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Projectile and target scaling of the total ionization cross sections of atoms and molecules
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A scaling for the total ionization cross sections of atomic and molecular targets by neutral to highly charged
projectiles with energies ranging from a few keV/u to many MeV/u is presented, with few free parameters, all
velocity independent, and whose values do not vary appreciably for the projectiles and atomic and molecular
targets considered here. Another important feature of the proposed scaling is that it has been built considering
the characteristics of the collision systems, taking into account the various physical processes that lead to target
ionization and the velocity regions where each of them dominates, and performing a smooth transition between
them. This scaling describes quite well the existent experimental data covering a broad range of collision systems
as diverse as H+ on H, Xe30+ on He, or O6+ on uracil.
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I. INTRODUCTION

Electron, proton, or heavy-particle ionization plays a major
role in the modeling of several processes connected to plasma
and atmospheric physics as well as in understanding and
modeling the damage induced by swift ions (or electrons)
penetrating solids or biological media. Generally the interest
is in knowing the types and numbers of collision products
that are produced plus how much energy is deposited during
each interaction between the projectile and target. However,
since each particular field has its own specialized needs one
requires such information for a virtually endless number of
systems and energies. In astrophysics, for instance, the primary
interest is in interactions between fully stripped, low atomic
number ions and atoms or simple molecules, whereas for
atmospheric physics, the interest is in interactions between
protons and dressed low atomic number ions and simple
molecules. For plasmas, industrial uses primarily involve low-
to medium-charged keV ions, in contrast, high-energy-density
research studies use high-energy highly charged ions ranging
from α particles to very heavy ions. For dosimetry and medical
uses, knowledge about keV to MeV light ions interacting with
bulk materials or biosystems is important. Information about
inelastic interactions is also essential in the design and opera-
tion of high-energy accelerators and storage rings. This means
that the systems of interest cover the whole periodic table of
atoms, plus simple to complex molecules, while the projectile
charge states range from −1 to fully stripped, including 0; and
the energies range from a few keV to hundreds of MeV/u.

To obtain all the required information is a very
complicated—if not impossible—task, since singly and/or
multiply ionized particles can be produced, and several
processes such as pure target ionization, electron capture by the
projectile, and projectile electron loss can all occur with their
relative importance depending on the projectile velocity and
charge state and on the target species. Because of this wide
application, scaling laws where a large number of systems
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can be modeled through the knowledge of a small number of
parameters are useful if not essential.

For target ionization, numerous attempts have been made
over the decades to find a general scaling law for the total
ionization of (any) target by (any) projectile. However, one is
challenged by several very difficult problems, one of which
is that, depending on the projectile velocity and charge state,
the ionization process spans three collision regimes where
quite different interaction processes and dynamics dominate.
At high velocities, where q/v—the projectile charge divided
by its velocity—is small, perturbation methods apply. Here,
the accepted scaling is to plot σ/q2, where σ is the cross
section, versus the impact energy E (Bohr scaling) [1] or
versus ln(E)/E (Bethe-Born scaling) [2]. In the intermediate
velocity regime, first-order Bohr scaling breaks down because
q/v increases. This is illustrated in the upper portion of Fig. 1,
where experimental cross sections for total (single + double)
ionization of helium by various bare and highly charged
projectiles—namely, H+ [3,4], He2+ [3], Li3+ [3,5], B5+, C6+,
O8+ [6], Ar16+ [7], and I5+ to 27+ [8]—divided by q2 are plotted
as a function of E/M , the collision energy divided by the
projectile mass. Here, higher-order theories must be used and
especially for very highly charged projectiles, violation of uni-
tarity for the first-order ionization probabilities, i.e., saturation
effects, must be taken into account. In this region, a scaling
based on that proposed by Olson and co-workers [9–11] for
the electron loss of heavy, highly stripped ions, where σ/q is
plotted versus v2/q, is often used. But, as seen in the middle
portion of Fig. 1, where the same data, divided by q, is plotted
as a function of (E/M)/q, this scaling too breaks down at low
impact velocities. A similar breakdown of this Olson scaling
for v2/q <̃ 100 keV/u was recently observed by Illescas et al.
in the calculated electron production cross sections of the water
target by bare ions [12]. Recently [13], we have shown that this
breakdown at low velocities is significantly reduced, at least
for highly charged ion impact on hydrogen and helium, if the
Olson scaling is modified plotting σ/q4/3 versus (E/M)/q2/3.
This is illustrated by the bottom portion of Fig. 1.

A third regime, occurring for impact energies below
∼100 keV/u, is where electron capture processes become
competitive, or dominant, with respect to pure ionization
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FIG. 1. (Color online) Scaled total (single + double) ionization
cross sections of He by bare projectiles. (a) Born scaling: σ/q2 in Mb
versus E/M in keV/u; (b) Olson scaling: σ/q in Mb versus (E/M)/q
in keV/u; (c) Scaling from Ref. [13]: σ/q4/3 in Mb versus (E/M)/q2/3

in keV/u. Experiment: black squares, H+ from Refs. [3,4];
red circles, He2+ from Ref. [3]; blue up triangles, Li3+ from
Refs. [3,5,6]; magenta diamonds, B5+; green down triangles, C6+;
and brown stars, O8+, all from Ref. [6]; black asterisks, Ar16+ from
Ref. [7]; and red crosses, I5+ to 27+ from Ref. [8].

processes. Thus, the loss of available flux from the ionization
channel due to the capture channel must be taken into
account.

Empirical models, such as those introduced by Gillespie
[14], for the ionization of atomic H targets in the high- to
intermediate-velocity regime, or Wu et al. [7,15], for the
ionization of He in the intermediate- to low-velocity region,
have been proposed. For additional information about these
and other scaling methods for the ionization of light targets,
such as H and He, the reader is referred to a recent paper by
Kaganovich et al. [16]. It should be noted at this point that
these scalings are essentially projectile scalings and do not

directly address the behavior of the ionization cross sections
for different targets.

The second challenge relates to neutral and partially
stripped ion impact. In this case, one needs to accurately
determine both the partially screened projectile nuclear charge
qscr and the number of active (projectile electrons which
directly interact and ionize target electrons), Nact. Here, as
outlined by Bates and Griffing [17], the cross sections scale as
q2

scr + Nact, both of which depend on the projectile charge state
and velocity. For projectile ionization, we recently proposed
methods applicable for determining these values for neutral
atoms and molecules ionizing fast, heavy ions [18]. But, for
target ionization, although it is possible to use first-order
principles to determine qscr and Nact in simple systems (see, for
example, DuBois and Manson [19]), no method exists for an
arbitrary collision system and energy. The effective projectile
nuclear field on the target electrons may change appreciably
with the collision velocity, so that reasonable estimates of the
screening of the projectile charge become very important in
the determination of the ionization cross sections.

The third challenge relates to multiple electron transition
processes. These include multiple outer-shell ionization, inner-
shell ionization followed by various relaxation processes, and
capture plus ionization (transfer-ionization) processes. Thus,
the determination from first principles of reasonably reliable
cross sections for any arbitrary collision system and energy is
almost an impossible task.

All this considered, it does not seem to be possible to take
into account all the competing processes, mainly those which
are more relevant for low-energy collisions, and covering a
huge range of projectile charge states with scalings which rely
on only one function of q and v, an assumption which is behind
the scalings presented in Fig. 1.

As already mentioned, there are many important appli-
cations where the production of ions along the track of a
swift projectile traversing a medium is crucial information.
For example, in hadron-based cancer therapy, a high-energy,
highly charged or fully stripped ion (such as C) penetrates the
human body. Along its track, the projectile not only deposits
energy but, concomitantly, changes its charge state. Starting
from typically 400 MeV/u C6+ ions at the skin surface, the
beam reaches the tumor location with an energy around the
maximum of the Bragg peak (∼400 keV/u), where the energy
deposition is highest, and a charge state around 3. Shortly after,
the projectile virtually stops as a neutral particle [20]. Thus,
along their paths, the particles in the impinging beam interact
with the molecules of the intervening tissues and the ionization
processes basically scan the three different regimes pointed
out above. Initially, one has a highly charged fast ion; thus, in
this region, the ionization can, in principle, be treated using
first-order methods. However, the strong field of the projectile
may lead to second-order processes, such as saturation. As
the projectile energy decreases, the competition with electron
capture complicates the description of the ionization, due to
the coupling between these two channels. At low energies, the
average charge state of the projectile decreases, which means
that the ionization occurs in a strongly screened nuclear field.

Some years ago, Montenegro and co-workers devised
a target scaling law for the ionization of noble gases by
protons, electrons, and He+ ions based on the plane-wave Born
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approximation (PWBA) [21]. Spurred by our recent successes
in describing the scaling for projectile ionization by various
neutral targets [18] and this target scaling for proton impact
[21], here we attempt to empirically extract a universal curve
for target ionization by neutral to highly charged projectiles
with energies between a few keV/u and several MeV/u. In
the following sections, we will present the evolution of this
empirical scaling law, beginning with bare-ion−simple-target
systems, and progressively including projectiles ranging from
neutral to highly charged, ionizing heavier and more complex
atomic and molecular targets.

Our goal is to provide a simple scaling model which can
be applied not only for modeling purposes but also can be
used as a guide in checking theoretical models for multiple
ionization, which are presently quite scarce in the literature.
The article is organized as follows. In Sec. II, a target scaling
applicable for intermediate- to high-velocity proton impact on
any target is presented, based on the ionization cross sections
within the PWBA. In Sec. III, we develop a scaling model for
ionization of He by projectiles having arbitrary charge states
ranging from fully stripped to neutral. In Sec. IV, we extend
this scaling to many-electron atomic and molecular targets. In
Sec. V the present results are summarized and conclusions are
drawn. And, in the Appendix, a sample calculation is presented
in order to help the reader to follow all the paths leading to the
proposed scaled ionization cross section.

II. TARGET SCALING FOR PROTONS

In the case of ionization by light charged particles, in the
intermediate- to high-velocity regime, the behavior of the
ionization cross section is conveniently described by first-order
models, such as the PWBA [2]. Within this approximation,
the cross section scales with the projectile charge state as q2

and with the projectile velocity v as ∼ ln (v2)/v2 (Bethe-Born
scaling) for sufficiently high velocities.

The dependence of the ionization cross section with the
target, on the other hand, is not straightforward. As has been
shown by several authors (see [19,22,23], and references
therein) single ionization of multielectron atoms involves
mostly the weakly bound electrons. This means that, when
the periodic table of elements is scanned, electrons belonging
to atomic outermost shells, with different quantum numbers
and described by quite different wave functions, are the main
actors for the ionization process. Furthermore, although single
ionization is the dominant process, multiple ionization is
always present. For light targets such as He, multiple ionization
contributes less than 5% to the total ionization cross section. In
contrast, for heavier targets such as Kr or Xe, the contribution
is on the 20%–30% level [22,24].

For example, the cross section for m-fold ionization, in
which m out of a total of N equivalent electrons in the nl

subshell undergo transitions with the same probability P (�b)
as a function of the impact parameter �b, which is the simplest
case possible, is given by [25,26]

σm =
(

N

m

)∫
P (�b)m[1 − P (�b)](N−m)d �b. (1)

Thus, the total ionization cross section, σ ion
T , can be written

as the sum of all the partial m-fold ionization cross sections,

σ ion
T = ∑

m σm. On the other hand, many experiments do not
distinguish between the ionization from different shells and
only the sum of the ionization cross sections for each individual
subshell nl, σnl—that is, σ ion

T = ∑
nl σnl—is available.

Montenegro et al. have presented a scaling law for the total
ionization for light, single-charged projectiles impinging on
noble gases [21]. The starting point of the scaling proposed by
these authors was the well-known expression for the ionization
cross section of an electron occupying a subshell nl by a
pointlike projectile, in the high-velocity limit, namely [2,27],

σnl = 8πq2a2
0cnlZnl ln(2mv2/Dnl)

(Inl/R∞)(v/v0)2
. (2)

In this equation, the constant cnl is the dipole matrix element
between the nl orbital and the continuum, summed over all
the allowed continuum states, and is the factor which, together
with the ionization energy Inl , characterizes the initial electron
state. The parameters a0 and v0 are the Bohr radius and
velocity, respectively, and Znl is the number of electrons in
the nl orbital. Dnl is a parameter approximately proportional
to Inl .

The scaling presented was based on the fact that the dipole
matrix element cnl is pretty much constant (∼0.13) for the
np orbitals of atomic hydrogen [2]. With the exception of He,
the outermost electrons of noble gases are np-type orbitals;
thus, the dipole matrix elements cnl are target independent.
It can be easily seen from Eq. (2) that the reduced cross
section I 2

nl σnl/Znl is essentially a function of v2/Inl , since
the logarithm term varies more slowly with v2 and q = 1
for protons. However, this parametrization is not enough to
make the calculated ionization cross sections for atomic p

orbitals with different values of n coalesce, due to the fact that
the cnl’s are not really constant. Those authors introduced a
parameter δnl , of order of unity, which takes into account the
small peculiarities of the dipole matrix element associated
with the various atomic orbitals. Then, they obtained an
excellent coalescence among the cross sections for all np

orbitals, including the 1s orbital as well, giving rise to a
universal curve for this set of orbitals. This can be seen in
Fig. 2, where the scaled cross section, with the inclusion of the
parameter δnl , is plotted as a universal function of the collision
velocity squared E/M in keV/u divided by the ionization
energy of the initial electron state Inl in atomic units. The
data include ionization cross sections of H [28] and noble gas
atoms [4,22,24,29–31], and, as an extension of the previous
work, of several molecules—namely, H2 [29,32], N2 [29],
H2O [33], CH4 [29,34], and uracil (C4H4N2O2) [35]—by
protons. It should be remarked here that the great majority of
the molecules of our carbon-, nitrogen-, and oxygen-based life
have p-orbital bondings. The scaled cross section for singly
charged projectiles thus plotted is written as.

σnlI
2
nl

Znlδnl

= F ((E/M)/Inl), (3)

where the universal function F ((E/M)/Inl) can be represented
by the function

F (x) = Aln(1 + Bx)

x
− AB

(1 + Cx)4
, (4)
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FIG. 2. (Color online) Scaled total ionization cross sections
[given by Eq. (3)] of atomic and molecular targets by protons in Mb
as a function of the scaled energy (E/M)/Inl in keV/u. Experiment:
black open squares, H from Ref. [28]; red open circles, He; green
open up triangles, Ne; blue open down triangles, Ar; and magenta
open diamonds, Kr, all from Refs. [22,24,29]; black crosses, Xe from
Refs. [24] and [30,31] as cited by Rudd [4]; red asterisks, H2, from
Refs. [29,32]; green solid up triangles, N2, from Ref. [29]; black
solid squares, H2O, from Ref. [33]; red solid circles, CH4, from
Refs. [29,34]; and blue solid stars, uracil, from Iriki et al. as cited
by Galassi et al. [35]. The solid line is the scaling function given by
Eq. (4) and the dotted lines represent a deviation of ±30% of the solid
line (see text).

with A = 6.15 × 103, B = 7.0 × 10−2, and C = 1.4 × 10−2

for σnl in Mb.
The parameters δnl , Znl , and Inl used in the scaling for the

various targets are shown in Table I. The ionization energies
of the outer-shell electrons of the noble gases were taken
from [36], while those of the valence molecular orbitals of the
molecular targets were those presented by Hwang et al. [37],
with the exception of uracil. For this molecule, we considered
its 11 outermost molecular orbits, which have energies ranging
from 9.46 to 15.4 eV, as recently reported by Holland et al. [38].
Actually, the scaling shown in Fig. 2 has been made using
for σnl the ionization cross sections taken from experiments
which, in general, do not select the original subshell of the
electron(s) ejected from the target. Thus, for δnl and Inl we
have used values which were averaged over the outermost
subshells whose ionization energies have close values (as, for
example, in the case of the 11 outermost orbitals of uracil),
and for Znl the total number of electrons of these subshells.

It can be seen that the proposed function provides a
remarkably good scaling for targets ranging from the simple

FIG. 3. (Color online) The same as in Fig. 2 for antiprotons.
Experiment: red circles, He from Refs. [39–41]; blue up triangles,
Ne from Ref. [42]; black squares, Ar from Refs. [41,42]; green down
triangles, Kr, and magenta stars, Xe, both from Ref. [42]; and brown
diamonds, H2 from Ref. [40]. The solid line is the scaling function
given by Eq. (4) and the dotted lines represent a deviation of ±40%
of the solid line (see text).

H atom to the complex uracil molecule, within a deviation of
±30%, represented by the dotted lines which accompany the
fitted curve F (x) given by Eq. (4). This scaled ionization cross
section will, then, be the starting point for the developments
which follow.

The same scaling has been used for the target ionization
by antiproton projectiles and the results are shown in Fig. 3.
The targets are noble gases (He to Xe), from Refs. [39–42],
and the H2 molecule is from Ref. [40]. Even though, in this
case, polarization effects are the opposite of those for proton
projectiles, we have chosen to use in the scaling for antiprotons
the same parameters as those used for protons. Although the
dispersion of the data is significantly larger than in the proton
case, which impairs further refinements of the scaling, most of
the scaled cross sections lie within ±40% of the fitted curve
F (x) given by Eq. (4).

III. PROJECTILE SCALING FOR THE He TARGET

From this point on, we will extend the preceding scaling to
other projectiles, first concentrating on the He target, since the
amount of experimental data for ionization cross sections for
this atom far exceeds the available data for any other.

TABLE I. Average values of the parameters δnl , Znl , and Inl (a.u.) used in the scaled ionization cross sections, Eq. (3), of atomic and
molecular targets by protons (see text).

H He Ne Ar Kr Xe H2 N2 H2O CH4 Uracil

δnl 0.66 0.8 0.55 0.55 1.21 1.33 1.0 1.0 0.77 1.0 0.5
Znl 1 2 6 6 6 6 2 6 6 6 22
Inl 1 1.81 1.7 1.18 1.09 0.92 1.15 1.22 1.18 0.92 0.97
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FIG. 4. (Color online) Scaled total ionization cross sections of Ar,
in Mb, for various projectiles. (a) Born scaling: σ/q2 in Mb versus
E/M in keV/u; (b) scaling from Ref. [13]: σ/q4/3 in (Mb) versus
(E/M)/q2/3 in keV/u. Experiment: green squares, H+ from Ref. [4];
blue up triangles, H+ from Ref. [24]; red circles, He+ from Ref. [43];
orange down triangles, He2+ from Ref. [44]; magenta stars, C3+ from
Ref. [45]; black cross, C3+ from Ref. [46]; and violet diamonds,
Arq+, with q ranging from 6 to 14, from Ref. [47]. The solid line is
the scaling function given by Eqs. (3) and (4).

A. High- to intermediate-velocity collisions

Several attempts have been made during the past decade in
order to find a scaling for target ionization by highly charged
projectiles (see, for example, the review of Kaganovich et al.
[16] for simple, low-Z targets, and references therein). The
most obvious procedure is simply to include a scaling which
depends on the projectile charge state q, like the Born scaling
(σ/q2 versus v2), the Olson scaling (σ/q versus v2/q), or the
one proposed in Ref. [13] (σ/q4/3 versus v2/q2/3).

These simple scalings work quite well for high-velocity
bare ions (as long as their charge state is not very high—
see Fig. 1), but fails both for partially dressed ions and in
the intermediate- and low-velocity regimes. As an example,
we show in Fig. 4 the Born scaling and the one proposed in
Ref. [13] for the ionization of Ar atoms by bare and dressed
projectiles, ranging from protons up to Ar14+ ions [43–47].
The curve is that given by Eq. (3). It can be readily seen that
neither scaling provides a good description of the experimental
data either for highly charged ions or in the intermediate-
velocity region, the one proposed in Ref. [13] being better for
intermediate velocities, but still not good enough.

In order to try to find a scaling law for the ionization of
atomic hydrogen by intermediate-velocity highly charged pro-
jectiles within the plane-wave Born approximation (PWBA),
Gillespie proposed the inclusion of an exponential factor
which is velocity- and charge-state dependent [14]. His scaled
ionization cross section, here called σG, is given by (from here
on the ionization cross section by protons will be called σp)

σG = q2
Gσp, (5)

where

qG = qe−f (v,q) (6)

is a parameter which depends on the collision velocity and on
the projectile charge state. In the scaling proposed by Gillespie,
the function f (v,q) is given by

f (v,q) = λq/v2, (7)

where λ is a constant.

B. Intermediate- to low-velocity collisions

Although providing good results for the ionization of
hydrogen atoms by H+, He2+, Li2+, Li3+, C4+, N5+, N+4,
and O5+ ions, this scaling from Gillespie is subject to
several restrictions. First, since the projectile is treated as
a structureless pointlike particle, one must have q � ZP/2,
where ZP is the projectile atomic number [14]. Another
restriction is that the calculations are limited to collision
velocities larger than 30 keV/u [14]. Actually, the scaled cross
section proposed by Gillespie tends to zero faster than the
experimental evidence, as the velocity decreases.

Also, Gillespie scaling totally fails for neutral projectiles,
since, by keeping the q2 scaling, it predicts that the ionization
cross section is zero, a fact that is definitely not supported by
experiment. Actually, there are several sets of data which show
that the ionization cross sections by neutral projectiles can be
of the same order—or, sometimes, even higher—than those
for charged ions (see, for instance, the works of Luna et al. for
H+ and H0 projectiles on water [33], DuBois and Toburen
for neutral and singly charged He, C, N, and O projectiles on
He [48], and Alvarado et al. for neutral and singly charged H,
He, and C projectiles on adenine [49]).

The scaling proposed in Sec. II for σp by low-Z singly
charged projectiles works very well for a wide range of
projectile velocities (see Fig. 2). However, if one makes q = 1
in Eq. (7), Gillespie’s scaled cross section, given by Eq. (5),
will differ from the proton cross section σp by a velocity-
dependent exponential factor which, although tending to 1 at
high velocities, may be quite relevant in the intermediate- and
low-velocity regimes.

Thus, to circumvent the difficulties pointed out above, we
have introduced some modifications in the function f (v,q),
given by Eq. (7), but keeping asymptotically the same velocity
dependence of the Gillespie scaling, so that it is now written
as

f (v,qscr) = λβ(qscr − 1)

βv2/(2Inl) + λ(qscr − 1)e−2(v2/2Inl )3/4 , (8)

where Inl is the ionization energy of an electron belonging
to the outermost target subshell in atomic units, qscr is the
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effective screened nuclear charge of the projectile acting on
the target active electrons, and β is a parameter given by

β = Znl

5Inl

qscr

ZP
. (9)

The parameter λ for He has, of course, a different value
than that for H, as given by Gillespie [14]. In fact, λ will be
considered a target-dependent fitting parameter in the present
scaling procedure, as will be seen later.

The reason for the introduction of this qscr is twofold.
First, one has to take into account the fact that, for a dressed
projectile, the nuclear field is screened by its electrons. This
screening depends on the impact parameter of the collision and
becomes more important for intermediate and low velocities.
For high velocities—that is, a region dominated by large
impact parameters—the target electrons interact essentially
with the projectile charge q. Thus, this screened charge has
to satisfy the asymptotic conditions: qscr → q as r → ∞ and
qscr → ZP as r → 0. Using the Hartree-Fock-based analytical
screening function from Salvat et al. [50], one can write an
expression for qscr, which has the correct asymptotic behavior,
as

qscr = q + (ZP − q)
∑

i

Ai(1 + αiradiab)e−αiradiab , (10)

where αi and Ai are parameters tabulated in Ref. [50], with∑
i Ai = 1.
In Eq. (10), we have considered the distance r as the adia-

batic radius radiab, which can be used to define a typical distance
for the direct-impact ionization process, being proportional to
the collision velocity and inversely proportional to the target
electron ionization energy, and is given in atomic units by [51]

radiab = γ
2v

Inl

. (11)

In Eq. (11), the factor γ has been used to take into account
the different “sizes” of the atomic and molecular targets. The
values of γ considered here were 0.8 for He and Ne, 1.0 for
the other atomic targets, and 1.4 for the molecular targets.

The second reason concerns the fact that both the Gillespie
and Wu scalings go to 0 for neutral projectiles, while the
experimental cross sections do not. If one uses q = 0 in
Eq. (10), one still gets a scaled cross section equal to 0
in the high-velocity regime, when radiab is high. In order to
circumvent this difficulty, we have used in Eq. (10) for neutral
projectiles an asymptotic charge q = qasym, which is defined
as the square root of the ratio between the ionization cross sec-
tions by the neutral projectile and by protons at high velocities.
Using experimental data for the ionization of He, qasym varies
from ∼0.6 for H0 to ∼1.5 for Ne0 impact. For high-velocity
charged projectiles, although the main contribution to target
ionization comes effectively from large impact parameters, one
cannot neglect completely the contribution from small impact
parameters. For neutral projectiles, on the other hand, the
contribution from distant collisions is very small and ionization
is dominated by small impact parameters. Thus, the asymptotic
charge reflects somehow the effect of the screening of the
projectile nuclear charge by its electrons for high collision
velocities, in analogy with the screening contribution to the
projectile electron loss process [52].

This modified function f (v,qscr), given by Eq. (8), thus
tends to 0 as qscr is 1, as for proton impact, but has the
same velocity dependence of the Gillespie scaling, as given
by Eq. (5), in the high-velocity regime. This has been done on
purpose since, at low velocities, f (v,qscr) tends to a constant,
β. The dependence of the effective charge qf (v,qscr) with q

and v at low velocities has to include other mechanisms which
may lead to target ionization, and which are not properly
described by the function given by Eq. (8). This will be
discussed in the next section.

C. Low-velocity collisions

Wu et al. [7] proposed a scaling law for the ionization of
He by highly charged projectiles in the low-velocity region,
which works quite well for projectile velocities below 1.5 a.u.,
but does not match that of Gillespie for intermediate velocities.
The scaling proposed by Wu et al. also contains an exponential
term which, however, has a different dependence on the
projectile velocity v and charge state q than Gillespie’s: it
is a function of the ratio (v/q1/4). This scaled cross section,
which will be called σW, is given by

σW = qD(v/q1/4)e−K/(v/q1/4), (12)

where D and K are fitting parameters, which are given by Wu
et al. as 1.1 × 104 Mb and 7.24, respectively, for v in atomic
units. Since the ionization cross section σp at low energy, as
given by Eqs. (3) and (4), depends on the collision velocity as
v2, one can write

q1/2 σp ∝ q1/2v2 ∝
(

v

q1/4

)2

, (13)

so that the combination of the Wu scaling with the ionization
cross section for singly charged projectiles would essentially
be proportional to q1/2σp.

However, the scaling proposed by Wu et al. presents the
same difficulty as Gillespie’s, already pointed out before,
concerning neutral projectiles, since it also goes to 0 for
q = 0. Another important point in the case of the Wu scaling
is that there are appreciable deviations between the results
given by Eq. (13) and He ionization cross sections not only by
neutral but, also, low-charged projectiles. In Fig. 5, the scaled
ionization cross section σion/q of He is plotted as a function
of the scaled velocity (v/q1/4) up to 1.5 a.u., for projectiles
with charge states ranging from 0 to 30, namely, H0 [53], He0

and Ne0 [54], He+ [55], He2+ and Li3+ [3], C0, C+, C2+, N0,
N+, N2+, N3+, O0, and O+ [48], I5+ to 16+ [8], and Ar16+ and
Xe30+ [7].

Two main deviations from the Wu scaling can be seen in this
figure, which describes the data for highly charged and bare
projectiles quite well for velocities between 0.7 and 1.5 a.u.
For scaled velocities below ≈0.7 a.u., the Ar16+ and Xe30+
data from [7] tend to lie above the scaled cross-section curve, a
fact that is discussed by those authors in detail. But, the scaled
cross sections for low-charged dressed projectiles seem to be
quite velocity independent, lying along a plateau which can be
one order of magnitude higher than the scaled curve, even in
the velocity region where Eq. (12) provides a good description
of the bare- or highly-charged-ion data.
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FIG. 5. (Color online) Scaled ionization cross sections (σion/q)
of He by several projectiles as a function of the scaled velocity
(v/q1/4). Experiment: orange squares, H0 [53]; orange up triangles,
C0; orange down triangles, N0; orange diamonds, O0, all from [48];
orange circles, He0, and orange stars, Ne0, both from [54]; purple
squares, He+ [55]; purple circles, C+; purple triangles, N+; and purple
diamonds, O+, all from [48]; green squares, He2+ [3]; green circles,
C2+; green triangles, N2+, both from [48]; magenta squares, Li3+ [3];
magenta triangles, N3+ [48]; blue triangles, I5+ to 16+ [8]; red circles,
Ar16+ and black squares, Xe30+, both from [7]. The solid line is the
scaling function given by Eq. (12).

It should be noted at this point that the scaling proposed in
[13] shows quite good agreement with the Wu scaling for bare-
and highly-charged-ion impact but, even if effective charges
are used, it does not work for neutral and partially stripped
projectiles, where it presents a similar behavior as that of Wu’s
as discussed above.

This nonunivocal behavior of the scaling function proposed
by Wu et al. [7]—that is, the fact that these two groups
of data present different velocity dependencies for the same
velocity range—seems to indicate that there are two different
mechanisms which contribute to the target ionization process.

First, let us consider the highly charged, low-velocity Ar16+
and Xe30+ data on He of Wu et al. [7] and assume that the
scaled total ionization cross section σion can be written in the
same form as has been done for the Gillespie scaling [Eq. (5)],
namely,

σion = q2
Wσp, (14)

where qW is written as

qW = qe−g(v,q). (15)

The function g(v,q) describes the dependence of the scaled
cross section on the projectile velocity and charge state in the
low-energy regime for the ionization cross sections of He by
highly charged, low-velocity projectiles. From Eqs. (14) and
(15), this function can be written as

g(v,q) = −1

2
ln

(
σion/σp

q2

)
. (16)

A plot of g(v,q) as a function of the scaled velocity
proposed by Wu et al., (v/q1/4), is shown in Fig. 6, where

FIG. 6. (Color online) g(v,q), given by Eq. (16) as a function of
the scaled velocity (v/q1/4). Experiment: red squares, Ar16+, and blue
circles, Xe30+, both from [7]. The solid line is the linear fit given by
Eq. (17) (see text).

σion are the ionization cross sections of He by the highly
charged, low-velocity Ar16+ and Xe30+ projectiles of Wu
et al. [7]. It can be seen that these highly charged data present
an approximately linear behavior with the scaled velocity,
represented here by

glin(v,q) = A0 + B0

(
v

q1/4

)
, (17)

with A0 = 6.3 and B0 = −3.5 for v in atomic units.
In the intermediate- to low-velocity regime, there are two

competitive collision channels, namely, ionization and capture,
whose dominance depends on the region of the target where
the collision occurs.

For the capture process, there are two radii, which appear
in the Bohr-Lindhard model for capture [56–58]: the capture
radius, defined as

rcap = 2q

v2
, (18)

and the release radius, defined as

rrel =
√

qa

Inl

=
√

q

(Inl)3/4
, (19)

where a is the target electron orbital radius in atomic units.
It has been observed that the parameter which provides

a clearer separation between the two distinct groups of the
low-energy data shown in Fig. 5 is the ratio between the release
and the adiabatic radii,

R = rrel

radiab
=

√
q

2γ v
(Inl)

1/4. (20)

In Fig. 7, the ratio between g, given by Eq. (16), and the
linear function glin, given by Eq. (17), of all the low-energy
data of Fig. 5 is plotted as a function of the ratio R. It can be
seen that the separation between the two groups of data occurs
for R 	 2.0. While the ratios g/glin for the Ar16+ and Xe30+
data of [7] lie of course around 1, the ratios for the other,
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FIG. 7. (Color online) Ratio g / glin as a function of the R =
rrel/radiab. Experiment: orange stars, q = 0 [48,53,54]; brown down
triangles, q = 1 [48,55]; green asterisks, q = 2 [3,48]; magenta
diamonds, q = 3 [3,48]; blue triangles, q = 5 − 16 [8]; red circles,
q = 16; and black squares, q = 30, both from [7].

low-charge, projectiles are much lower, being around zero,
but with a much larger dispersion. The low-velocity bare-ion
He2+ and Li3+ data from [3], and highly charged I5+ to 16+ data
from [8] seem to bridge these groups.

For the low-energy He data, the capture radius is always
larger than the release and adiabatic radii; these differences
can be very large for highly charged projectiles. This reflects
the fact that the capture is the dominant process, mainly for
highly charged projectiles, in which case almost all released
electrons are captured and ionization is due to essentially a kind
of “unsuccessful capture.” The fact that this group only appears
for values of rrel >̃, 2.0radiab indicates that these released, but
not-captured, electrons open a new channel for ionization, in
which the electrons are not ejected due to a “direct impact”
with the projectile, but rather due to an unsuccessful capture.
However, when the projectile charge decreases, capture—
although still the dominant process—becomes less important,
and the capture radius is of the same order of the release and
the adiabatic radii.

Moreover, Fig. 7 also shows that the parameter R provides
the means for a univocal description of the low-energy
ionization cross sections of the He atom. Thus, it is here
proposed to consider the charge q, which appears in Eqs. (6)
and (15), as a function of the ratio R, rather than as a function
of q and v in the form

q(R) = q + qscr − q

e(R−R0)/α(q) + 1
, (21)

where q is the projectile charge state, qscr is the screened
projectile charge given by Eq. (10), α(q) = α0q

1/4, where
α0 is an adjustable parameter, here taken as 0.01 in all
cases, and R0 is the value of the ratio R for which the
transition between the two different ionization regimes occurs.
It was found that R0 = 2.5 provided the best overall fit to
the data. This function q(R), inspired in the Fermi-Dirac
distribution law, provides a smooth connection between those
two different ionization regimes, instead of using a step

function. It tends to q for R 
 R0 (corresponding to highly
charged slow projectiles, for which ionization is dominated
by the unsuccessful capture mechanism) and to qscr for
R � R0 (low-charged fast projectiles, for which ionization
is dominated by the direct impact mechanism).

D. Connection of the low-, intermediate-, and high-velocity
regimes for the He target

If one wishes to extend this procedure to faster collisions,
one should consider that, as mentioned before, for higher
velocities, the scaling proposed by Gillespie provides a good
description of the ionization of H—and, to a lesser extent,
of He —atoms by highly charged projectiles [14,16]. So,
here we propose a scaling for the ionization cross section
of He—to be extended in the next section to other atomic
and molecular targets whose outermost electrons occupy np

subshells—which attempts to overcome the limitations of
the Gillespie, Wu, and other scalings, concerning neutral
projectiles and covering a wide range of projectile velocities.

In the proposed scaling the scaled total ionization cross
section σion is still calculated in a way similar to those given
by Eqs. (5) and (14), that is,

σion = q2
effσp, (22)

where the parameter qeff is defined as

qeff = q(R)e−h, (23)

with the new function h(v,q,qscr,R) given by

h(v,q,qscr,R) = g(v,q) + f (v,qscr) − g(v,q)

e(R−R0)/α(q) + 1
, (24)

where f (v,qscr) is the “modified Gillespie” scaling, given by
Eq. (8), and g(v,q) is the linear function, given by Eq. (17),
and which is based on the Wu scaling.

This function h(v,q,qscr,R), which has been constructed
using the same procedure of q(R), shows a similar behavior
with the ratio R. For large values of R when compared to
R0, the function h is essentially given by the linear function
g(v,q), which depends on the projectile charge state q, and
refers to highly charged slow projectiles. On the other hand,
when R � R0, which are related essentially to high-velocity
collisions, the function h is given by the modified Gillespie
scaling f (v,qscr), and is a function of the effective charge
rather than the actual charge state of the projectile.

The results of the proposed scaling for the total ionization
of He targets by different projectiles, ranging from neutrals
to highly stripped ones, are shown in Fig. 8. In this figure
the scaled experimental ionization cross sections σ

expt
ion / q2

eff ,
where σ

expt
ion is the experimental total ionization cross section

and qeff is given by Eq. (23), are plotted as a function of the
square of the collision velocity, for the following projectiles:
H0 from [48,53], He0 from [48,54], H+, He2+, and Li3+ all
from [3], Ar16+ and Xe30+ from [7], and I5+ to 16+ from [8].
The curve represents the scaled ionization cross sections for
singly charged projectiles σp, given by Eq. (3).

Although providing a reasonable fit for some of the
experimental data, mainly in the high-velocity regime, the
proposed scaling fails to describe the experimental results in
the intermediate- to low-velocity region, mainly those related
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FIG. 8. (Color online) Scaled experimental ionization cross sec-
tions (σ exp

ion /q2
eff ) of He by several projectiles as a function of E/M .

Experiment: black up triangles, H0 [48]; brown up triangles, H0 [53];
blue up triangles, H+ [3]; black squares, He0 [48]; orange squares,
He0 [54]; red squares, He+ [55]; blue squares, He2+ [3]; blue circles,
Li3+ [3]; purple squares, I5+ to 16+ [8]; and green inverted triangles,
Ar16+ and green diamonds, Xe30+, both from [7]. The solid line is
the scaled ionization cross sections for singly charged projectiles σp

given by Eq. (3).

to highly charged projectiles, such as Ar16+, Xe30+, and
I5+ to 16+. These discrepancies could not be eliminated—or
even reduced to a reasonable level—by varying the fitting
parameters β and λ, in the function f (v,qeff), and α0, in the
functions q(R) and h(v,q,qeff,R). The physical reason for
these discrepancies will be discussed in the next section.

E. Inclusion of the binding correction

During the 1970s, Brandt and co-workers presented a series
of articles in which they introduced several corrections to first-
order and semiclassical treatments of inner-shell ionization by
charged projectiles [59–66]. One of the most important of these
corrections refers to the increase of the binding energy of the
target active electron due to the Coulomb field of the impinging
projectile with a corresponding decrease of the ionization cross
section [51,59–63,67].

In general, using hydrogenic wave functions to describe the
active target electrons, the binding energy of an electron with
principal quantum number n can be written in atomic units as

I = (Z∗
T)2

n2
, (25)

where Z∗
T = ZT − s is the screened target atomic number, with

ZT being the target atomic number and s the Slater screening
constant [68]. In the case of the atomic targets considered
here, the values of Z∗

T for the outermost electrons were 1.7,
5.85, and 6.75 for He, Ne, and Ar, respectively. The values of
Z∗

T for molecules were calculated under the assumption that
only the nonbonding electrons contribute to the screening;
that is, the electrons participating in the covalent bonding do
not provide any screening. For example, for water one has

Z∗
T = 8 − 2 × 0.85 − 3 × 0.35 = 5.25, and, for uracil, Z∗

T =
6 − 2 × 0.85 − 0 × 0.35 = 4.3.

The binding correction consists essentially in considering
that, during the collision, the active target electrons are subject
to the combined Coulomb field of the projectile and the target,
so that their ionization energies are rewritten as

I ∗ = (Z∗)2

n2
=

(
Z∗

Z∗
T

)2

I = εI, (26)

where Z∗, given by

Z∗ = Z∗
P + Z∗

T, (27)

is the total effective nuclear charge due to the presence of the
projectile, whose charge is represented by Z∗

P, near the distance
of closest approach, considering that the wave function of
the active target electron evolves adiabatically during the
transition. Thus, ε represents the correction factor for the
ionization energy of the active electron due to the binding
effect which can be written as

ε =
(

Z∗

Z∗
T

)2

=
(

1 + Z∗
P

Z∗
T

)2

. (28)

The parameter Z∗
P has been introduced by several authors

by means of different functions of the collision velocity, also
depending on the atomic subshell of the active electron (see,
for instance, Refs. [51,59–61,63]). Here, aiming to provide
the simplest description possible for the binding correction,
we have written this parameter as

Z∗
P = κ(q − 1)e−radiab . (29)

As will be seen, the parameter κ will be taken as 0.6 for
hydrogen and 1.0 for all the other targets considered here.
Thus, the binding correction factor can be written as

ε =
[

1 + κ
(q − 1)

Z∗
T

e−radiab

]2

. (30)

The increase in the binding energies of the target active
electrons occurs only for the direct ionization process; that is,
for R � R0. So, following the reasoning used above to perform
the smooth connection between the two different ionization
regimes, one can define an effective binding correction factor
as

ε̄ = 1 + ε − 1

e(R−R0)/α(q) + 1
. (31)

We can define a scaled experimental ionization cross section
as

σ
exp
scaled(E/Mε̄) = ε̄2σ

exp
ion (E/Mε̄)

q2
eff

= σP(E/M), (32)

with qeff and ε̄ given by Eqs. (23) and (31), respectively.
In Eq. (32), the scaled ionization cross section for protons σP

is calculated as a function of E/M because, from Eq. (30), ε =
1 for protons. It should be remarked that, since the parameters
used to calculate the scaled ionization cross section for protons
σP have been obtained empirically, the binding effect is already
included in the fitting given by Eqs. (3) and (4). The parameter
ε̄ provides an additional correction, due to the binding effect
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FIG. 9. (Color online) Scaled experimental ionization cross
sections including the binding correction σ

exp
ion ε̄2/q2

eff of He by
several projectiles as a function of Ecorr = E/(Mε̄) (see text). The
experimental data are the same as in Fig. 8. The solid line is the scaled
ionization cross sections for singly charged projectiles σp given by
Eq. (3) and the dotted lines represent a deviation of ±40% of the solid
line (see text).

for other projectiles, which act on top of the one for protons.
Thus, the ionization cross section is obtained as

σion = q2
eff

ε̄2
σP(E/Mε̄). (33)

The results of the proposed scaling for the total ionization
of He considering the binding correction are shown in Fig. 9,
where the scaled experimental ionization cross section, σ exp

scaled,
given by Eq. (32), is plotted as a function of the square of
the collision velocity, including the binding correction Ecorr =
E/(Mε̄), for the same collision systems as those of Fig. 8.
The curve represents the scaled ionization cross sections for
singly charged projectiles σp given by Eq. (3), also with Inl

multiplied by ε̄.
It can be readily seen that the introduction of the binding

correction factor produces an appreciable improvement in the
scaling, which can now be considered to be very good, within
a deviation of ±40%, represented by the dotted lines, mainly
if one takes into account the very broad range of collision
velocities and projectile charge states.

IV. PROJECTILE SCALING FOR OTHER ATOMIC AND
MOLECULAR TARGETS

The results of the proposed scaling for the total ionization
of H, Ne, Ar, water, and uracil targets by different projectiles,
ranging from neutrals to highly stripped ones, are shown in
Figs. 10–14. The solid lines in these figures are the scaled
ionization cross sections for protons σp obtained as the sum of
the scaled cross sections calculated for each orbital nl using
Eq. (3). As in Sec. II, the ionization energies of the outer-shell
electrons of the noble gases were taken from [36], while those
of the valence molecular orbitals of the water and uracil targets
were those presented by Hwang et al. [37] and Holland et al.
[38], respectively. The values of δnl , Inl , and Znl for the nl

FIG. 10. (Color online) The same as in Fig. 8 for the H target.
Experiment: black squares, H+ and green circles, He2+, both from
[28]; red squares, Li+; red circles, Li2+; and red triangles, Li3+, all
from [69]; blue squares, C2+; blue circles, C3+; blue triangles, C4+;
magenta squares, O2+; magenta circles, O3+; and magenta triangles,
C4+, all from [70]; orange squares, Ar3+; orange circles, Ar4+; orange
triangles, Ar5+; and orange diamonds, Ar6+, all from [71].

orbitals considered here for these targets are summarized in
Table II.

The fitting parameters for all these scalings, including that
for He presented in the preceding section, are summarized in
Table III. It should be noted that the values of the parameter
B, which appear in Eq. (4), for H and Ne differ from those for
the other targets, in order to obtain better fits for the proton
data of Refs. [28] and [4], respectively. In the Appendix, a
sample calculation is presented with the aim of helping the
reader to follow all the steps to obtain the scaled ionization
cross sections which are proposed here.

FIG. 11. (Color online) The same as in Fig. 8 for the Ne target.
Experiment: black squares, H+ [4]; red squares, H+ [72]; blue up
triangles, He+ [43]; blue circles, He2+ [19]; orange squares, Li3+

[73]; green inverted triangles, B2+ [74]; magenta diamonds, C3+ [75];
brown circles, Ne3+ [76]; and purple stars, C6+ [11].
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FIG. 12. (Color online) The same as in Fig. 8 for the Ar target.
Experiment: black squares, H+ [4]; red squares, H+ [72]; blue up
triangles, He+ [43]; blue circles, He2+ [19]; orange up triangles, C3+

[45]; magenta diamonds, C3+ [46]; green inverted triangles, Ar4+ to 14+

[47]; orange stars, C6+; purple stars, Nb23+,31+,34+; and gray stars,
Pb54+, all from Ref. [11].

These figures show that the proposed scaling describes
quite well the ionization cross sections for the atomic and
molecular targets, with the exception of the intermediate-
to low-velocity data of the ionization of uracil by C4+ and
O6+ projectiles reported by Agnihotri et al. [82], where the
deviations from the scaled ionization cross sections for protons
are very large, not only in absolute values but also in trend
(see Fig. 14). These deviations begin around 100 keV/u and
increase as the collision velocity decreases. The explanation
for these discrepancies is that the experimental data reported
by Agnihotri et al. do not discriminate between the ionization
and transfer-ionization (TI) processes. Since electron capture

FIG. 13. (Color online) The same as in Fig. 8 for the water
target. Experiment: red squares, H0 and black squares, H+ [33]; blue
up triangles, He+ [77]; magenta circles, Li3+ [78]; green inverted
triangles, C3+ [79]; purple stars, C6+ [80]; and orange diamonds,
Xe44+ [81].

FIG. 14. (Color online) The same as in Fig. 8 for the uracil target.
Experiment: red squares, H+ from Iriki et al. as cited by Galassi
et al. [35]; blue circles, C4+ [82]; and green triangles, O6+ [82].

(including TI) is the dominant process in collisions with
low-velocity highly charged projectiles, it is not surprising
that the experimental cross sections present such a different
behavior than the proposed scaling.

The contribution of TI can be included in an approximate
way if the semiclassical Bohr-Lindhard model as presented by
Knudsen et al. [57], normalized to the lowest-energy data of
Agnihotri et al., is added to the ionization calculations using
the proposed scaling. Although this model is for total electron
capture, i.e., single electron capture plus TI, it should give a
fair description for the TI energy dependence. This is shown in
Fig. 15 for C4+ projectiles. It can be seen that the sum of the TI
and the ionization cross sections provides a good description
of the experimental data for the entire energy range.

TABLE II. Parameters δnl , Znl , and Inl (a.u.) for the nl orbitals of
the H, Ne, Ar, water, and uracil targets.

Target Orbital δnl Znl Inl

H 1s 0.66 1 1.00
He 1s 0.80 2 1.81
Ne 2p 0.55 6 1.70

2s 0.60 2 3.86
Ar 3p 0.55 6 1.18

3s 0.6 2 2.56
2p 0.55 6 19.1
2s 0.6 2 24.6

H2O 1b1 1.00 2 0.93
3a1 0.66 2 1.14
1b2 0.66 2 1.46
2a1 0.66 2 2.71

Uracil 5a′′; 4a′′; 0.50 8 0.75
16a′′; 15a′

3a′′; 2a′′; 0.50 8 1.01
14a′; 13a′

12a′; 1a′′; 0.50 6 1.13
11a′
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TABLE III. Parameters used in the scaled ionization cross sections, given by Eq. (32), of atomic and molecular targets by various projectiles.

Related quantity Equations All targets H He Ne Ar H2O Uracil

A F (x) (4) 6150
B F (x) (4) 0.11 0.07 0.11 0.07 0.07 0.07
C F (x) (4) 0.014
A0 g(v,q) (17) 6.3
B0 g(v,q) (17) − 3.5
R0 rrel/radiab (21), (24), (31) 2.5
λ f (v,q) (7), (8), (24) 0.06 0.06 0.50 0.80 1.10 0.60
γ radib (11) 1.0 0.82 0.85 1.0 1.4 1.4
κ Z∗

P (29) 0.6 1.0 1.0 1.0 1.0 1.0
(qasym)H qeff See text 0.60 0.65 0.60 0.80
(qasym)He qeff See text 0.90 0.90 0.90 0.90
α0 α(q) (21), (24), (31) 0.01

As a last point, it is instructive to analyze the behavior of
the effective charge qeff given by Eq. (33) as

qeff = ε̄

√
σ

exp
ion (E/M)

σP(E/Mε̄)
(34)

as a function of the collision energy. In Fig. 16, the values
of qeff are plotted as a function of the square of the velocity
for collisions of C3+ projectiles on Ne. The line represents
the calculated values from Eq. (23), while the squares were
obtained from Eq. (34), for the experimental values of Kirchner
et al. [75]. For high velocities, the values of qeff tend to q, as
expected. As the collision velocity decreases, the effect of the
saturation of the ionization probabilities becomes important,
as described by the Gillespie-type scaling [see, for instance,
Eqs. (5)–(8)], and qeff decreases, so that unitarity of the
ionization probability is preserved. For even smaller velocities,
this behavior is reversed and qeff increases again, in this
instance due to the decrease of the screening of the projectile

FIG. 15. (Color online) Total positive ion production for col-
lisions of C4+ projectiles and the uracil target. Experiment: blue
squares, [82]. Theory: red dashed line, ionization cross sections using
the present scaling, Eq. (32); blue dash-dotted line, capture cross
sections using the Bohr-Lindhard model [57]; and full line, sum of
the ionization and capture cross sections.

nuclear charge by its electrons as the velocity decreases, as
discussed in Sec. III B. This behavior is different than that
observed in the energy loss of ions and atoms traversing matter
[83–85], because, in the latter, the charge of the projectile
varies continuously during the penetration process, while the
effective charge shown in Fig. 16 has been obtained for a fixed
value of q for the whole velocity range, thus representing a
completely different physical situation.

V. SUMMARY AND CONCLUSIONS

A scaling for the total ionization cross sections of atomic
and molecular targets by neutral to highly charged projectiles
with energies ranging from a few keV/u to many MeV/u has
been proposed. This scaling describes quite well the existent
experimental data for collision systems as diverse as H+ on H,
Xe30+ on He, or O6+ on uracil.

The reason for developing this scaling is that simple
scalings, such as Bohr’s, Olson’s, or the one presented in [13],
try to write the ratio between the ionization cross section and
some power of the projectile charge state q as a single function

FIG. 16. (Color online) Projectile effective charge as a function
of E/M in keV/u for collisions of C3+ projectiles on Ne. The black
line is the value of qeff obtained using Eq. (23). Experiment: blue
squares, qeff obtained from Eq. (34) for the data of Ref. [75].
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of the ratio of the collision velocity by another power of q,
which renders them, on the one hand, very easy to use but, on
the other hand, too limited, both from the mathematical and
physical points of view, because they cannot take into account
either other processes which compete with ionization at low
collision energies, or cover a wide range of projectile charge
states, for a large variety of targets.

The scaling presented here has been obtained using the
following strategy. First, a target scaling for protons was
developed as a function of the collision velocity. Then, this
target scaling was left intact, except for the introduction of the
effect of the projectile on the binding energy of the active target
electrons, and all the physical aspects concerning how the
projectile affects the target ionization dynamics have been in-
cluded by means of an effective charge qeff , which is a function
of the projectile charge state as well as its velocity. The scaled
cross section was, then, obtained as a product of the square of
the effective charge by the scaling function for protons.

The usefulness and adequacy of the line of reasoning of
the proposed scaling lie on two main features. First, it has few
free parameters, which are all velocity independent and whose
values, with one exception, do not vary appreciably for the
projectiles and atomic and molecular targets considered here.
The only exception is the parameter λ, which is related to the
high-velocity behavior of the cross section, described by the
scaling introduced by Gillespie [14], whose values for the H
and He targets are one order of magnitude smaller that those
for the other targets.

The second important feature is that the proposed scaling
has been built considering the characteristics of the collision
systems, taking into account the various physical processes that
lead to target ionization and the velocity regions where each
of them dominates, and trying to perform a smooth transition
between them.

It should be emphasized that the parameters chosen here are
not necessarily those that will provide the best possible fit for
a specific projectile-target system, but rather they are intended
to act as guiding values for estimating ionization cross sections
for systems where experimental data are scarce or nonexistent.
As new experimental data become available, the values of these
parameters can be further refined in order to provide even better
descriptions of the ionization cross sections. This is the case,
for instance, of the parameter λ, whose values for targets so
different as Ne, Ar, water, and uracil lie between 0.55 and 1.1,
so that one can assume that, for other atoms and molecules, its
value will probably also be within this range.
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TABLE IV. Sample calculation of the scaled ionization cross
section for 100 keV/u C3+ on Ne.

Quantity or parameter Equation or definition Value

v 0.2
√

E/M (keV/u) 2.00
γ Table III 0.85
radiab Eq. (11) 2.00
qscr Eq. (10) 3.51
β Eq. (9) 0.413
λ Table III 0.50
f (v,qscr) Eq. (8) 0.840
v/q1/4 1.52
g(v,q) Eq. (17) 0.980
rrel Eq. (19) 1.16
R rrel/radiab 0.580
α(q) α0q

1/4 0.0132
q(R) Eq. (21) 3.51
h(v,q,qscr,R) Eq. (24) 0.840
qeff Eq. (23) 1.515
s Ref. [68] 4.15
Z∗

T ZT − s 5.85
Z∗

P Eq. (29) 0.271
ε Eq. (30) 1.095
ε̄ Eq. (31) 1.095
Ecorr E/(Mε̄) 91.3 keV/u
I2p Table II 1.70
δ2p Table II 0.55
Z2p Table II 6
x2p Ecorr/I2p 53.7 keV/u
F (x2p) Eq. (4) 149 Mb
[σp(Ecorr)]2p F (x2p)Z2pδ2p/I 2

2p 170 Mb
I2s Table II 3.86
δ2s Table II 0.60
Z2s Table II 2
x2s Ecorr/I2s 23.7 keV/u
F (x2s) Eq. (4) 118 Mb
[σp(Ecorr)]2s F (x2s)Z2sδ2s/I

2
2s 9.50 Mb

σp(Ecorr) [σp(Ecorr)]2p + [σp(Ecorr)]2s 180 Mb
σion(E/M = 100 keV/u)) Eq. (33) 345 Mb

APPENDIX: SAMPLE CALCULATION OF THE SCALED
CROSS SECTION

In Table IV we present a sample calculation of the
scaled ionization cross section for 100 keV/u C3+ on Ne.
This system has been chosen because it contains most of
the different features of the proposed scaling, including the
binding correction discussed in Sec. III E. The first column of
Table IV lists the parameter or quantity, the second provides
the equation which defines it in the text, while the last column
shows the calculated value.
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Sant’Anna, and H. Schmidt-Böcking, J. Phys. B 35, 3937 (2002).
[73] I. Junger de Souza, H. Luna, W. Wolff, and E. C. Montenegro

(unpublished).
[74] W. Wolff, H. Luna, A. C. F. Santos, E. C. Montenegro, and

G. M. Sigaud, Phys. Rev. A 80, 032703 (2009).
[75] T. Kirchner, A. C. F. Santos, H. Luna, M. M. Sant’Anna, W. S.

Melo, G. M. Sigaud, and E. C. Montenegro, Phys. Rev. A 72,
012707 (2005).

[76] J. Ullrich, K. Bethge, S. Kelbch, W. Schadt, H. Schmidt-
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