized
collision integral. It would be interesting to seek self-similar
solutions of the three-particle Boltzmann equation, describing
a spatially constant but nonequilibrium distribution function,
similar to those found in other circumstances [28].
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