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Computation of electron-impact rotationally elastic total cross sections for methanol
over an extensive range of impact energy (0.1 – 2000 eV)
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Theoretical rotationally elastic total cross sections for electron scattering from methanol over the incident
energy range 0.1–2000 eV are presented. The computation of such cross sections for methanol is reported over
such an extended energy range. We have employed two distinct formalisms to compute the cross sections across
this energy range; between 0.1 eV and the ionization threshold of the target we have used the ab initio R-matrix
method, while at higher energies the spherical complex optical potential method is invoked. The results from
both formalisms match quite well at energies where they overlap and hence imply that they are consistent with
each other. These total cross-section results are also in very good agreement with available experimental data
and earlier theoretical data. The composite methodology employed here is well established and can be used to
predict cross sections for other targets where data is scarce or not available.
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I. INTRODUCTION

Methanol or methylalcohol (CH3OH) is the simplest
volatile alcohol. Methanol is produced naturally as a part
of the anaerobic metabolism of many varieties of bacteria,
and is therefore ubiquitous in the environment, leading to
a small fraction of methanol vapor being present in the
terrestrial atmosphere. The main industrial applications of
methanol are in the production of formaldehyde, acetic acid,
and more recently in the formation of methyl esters used
in the production of biodiesel. Studies on electron impact
with methanol have gained prominence in recent years since
electron interactions with methanol are important to the
understanding of energy and material balances in combustion
plasmas and also in the chemistry of such species in a terrestrial
atmosphere. Moreover, such collision data play a pivotal role in
modeling spark ignition in alcohol-fueled internal combustion
engines [1,2]. The interest in electron-impact studies has also
grown due to the discovery of the presence of methanol in
interstellar space and in the atmospheres of planets in the solar
system supporting ionospheres. In addition, methanol is an
intermediate-sized molecule that can serve as a benchmark
for developing theoretical models of electron interactions with
larger biomolecules [3].

Theoretical models can be compared with experimental
investigations. Recent studies of electron interactions with
methanol include the experimental studies of Lee et al. [4]
and Sugohara et al. [5], who measured the elastic cross
sections (ECSs) using a relative flow technique and reported
cross sections in the range of 100–1000 eV. Silva et al.
[6] reported a total cross section (TCS) using the linear
transmission method in the range of 60–500 eV while Khakoo
et al. [7] reported ECSs using a relative flow method for impact
energies 1–100 eV. Szmytkowski and Krzysztofowicz [8] used
the linear transmission method and measured TCSs in the
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range of 0.8–250 eV, and Sueoka et al. [9] and Schmieder
[10] measured TCSs in the range of 1–300 and 1.5–50 eV,
respectively.

Previous theoretical studies include those of Bouchiha
et al. [3], who calculated total elastic cross sections using the
ab initio R-matrix formalism in the range of 0–15 eV. Khakoo
et al. [7] calculated ECSs using the Schwinger multichannel
method in the range 1–100 eV. Ming and Hua [11] calculated
TCSs using the additivity rule in the range of 10–1000 eV.
In our earlier work [12] we presented TCSs using the
spherical complex optical potential (SCOP) formalism for
impact energies from threshold to 2000 eV.

This review of previous work suggests that the studies on
e-CH3OH are fragmentary and that there are more experi-
mental investigations compared to theory, and all previous
authors have reported ECS-TCS over limited ranges of energy.
In contrast, in the present paper we report electron-impact
TCSs for methanol over an extensive range of impact energies
from around a very low energy of 0.1 eV to a high energy
of 2000 eV. Inspecting the range of incident energy it
is quite clear that a single theoretical formalism cannot
be employed for the entire energy range, hence we have
partitioned the work into two prime energy regimes. Below
15 eV, we carried out ab initio calculations with a fixed
nuclei approximation employing the UK molecular R-matrix
method through QUANTEMOL-N software [13] and above the
threshold of the target we employ the well-established SCOP
formalism [14–16]. The two formalisms give consistent results
at the transition energy (∼11 eV), enabling us to provide cross
sections over such a wide range that such data will serve
as an important database. The formation of transient anions
(through scattering resonances) which may decay to produce
neutral and anionic fragments are common phenomena at
low impact energies below 10 eV and are very important
in the understanding of the local chemistry of the electron-
target interaction upon electron impact. Accordingly we also
explore the formation of such resonances in low-energy
scattering.
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TABLE I. Target properties obtained for the CH3OH molecule.

Properties of CH3OH Present Theoretical results Experimental results

Ground-state energy (hartree) −115.05 −115.14 (Ref. [3]);
−115.26 (Ref. [17]);
−115.01 (Ref. [3])

First excitation energy (eV) 8.55 6.76 (Ref. [3]); 6.5 (Ref. [19])
8.53 (Ref. [12])

Rotational constant (cm−1) 4.11 4.25 (Ref. [18])
Dipole moment (D) 2.28 1.97 (Ref. [3]) 1.81 (Ref. [7]);

1.70 (Ref. [18])

II. THEORETICAL METHODOLOGY

The present calculations employ two distinct methodolo-
gies, namely, the R matrix and the SCOP, which are appropriate
in two distinct regimes of impact energies, one below the
ionization threshold of the target and the other above it.
Before going into the details about these two methodologies
we discuss the target model employed for the low-energy
calculations.

A. Target model used for low-energy calculations

The accuracy of the scattering data depends on the accuracy
of the target wave function, hence, it is imperative to have
an appropriate target model. Methanol is composed of single
bonds, C-H with a bond length of 2.06a0, O-H with 1.8a0, and
C-O with 2.68a0.We employed a double zeta plus polarization
(DZP) basis set for the target wave-function representation and
a Cs group of order four. For the optimized geometry of the
target, the occupied and virtual molecular orbitals are obtained
using Hartree-Fock self-consistent field (HF-SCF) optimiza-
tion and were used to set up the CH3OH electronic target states.
The ground-state Hartree-Fock electronic configuration is 1a′,
2a′, 3a′, 4a′, 5a′, 1a′′, 6a′, 7a′, and 2a′′. To establish a balance
between the amounts of correlation incorporated in the target
wave function, out of 18 electrons, we froze four electrons in
two molecular orbitals

(
1a′,2a′). The rest of the 14 electrons

were allowed to move freely in the active space of ten target
occupied and virtual molecular orbitals (3a′, 4a′, 5a′, 6a′,
7a′, 8a′, 9a′, 10a′, 1a′′, and 2a′′). A total of 19 electronically
excited target states were represented by 2598 configuration
state functions (CSFs) for the ground state and the number of
channels included in the calculation is 230. A large number of
CSFs ensures the correct determination of the position of the
resonance peak in the low-energy regime.

The present calculation yields the ground-state energy of
CH3OH as −115.05 hartree, which is in excellent agreement
with theoretical value of −115.14 hartree [3], −115.26 hartree
[17], and −115.01 hartree [3]. The present computed rotational
constant of CH3OH is 4.11 cm−1, which is in agreement with
the experimental value of 4.25 cm−1 reported in the Com-
putational Chemistry Comparison and Benchmark Database
(CCCBDB) [18]. The first electronic excitation energy of
CH3OH is found to be 8.55 eV using the configuration
interaction (CI) model, which agrees well with the calculated
value of 8.53 eV reported by Vinodkumar et al. [12], albeit
higher compared to the theoretical value of 6.76 eV reported

by Bouchiha et al. [3] and the experimental value of 6.5 eV
reported by Knoop et al. [19]. The present dipole moment is
2.28 D, which is slightly higher compared to the theoretical
value of 1.97 D [3] and the measured values of 1.81 D [7]
and 1.70 D [18]. The target properties along with available
comparisons are listed in Table I. The 19 electronic excitation
thresholds for methanol are listed in Table II.

B. Low-energy formalism (0.1 to ∼15 eV)

The most popular methodologies employed for low-energy
electron collision calculations are the Kohn variational method
[20,21], the Schwinger variational method [22–24], and the
R-matrix method, of which the R matrix is the most widely
used. The underlying idea behind the R-matrix method relies
on the division of configuration space into two spatial regions,
namely, the inner region and the outer region. This spatial
distribution is a consequence of electronic charge distribution
around the center of mass of the system. The inner region
is so chosen that it accommodates the total wave function
of the target plus the scattering electrons. Thus all of the
N target electrons plus one scattering electron are contained
in the inner region, which makes the problem numerically
complex but very precise. The interaction potential consists
of short-range potentials which are dominant in this region,
e.g., static, exchange, and correlation polarization potentials.
The solution of the inner region problem involves rigorous
quantum chemistry methods and thus consumes the maximum
time of the calculation. However, the inner region problem
is solved independent of the energy of the scattering electron
and hence is done only once. In the outer region when the
scattering electron is at a large distance from the center of
mass of the target, the probability of swapping its identity
with any one of the target electrons is negligible, resulting in
a negligible contribution from the exchange and correlation
effects. The only long-range multipolar interactions between

TABLE II. Vertical excitation energies for all states of CH3OH.

Energy Energy Energy Energy
State (eV) State (eV) State (eV) State (eV)

1A′ 0.0 1A′ 11.16 3A′′ 12.73 1A′′ 13.74
3A′′ 8.55 3A′ 11.26 3A′′ 13.42 3A′ 14.09
1A′ 8.96 1A′′ 11.42 1A′′ 13.59 1A′ 14.54
3A′ 10.35 1A′ 12.19 1A′ 13.62 3A′ 14.82
3A′′ 11.03 3A′ 12.54 3A′ 13.68
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the scattering electron and the target are included. A single
center close-coupling approximation with direct potentials
leads to a set of coupled differential equations here, and this
provides quick, simple, and fast solutions in the outer region.
For the present system the inner R-matrix radius is taken as
12a0.

The main task in the present scattering calculation lies in
the solution of the time-independent Schrödinger equation.
For this the inner region wave function is constructed using
a close-coupling approximation [25]. For the inner region the
total wave function for the system is expressed as

ψN+1
k = A

∑
I

ψN
I (x1, . . . ,xN )

∑
j

ζj (xN+1)aIjk

+
∑
m

χm(x1, . . . ,xN+1)bmk, (1)

where A is the antisymmetrization operator that takes care of
the exchange effect, xN is the spatial and spin coordinate of the
nth electron, ξ j is a continuum orbital spin coupled with the
scattering electron, and aIjk and bmk are variational coefficients
determined by the diagonalization of the N + 1 Hamiltonian in
the calculation. The accuracy of the calculation depends solely
on the accurate construction of this wave function given in
Eq. (1). The first summation runs over the target states used in
the close-coupled expansion and a static-exchange calculation
has a single Hartree-Fock target state in the first sum. The χm’s
are multicenter quadratically integrable functions, constructed
from target occupied and virtual molecular orbitals, and are
used to represent the correlation and polarization effects. This
sum runs over the minimal number of configurations, usually
three or fewer, which is required to relax the orthogonality
constraints between the target molecular orbitals and the
functions used to represent the configuration. The continuum
orbitals are centered on the center of mass of the molecule.
These orbitals do not vanish on the R-matrix boundary as they
are of longer range than the molecular bound orbitals that are
centered on the nuclei. Our fully close-coupled calculation
uses the lowest number of target states, represented by a con-
figuration interaction (CI) expansion in the first term and over
100 configurations in the second. These configurations allow
for both orthogonality relaxation and short-range polarization
effects.

The complete molecular orbital representation in terms of
occupied and virtual target molecular orbitals is constructed
using the Hartree-Fock self-consistent field method with
Gaussian-type orbitals (GTOs) and the continuum orbitals of
Faure et al. [26] and include up to g (l = 4) orbitals. The
benefit of employing a partial-wave expansion for a low-energy
electron molecule interaction is its rapid convergence. For
polar molecules, due to the presence of a long-range dipole
interaction, the elastic cross section is divergent in the fixed
nuclei approximation at low impact energies. To obtain the
converged results the effect of rotation must be included along
with a very large number of partial waves. Thus in the case
of dipole-forbidden excitations (�J �= 1), where J represents
the rotational quantum number, the convergence of the partial
waves is rapid, but in the case of dipole-allowed excitations
(�J = 1) the partial-wave expansion converges slowly due
to the long-range nature of the dipole interaction. In order to

account for the higher partial waves not included in the fixed
nuclei T matrices, the closure formula that involves the Born
correction is applied. The effect of partial waves higher than
l = 4 was included using a Born correction which requires
expressions for the partial waves as well as full Born cross
sections. These expressions are used from the work of Chu and
Dalgarno [27]. The low partial-wave contribution arising from
the Born correction is therefore subtracted in order that the final
rotational cross-section set contains only those partial waves
due to the R-matrix calculation. We are constrained to employ
partial waves for the continuum orbital up to l = 4 only, as the
representation in Gaussian-type orbitals for Bessel functions
higher than l = 4 is not available. For low partial waves (l � 4)
the T matrices computed from the R-matrix calculations are
employed to compute the cross sections. The low partial-wave
contribution arising from the Born contribution is subtracted in
order that the final cross-section set only contains those partial
waves due to the R-matrix calculation. We have performed the
calculations with and without the dipole Born correction.

The R matrix provides the link between the inner region
and the outer region. The R matrix is propagated to an asymp-
totic region where the radial wave functions describing the
scattering electron can be matched to analytical expressions.
For this purpose the inner region is propagated to the outer
region potential until its solutions match with the asymptotic
functions given by the Gailitis expansion [28]. Coupled single
center equations describing the scattering in the outer region
are integrated to identify the K-matrix elements. The K matrix
is a symmetric matrix whose dimensions are the number of
open channels. All the observables can be deduced from it
and further it can be used to obtain T matrices by using the
definition

T = 2iK

1 − iK
. (2)

The T matrices are in turn used to obtain various total cross
sections. The K matrix is diagonalized to obtain the eigenphase
sum. The eigenphase sum is further used to obtain the position
and width of the resonance [27].

C. High-energy formalism

High-energy electron scattering is modeled using the
well-established SCOP formalism [29,30], which employs a
partial-wave analysis to solve the Schrödinger equation with
various model potentials as its input. The interaction of the
incoming electron with the target molecule can be represented
by a complex potential comprising real (VR) and imaginary
parts (VI ) as

Vopt (Ei,r) = VR (Ei,r) + iVI (Ei,r) , (3)

such that

VR(r,Ei) = Vst(r) + Vex(r,Ei) + Vp(r,Ei), (4)

where the real part VR comprises the static potential (Vst),
exchange potential (Vex), and polarization potential (Vp). The
static potential (Vst) is calculated at the Hartree-Fock level.
The exchange potential (Vex) term accounts for the electron
exchange interaction between the incoming projectile and one
of the target electron. The polarization potential (Vp) repre-
sents approximately the short-range correlation and long-range
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polarization effect arising from the temporary redistribution
of the target charge cloud. Note that the spherical complex
optical potential (SCOP) as such does not require any fitting
parameters. The most important basic input for evaluating all
these potentials is the charge density of the target. We have used
the atomic charge density derived from the Hartree-Fock wave
functions of Bunge et al. [31]. The e-molecule system is more
complex as compared to the e-atom system. The complexity
is reduced by adopting a single center approach [32] so as to
make the spherical approximation applicable. In the case of
CH3OH we employ the group additivity rule [33] and identify
two prime scattering centers (C and O) from the geometry of
the target. The two groups are CH3 and OH. In the case of CH3

and OH, we reduce the system to single center by expanding
the charge density of the lighter hydrogen atoms at the center
of the heavier carbon or oxygen atom by employing the Bessel
function expansion given in Gradshetyn and Ryzhik [34].
The spherically averaged molecular charge density ρ(r) is
determined from the constituent atomic charge density using
the Hartree-Fock wave functions of Bunge et al. [31]. The
molecular charge density ρ(r) so obtained is renormalized to
incorporate the covalent bonding [35]. In the SCOP method,
the spherical part of the complex optical potential is treated
exactly in a partial-wave analysis to yield various cross
sections [15]. Here we have neglected the nonspherical terms
arising from the vibrational and rotational excitation in the full
expansion of the optical potential.

The atomic charge densities and static potentials (Vst)
are formulated from the parametrized Hartree-Fock wave
functions given by Bunge et al. [31]. The parameter-free Hara’s
‘free-electron gas exchange model’ [36] is used to generate
the exchange potential (Vex). The polarization potential (Vp)
is constructed from the parameter-free model of correlation-
polarization potential given by Zhang et al. [37]. Here, various
multipole nonadiabatic corrections are incorporated into the
intermediate region which will smoothly approach the correct
asymptotic form at large r . In the low-energy region, the small
r region is not important due to the fact that higher-order partial
waves are unable to penetrate the scattering region. However,
in the present energy region, a large number of partial waves
contribute to the scattering parameters and correct short-range
behavior of the potential is essential.

The imaginary part in Vopt is called the absorption potential,
Vabs or VI , and accounts for the total loss of flux scattered into
the allowed electronic excitation or ionization channels. The
Vabs is not a long-range effect and its penetration towards the
origin increases with an increase in the energy. This implies
that at high energies the absorption potential accounts for
the inner-shell excitations or ionization processes that may
be closed at low energies.

The well-known quasi-free-model form of Staszeweska
et al. [38,39] is employed for the absorption part given by

Vabs(r,Ei) = −ρ(r)

√
Tloc

2

(
8π

10k3
F Ei

)
θ
(
p2 − k2

F − 2�
)

× (A1 + A2 + A3), (5)

where the local kinetic energy of the incident electron is

Tloc = Ei − (Vst + Vex + Vp), (6)

and where p2 = 2Ei , kF = [3π2ρ(r)]1/3 is the Fermi wave
vector, and A1, A2, and A3 are dynamic functions that depend
differently on θ (x), I , �, and Ei . Here, I is the ionization
threshold of the target, θ (x) is the Heaviside unit step function,
and � is an energy parameter below which Vabs = 0. Hence,
� is the principal factor which decides the values of the
total inelastic cross section, since below this value ionization
or excitation is not permissible. This is one of the main
characteristics of the Staszewska model [38,39]. In the original
Staszewska model [38,39] � = I is considered and hence
it ignores the contributions coming from discrete excitations
at lower incident energies. This has been realized earlier by
Garcia and Blanco [40,41] who elaborately discussed the
need to modify � value. This has been attempted by us by
considering � as a slowly varying function of Ei around I .
Such an approximation is meaningful since � fixed at I would
not allow excitation at the energies Ei � I . However, if the �

is much less than the ionization threshold, then Vabs becomes
unexpectedly high near the peak position. The amendment
introduced by us is to give a reasonable minimum value of
0.8I to � [42] and also to express the parameter as a function
of Ei around I , i.e.,

�(Ei) = 0.8I + β(Ei − 1). (7)

Here the value of the parameter β is obtained by requiring that
� = I (eV) at Ei = Ep, the value of incident energy at which
Qinel reaches its peak. Ep can be found by calculating Qinel by
keeping � = I . Beyond Ep, � is kept constant and is equal to
the ionization threshold I . The theoretical basis for assuming
a variable � is discussed in more detail by Vinodkumar et al.
[33]. Expression (7) is meaningful since if � is fixed at the
ionization potential it would not allow any inelastic channel to
open below I , and also, if it is very much less than I , then Vabs

become significantly high close to the peak position of Qinel.
The complex potential thus formulated is used to solve

the Schrödinger equation numerically through partial-wave
analysis. This calculation will produce complex phase shifts
for each partial wave which carries the signature of interaction
of the incoming projectile with the target. At low impact
energies only a few partial waves are significant, but as the
incident energy increases more partial waves are needed for
convergence. The phase shifts (δl) thus obtained are employed
to find the relevant cross sections, and total elastic (Qel) and
the total inelastic cross sections (Qinel) using the scattering
matrix Sl (k) = exp(2iδl) [42]. The total cross sections such
as the total elastic (Qel) and the total inelastic cross sections
(Qinel) can be derived from the scattering matrix [29]. The sum
of these cross sections will then give the total scattering cross
section (TCS) QT [30].

III. RESULTS AND DISCUSSION

In the present paper, we have performed a comprehensive
computation of the total cross sections for electrons colliding
with methanol in the gas phase. The main goals of the present
work are twofold: to detect the resonance structure at low
energies that may lead to fragmentation of the molecule (which
is performed by studying the eigenphase diagram) and to
provide total scattering cross sections over a wide range of
impact energies from 0.1 to 2000 eV. The calculations were
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TABLE III. Total electron scattering cross sections for CH3OH
in (Å2).

TCS

Energy Without Born With Born Energy
(eV) correction correction (eV) TCS

0.1 49.51 1290.27 11 24.99
0.5 32.42 363.58 13 24.89
0.6 31.09 315.22 15 24.37
0.7 30.07 279.53 17 23.74
0.8 29.25 252.03 20 22.77
0.9 28.54 230.11 25 21.26
1.0 27.89 212.17 30 19.86
1.3 26.20 173.48 35 18.57
1.5 25.22 155.49 40 17.40
2.0 23.32 124.95 45 16.36
2.5 22.16 105.81 50 15.44
3.0 21.52 92.75 60 13.95
3.5 21.19 83.28 70 12.80
4.0 21.02 76.09 80 11.87
4.5 20.99 70.45 90 11.10
5.0 21.09 65.97 100 10.45
5.5 21.34 62.39 150 8.27
6.0 21.75 59.54 200 6.95
6.5 22.29 57.29 250 6.03
7.0 22.92 55.53 300 5.34
7.5 23.59 54.15 500 3.69
8.0 24.21 53.03 800 2.55
8.5 24.65 52.02 900 2.32
9.0 24.86 51.02 1000 2.13
9.5 24.84 49.91 1500 1.52
10.0 24.86 48.74 2000 1.18

carried out using the fixed nuclei static-exchange-polarization
approximation at the equilibrium geometry of the ground
state of CH3OH. The theoretical formalisms have their own
limitations over the range of impact energies. More elaborately,
the ab initio calculations are computationally viable only up to
around 20 eV, while the SCOP formalism could be employed
successfully from threshold of the target to 2000 eV. In the
present work we computed the total cross section below
the ionization threshold using a close-coupling formalism
employing the R-matrix method and beyond the ionization
threshold we used the SCOP formalism. The results obtained
from the two different methods are consistent and there is a
smooth transition at the overlap of the two formalisms. Thus,
it is possible to provide the total cross section over a wide
range of impact energies from meV to keV for a variety of
targets [43–47]. We have presented our results in graphical
form (Figs. 1–6) and the numerical values are tabulated in
Table III.

For methanol, three core excited resonances have been
detected experimentally below the threshold of the first excited
state. A resonance with 2A′′ symmetries was located at 6.4 eV
by Skalicky and Allan [48], at 6.5 eV by Prabhudesai et al. [49],
and calculated by Bouchiha et al. [3] to lie at 6.75 eV. A second
resonance with 2A′ symmetries was identified at 7.9 eV by
Skalicky and Allan [48], 8 eV by Prabhudesai et al. [49], and
calculated by Bouchiha et al. [3] to be at 8.81 eV, and a third

FIG. 1. (Color online) Eigenphase sums of e-CH3OH for a
19-state CC calculation.

resonance with 2A′ symmetry was found around 10.5 eV by
Skalicky and Allan [48], 10.2 eV by Prabhudesai et al. [49],
and calculated by Bouchiha et al. [3] to be at 11.73 eV [3].
Figure 1 shows the eigenphase diagram for two doublet
scattering states (2A′ and 2A′′) of the CH3OH system using HF
and CI models. It is very clear from the figure that the inclusion
of the polarization effect increases the eigenphase sum. The
eigenphase diagrams reveal the position of the resonances in
the low-energy regime. In the present calculation, the 2A′′ state
shows a prominent structure at 8.5 eV, which is in agreement
with the earlier predicted values of 8.81 eV [3], 7.9 eV [48], and
8.0 eV [49]. Similarly, another structure is seen in the 2A′ state
at 10.57 eV, which is in agreement with earlier reported values
of 11.71 eV [3], 10.5 eV [48], and 10.2 eV [49], which can be
visualized as a peak around 11 eV in the TCS curve. It is to
be noted that as more states are included in the close-coupling
(CC) expansion and retained in the outer region calculation, the
eigenphase sum increases, reflecting the improved modeling
of the polarization interaction.

The present calculated resonance positions (eV) are sum-
marized in Table IV, where they are compared with earlier data.
These resonances lead to the fragmentation of the molecule and
the production of a variety of ions and radicals (H−, O−, OH−,
CH3O−, or CH2OH−). In the case of CH3OH, the first two
resonances produce only H− and CH3O− whereas the third one

TABLE IV. The resonance positions (eV).

Resonance position (eV)

Symmetry Present Previous values

2A′′ 8.50 8.81 (Ref. [3])
8.0 (Ref. [48])
7.9 (Ref. [49])

2A′ 10.57 11.73 (Ref. [3])
10.5 (Ref. [48])
10.2 (Ref. [49])
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FIG. 2. (Color online) Electronic excitation cross sections of
e-CH3OH for a 19-state CC calculation from an initial state 1A′.

also leads to the formation of O−. It has also been observed that
at the third resonance the hydrogen atom scrambles [50,51],
revealing a larger lifetime against dissociation for this state.
This is consistent with a Rydberg-like nature of the excited
state seen in the absorption spectrum. It may be noted that
even at this resonance the cross section for the formation of
H− is larger than that for the formation of O−.

The total inelastic channel includes two important scatter-
ing processes, viz., ionization and electronic excitation. Below
the ionization threshold of the target, the contributing channel
to the total inelastic cross sections is predominantly electronic
excitation. Figure 2 displays the electronic excitation cross
sections from the ground state (1A′) to eight low-lying excited
states (3A′′, 1A′′, 3A′, 3A′′, 1A′, 3A′, 1A′′, and 1A′). It can
be seen that the threshold of the first electronic excitation
energy for CH3OH is 8.5 eV. The electronic excitations to 3A′
and 1A′ show sharp increases near their respective thresholds
which show the dominance of these energy levels in the present
calculation. The notable structure in 3A′ around 11 eV is
reflected as a broad peak around 11 eV in TCSs and is in
accordance with the experimental prediction of Skalicky and
Allan [48] at 11.82 eV. Beyond 12 eV no prominent structures
are observed.

The study of differential cross sections (DCSs) is very
important as they are more accurately measured experimen-
tally, and provides a stringent test for any scattering theory
employed as it is sensitive to effects which are averaged out in
the integral cross sections. Hence, we have calculated DCSs
for the elastic scattering of electrons from CH3OH at incident
energies 5, 10, 15, and 20 eV in the angular range from
0◦ to 180◦. Figures 3(a)–3(d) depict the behavior of DCSs
as a function of angle theta (q) for incident energies 5, 10,
15, and 20 eV, respectively. We have compared the present
DCS results with the experimental and theoretical results of
Khakoo et al. [7] for the incident energies 5, 10, 15, and 20 eV
while the theoretical results of Lee et al. [4] are reported for
incident energies 5 and 10 eV. Khakoo et al. [7] have used the
Schwinger multichannel pseudopotential method (SWCPP)

and the Schwinger multichannel all electron method (SMCAE)
to compute DCSs. For energies below 10 eV, the Static
Exchange Polarization (SEP) model is considered and above
it only the Static Exchange (SE) model is used by them [7].
So no absorption effects are considered in the calculation. Lee
et al. [4] have used the complex scattering potential to compute
the DCS. We have employed the close-coupling R-matrix
method for the computation of DCSs. It can be noticed from
Figs. 3(a)–3(d) that in general there is good accord of the
present results with the experimental and theoretical results
of Khakoo et al. [7] as well as the theoretical results of
Lee et al. [4]. At 5 eV, the hump in the experimental results of
Khakoo et al. [7] around 90◦ appears as deep in the calculation
around 100 eV. At smaller angles the agreement is good for all
energies with the available results [4,7] while a discrepancy is
observed at larger angles. The discrepancy in the present DCS
results at higher angles and the higher incident energies may
be attributed to the different models used in the calculations
by different authors [4,7].

For clarity, we have separated the graphical representation
of the total cross sections in two figures, Figs. 4 and 5. Figure 4
shows the comparison of the present TCS generated using two
models, one with the Born correction and the other without
the Born correction. The calculations are carried out both for
Hartree-Fock (HF) and CI models. The results of TCSs using
the HF model are slightly lower than the CI model. Since
CH3OH is a polar molecule, it requires more partial waves
for convergence and hence for l > 4 the Born correction is
employed, but as is evident from the figure, the Born correction
leads to a large overestimate in the TCS at low energies. The
same phenomena was observed in the Born-corrected data
of Bouchiha et al. [3] and the higher overestimation in the
present case is attributed to the higher value of the dipole
moment (2.28 D) used in our calculations compared to the one
(1.97 D) used by Bouchiha et al. [3]. The overestimation could
be easily understood as the Born correction is proportional to
the square of the ground-state dipole moment, and the present
value is 12% greater than the experimental value. Previous
theoretical data were reported by Lee et al. [4], who employed
a SCOP formalism to compute the total elastic cross sections
in the range 1–500 eV. The results of Lee et al. [4] are higher
compared with our present no Born data.

The present uncorrected (no Born) data are in fairly good
agreement with the calculated total elastic cross section of
Khakoo et al. [7] using the Schwinger multichannel method,
which is in good agreement with the experimental data of
Szmytkowski and Krzysztofowicz [8], Sueoka et al. [9], and
Schmieder [10]. Khakoo et al. [7] obtained their low-energy
data by extrapolation of the measured differential cross section
(below 15o) to incorporate the backward scattering angles;
this introduces very large errors in the data (of 30%–40%).
The experimental data of Khakoo et al. [7] are higher
at lower energies when compared with other experimental
data presented here, which clearly reflects their difficulty in
deriving TCS experiments at this energy. The discrepancy in
the present data with the measured data of Khakoo et al. [7]
decreases with increasing energy as the effect of the dipole
potential decreases with an increase in the energy.

Finally, Fig. 5 shows the present data (without the Born
approximation) for e-CH3OH scattering over the entire range
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FIG. 3. (Color online) DCS of e-CH3OH at (a) 5, (b) 10, (c) 15, and (d) 20 eV. Solid line: Present Q-mol results. Open diamond: Khakoo
et al. [7]. Dashed-dotted-dotted line: Khakoo et al. [7] all-electron Schwinger multichannel calculation. Short dashed line: Khakoo et al. [7]
pseudopotential Schwinger multichannel calculation. Dashed-dotted line: Khakoo et al. [7] pseudopotential Schwinger multichannel calculation
without the Born-dipole correction. Dashed line: Lee et al. [4].

of energy studied here. The main aim here is to depict the
consistency of data derived from the two formalisms (R matrix
and SCOP) at the transition energy (11 eV), which enables us
to provide data over an extensive energy range from meV
to keV. Since a comparison of the data at low energy has
already been discussed in Fig. 4, we will now compare the
results at high energy. High-energy computations have been
performed by three groups: Lee et al. [4], Khakoo et al. [7],
and Ming and Hua [11]. The calculated values of Ming and
Hua [11] are very high compared to all the other data below
20 eV. This overestimation is a result of the additivity rule
used by them [11]. Beyond 20 eV, their values slowly decrease
and tend to merge with the present results. In contrast, the
theoretical results of Lee et al. [4] are in very good agreement

with the present results beyond 20 eV. The computed values of
Khakoo et al. [7] are slightly higher around threshold, but
beyond the threshold their values are in better agreement.
Comparing the theoretical results with the experimental data at
higher energies, the results of Silva et al. [6], Szmytkowski and
Krzysztofowicz [8], Sueoka et al. [9], and Schmieder [10] are
in very good agreement with the present data over the complete
high-energy range. This reflects the consistency of the SCOP
formalism. The measured values of Khakoo et al. [7] show
the same trend as their theoretical values for the high-energy
regime. The measured values of Sugohara et al. [5] are lower
than the other data as they obtained the total cross section by
summing the integral elastic cross sections obtained by the
additivity rule, and adding the total ionization cross sections
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FIG. 4. (Color online) Total cross section of e-CH3OH scattering.
Solid line: Present Q-mol CI no Born results. Dashed line: Present
Q-mol CI with the Born results. Short dotted line: Present Q-mol HF
with Born results. Dashed-dotted-dotted line: Present Q-mol HF no
Born results. Short dashed-dotted line: Bouchiha et al. [3] no Born.
Short dashed line: Bouchiha et al. [3] with the Born. Dotted line:
Lee et al. [4]. Dashed-dotted line: Khakoo et al. [7]. Open hexagons:
Szmytkowski and Krzysztofowicz [8]. Solid spheres: Sueoka et al.
[9]. Squares: Schmieder [10]. Asterisks: Khakoo et al. [7].

FIG. 5. (Color online) Total cross section of e-CH3OH scattering.
Solid line: Present Q-mol results. Dashed line: Present SCOP results.
Short dashed-dotted line: Bouchiha et al. [3]. Short dashed line: Lee
et al. [4]. Dashed-dotted line: Khakoo et al. [7]. Dashed-dotted-dotted
line: Ming and Hua [11]. Open uptriangles: Sugohara et al. [5].
Open diamonds: Silva et al. [6]. Asterisks: Khakoo et al. [7].
Open hexagons: Szmytkowski and Krzysztofowicz [8]. Solid circles:
Sueoka et al. [9]. Open squares: Schmieder [10].

FIG. 6. (Color online) Total ionization cross section of e-CH3OH
scattering. Solid line: Present BEB results. Dashed line: Present
SCOP results [33]. Dashed-dotted line: Hudson et al. (BEB) [55].
Short dashed line: Deutsch et al. [56]. Open squares: Rejoub et al.
[52]. Open stars: Hudson et al. [55]. Solid spheres: Duric et al. [57].

of Rejoub et al. [52], but excluded the electronic excitation
cross sections.

Finally, in order to have the complete study of e-CH3OH
scattering we also include the total ionization curve, which has
already been published earlier by in Ref. [33]. The detailed
discussion of the methodology is included in the previous
work [33], hence we do not repeat it here. In Fig. 6 we include
the calculation of the total ionization cross section using the
binary Born-Bethe (BEB) method [53,54]. The present results
using the BEB model are in excellent agreement with the
measurements of Hudson et al. [55]. The measurements of
Duric et al. [56] and Rejoub et al. [52] are in good accord
with the present results except at the peak where the results of
Duric et al. [56] are slightly lower, while the results of Rejoub
et al. [52] are slightly higher than the present results. The BEB
results of Hudson et al. [55] are slightly higher compared to
the present results, and this may be attributed to the difference
in the parameters used in the calculation for ionization cross
sections. The results of Deutsch et al. [57] are shifted towards
a lower energy compared to other results.

IV. CONCLUSION

An extensive theoretical study has been undertaken for
e-CH3OH scattering presenting the eigenphase, electronic
excitations, and total cross sections. We demonstrate with the
help of the eigenphase diagram (Fig. 1) that a CI calculation
can give much more information than a simple static-exchange
calculation at low energies. We can readily infer the position
of resonances that may arise due to an electron interaction
from these curves. We have found two Feshbach resonances
in agreement with experimental data. The 2A′′ state shows a
prominent structure at 8.5 eV, which is in accordance with
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the earlier predicted values of 8.81 eV [3], 8.0 eV [48], and
7.9 eV [49]. Another structure is observed in the 2A′ state cross
section at 10.57 eV, which is in accord with earlier reported
values of 11.73 eV [3], 10.5 eV [48], and 10.2 eV [49], which
can be visualized as a peak around 11 eV in the TCS curve.

We have performed close-coupling calculations (at the
static, exchange plus polarization level) employing the UK
molecular R-matrix code below the ionization threshold of the
target while the SCOP formalism is used beyond it. We have
demonstrated through Fig. 5 that the results using these two
formalisms are consistent and show a smooth transition at the
overlap energy (∼11 eV), confirming the validity of our the-
ories and hence enabling us to predict the total cross sections
from a low energy of 0.1 eV to a high energy of 2000 eV.

Our results are in good agreement with available data
throughout the energy range. Therefore, we are confident that

this methodology may be employed further to calculate the
total cross sections over a wide range of energies. Such total
cross-section data is important in a variety of applications
from aeronomy to plasma modeling. Accordingly such a
methodology may be built into the design of an online database
to provide “data users” with the opportunity to request their
own set of cross sections for use in their own research.
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