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Observation of the nuclear magnetic octupole moment of 173Yb from precise measurements of the
hyperfine structure in the 3P2 state
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We measure hyperfine structure in the metastable 3P 2 state of 173Yb and extract the nuclear magnetic octupole
moment. We populate the state using dipole-allowed transitions through the 3P 1 and 3S1 states. We measure
frequencies of hyperfine transitions of the 3P 2 → 3S1 line at 770 nm using a Rb-stabilized ring cavity resonator
with a precision of 200 kHz. Second-order corrections due to perturbations from the nearby 3P 1 and 1P 1 states are
below 30 kHz. We obtain the hyperfine coefficients as A = −742.11(2) MHz and B = 1339.2(2) MHz, which
represent a two orders-of-magnitude improvement in precision, and C = 0.54(2) MHz. From atomic structure
calculations, we obtain the nuclear moments quadrupole Q = 2.46(12) b and octupole � = −34.4(21) b × μN .
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I. INTRODUCTION

Observation of the nuclear magnetic octupole moment and
its influence on the hyperfine structure of atoms has remained
largely unexplored because of its weaker effect compared to
the leading magnetic dipole and electric quadrupole moments.
The most recent measurements have been on one-electron
systems: the 5D3/2 state of 137Ba+ ion [1], and the 6P3/2

state of 133Cs atom [2,3]. But the sub-kHz value of the
hyperfine coefficient required similar precision in measuring
the intervals. By contrast, the long-lived 3P 2 state in two-
electron atoms such as Yb and several alkaline-earth metals,
with its large angular momentum, is a more sensitive probe
for observing this moment [4]. Here, we report precise
measurement of hyperfine structure in the 3P 2 state of 173Yb,
and observation of the magnetic octupole moment using
calculations in two-electron atoms. In a previous measurement
of hyperfine structure in two isotopes of Eu, 151Eu and 153Eu,
the author was only able to extract the isotopic ratio of
the octupole moment [5]. Precise measurement of hyperfine
structure is also motivated by the fact that its comparison to
theoretical calculations plays an important role in validating
the atomic wave functions used in the calculations. In this
regard, Yb is an important atom because of its proposed
use in the search for a permanent electric dipole moment
(EDM) [6,7], where comparison to calculation [8] forms a vital
tool in searching for new physics beyond the standard model.
The 3P 2 state in Yb has potential applications in more sensitive
EDM searches [9] and ultrasensitive magnetometry [10]. The
presence of nuclear octupole deformation has been shown to
lead to an enhanced collective EDM that can significantly
exceed single-particle moments [11].

Measurements on upper levels is an experimental challenge
because these levels are not directly populated. We earlier
solved this problem by using dipole-allowed transitions to
pump atoms into the metastable 3P 2 state of Yb [9]. In this
work, we use the same method to populate this state and then
measure the absolute frequencies of various hyperfine transi-
tions on the 3P 2 → 3S1 line. We measure the frequencies with
our well-developed technique of using a Rb-stabilized ring-
cavity resonator [12–15]. We obtain the hyperfine structure
coefficients A (magnetic dipole) and B (electric quadrupole)

with two orders-of-magnitude better precision than previous
values, and a 4% measurement of the magnetic octupole
coefficient C. We take into account second-order corrections
due to perturbations from the nearby 3P 1 and 1P 1 states
and find that they make a negligible contribution. Using
relativistic coupled-cluster (RCC) calculations, we obtain the
ratios of these hyperfine coefficients to the relevant nuclear
moments, namely, B/Q and C/�. From this, we obtain the
quadrupole moment Q = 2.46(12) b and the octupole moment
� = −34.4(21) b × μN .

II. EXPERIMENTAL DETAILS

The relevant low-lying energy levels of Yb are shown in
Fig. 1. The ground state is 1S0 and therefore has no hyperfine
structure. But the upper states with J �= 0 have hyperfine
levels for the odd isotope 173Yb, determined by the nuclear
spin I = 5/2. The various transitions are accessed in the
spectroscopy chamber, shown schematically in the bottom
of the figure. It consists of a vacuum chamber with several
optical access points maintained at a pressure below 10−8 mbar
with an ion pump. The Yb atomic beam is generated by
resistive heating (to about 400 ◦C) of an unenriched source.
The different laser beams are sent perpendicular to the atomic
beam at different points, and the green fluorescence (at 556 nm)
is collected by two photomultiplier tubes (PMTs, Hamamatsu
R928). The 556-nm beam, driving the 1S0 → 3P 1 transition,
is produced by doubling the output of a fiber laser operating
at 1111 nm (Koheras Boostik Y10). The output power of the
fiber laser is 0.5 W with a linewidth of 70 kHz. It is doubled in
an external cavity doubler to give a total power of 65 mW. Part
of this beam is split into two and sent across the atomic beam
in counterpropagating directions, perpendicular to the atomic
beam. The laser is locked to the peak center by frequency mod-
ulation at 20 kHz and lock-in detection to generate the error
signal.

The lasers at 680 nm (driving the 3P 1 → 3S1 transition)
and 770 nm (driving the 3P 2 → 3S1 transition) are home-built
diode laser systems [16]. They are frequency stabilized using
grating feedback to give linewidths of order 1 MHz. The
680 beam counterpropagates with the locked 556 beam a
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FIG. 1. (Color online) Top: relevant low-lying energy levels of Yb
showing the wavelength of each transition in nm. Bottom: schematic
of the spectroscopy chamber for optically pumping atoms into the
3P 2 state, and measuring the 3P 2 → 3S1 transition at 770 nm.

few cm downstream from the 556 fluorescence point. It
optically pumps atoms into the metastable 3P 0 and 3P 2 states.
This reduces population in the ground state, and the green
fluorescence spectrum when scanning the 680 beam shows a
negative peak. The injection current into this laser is frequency
modulated (at 15 kHz) and it is locked to the peak center.
The 770 beam, which is 2 mm farther downstream and
overlaps with the same 556 beam, causes the fluorescence
to recover as it repumps atoms from the 3P 2 state back into
the ground state, from where they can reabsorb the 556 beam.
Thus, the 770 beam measures the population in the 3P 2 state
and the fluorescence spectrum shows a positive peak. The
measurements are done with this laser locked to a particular
hyperfine transition. For this, the laser is current modulated
at a frequency of 10 kHz, which is different from that of the
680 laser, and the same PMT signal is demodulated at this
frequency to generate the error signal.

Representative fluorescence spectra for the even isotope
174Yb obtained by scanning each of the three lasers have
been shown in our previous work [9]. For the odd isotope
173Yb used in this work, the number of hyperfine levels and
the electric dipole selection rules shows that there are nine
possible transitions at 770 nm, of which six are used for
the measurement. The spectra for the measured transitions
appear with different signal-to-noise ratios (SNRs) depending
on the individual transition strengths. The SNR in all cases
is good enough to get a strong error signal to lock the
laser.

Our frequency-measurement technique using the Rb-
stabilized ring-cavity resonator has been described extensively
in earlier work [12,14], and is reviewed here for completeness.
It relies on the fact that the frequency of the 780-nm D2 line
in 87Rb (5S1/2 ↔ 5P3/2 transition) is known with an accuracy
of 6 kHz [17]. A diode laser locked to a particular hyperfine
transition of this line is used as a frequency reference. A second
laser is in turn locked to the unknown transition. The two
lasers are coupled into an evacuated ring-cavity resonator. An
acousto-optic modulator (AOM) placed in the path of one of

the two lasers is used to produce a small frequency offset
(of order 100 MHz) so that the cavity is in simultaneous
resonance with both laser frequencies. Thus the ratio of the
unknown frequency to the reference frequency is just a ratio
of two integers (i.e., the respective cavity mode numbers)
combined with the AOM offset. The procedure to determine
the unique mode-number combination for the two lasers has
been described earlier [14]. We have used this technique to
measure frequencies of transitions in the range of 670–895 nm,
i.e., ±100 nm away from the reference wavelength.

III. ERROR ANALYSIS

Our technique is particularly well suited to the measurement
of frequency differences (as used in the measurement of hyper-
fine intervals). This is because several sources of systematic
errors cancel when taking the difference. Systematic errors can
be classified under three categories: errors related to locking
the reference laser to a particular hyperfine transition, errors
related to locking the unknown laser on the Yb line, and errors
due to the measurement cavity. Errors related to the reference
laser are the same for all measurements and therefore cancel
in the difference. Similarly, errors due to dispersion inside the
cavity and at the cavity (multilayer dielectric) mirrors do not
affect the difference. Effects of geometric misalignment into
the cavity result in the excitation of higher-order modes, which
can pull the lock point of the fundamental mode. To the extent
that the misalignment is the same for all measurements, this
will again not affect the difference. Thus all the sources of
systematic error in the difference frequency are related to how
well we can lock the 770-nm laser to a particular Yb transition
and how well we can lock the cavity to the laser, as discussed
below.

Collisional shifts of the transition frequency are minimal
because we use an atomic beam. A systematic Doppler shift
of the peak center will occur if the angle between the atomic
beam and the laser beam is not exactly 90◦. However, this
will cause a negligible error when taking the difference; for
example, even a large misalignment angle of 10 mrad will
result in an error of only 2 kHz when measuring a 5-GHz
interval. Another potential source of systematic shift in the
peak position is due to line-shape asymmetry that might occur
because of selective driving into Zeeman sublevels (shifted in
the presence of stray magnetic fields) or radiation pressure. The
first effect is minimized by using linearly polarized light so that
the Zeeman sublevels are excited equally about line center. The
maximum Zeeman shift among all transitions in the presence
of a stray field of 10 mG is about 70 kHz. By studying the
symmetry of the fluorescence line shape, we conclude that this
error is smaller than 70 kHz. Thus, the main source of error in
our measurement is determined by how well we lock to peak
center—split the line—given the linewidth of about 40 MHz
and the SNR. In our recent work on measuring isotope shifts
in the 556-nm line of Yb [15], the linewidth was about 6 MHz
and the locking error was 30 kHz. With the 6 times larger
linewidth here, we estimate the error to be 200 kHz (or equal
to splitting the line by about 1 part in 200), which is larger than
all other sources of error. As we will see below, we have a good
experimental handle on this estimate by measuring the same
transition with two different transitions to lock the reference
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TABLE I. Measured frequencies for various hyperfine transitions of the 3P 2 → 3S1 line with the reference laser locked to either an
F = 1 → F ′ or an F = 2 → F ′ transition. The values are given as offset from the first transition. The numbers in brackets are 1σ errors in
the last digit.

Ref. laser Frequency (MHz)

lock point 3/2 → 5/2 5/2 → 5/2 7/2 → 5/2 5/2 → 7/2 7/2 → 7/2 9/2 → 7/2

1 → F ′ 0 2523.43(20) 5360.52(20) −4075.69(20) −1238.38(20) 1193.92(20)
2 → F ′ 0.21(20) 2523.56(20) 5360.60(20) −4075.65(20) −1238.46(20) 1193.97(20)

laser: one from the F = 1 → F ′ hyperfine manifold and the
other from the F = 2 → F ′ manifold.

IV. RESULTS AND DISCUSSION

We have measured the frequencies of various hyperfine
transitions by locking the 770-nm laser to different peaks.
For each measurement, the time constant in the frequency
counter (with a time-base stability of 10−8) was set to 10 s.
Then a set of 40 independent measurements was made and the
average determined. For each transition, the frequency was
measured with the reference laser on either a F = 1 → F ′
transition or a F = 2 → F ′ transition. The resulting change
in the frequency is on the order of 6.5 GHz, and is known with
<10-kHz precision from hyperfine measurements in 87Rb [17].

The measured frequencies are shown in Table I. The error
in each value is 0.2 MHz. To highlight the above fact that
many sources of error cancel in the difference, we show the
frequencies as offset from the first value. We have verified
that if we make an error in the mode number and change it
by ±1, the absolute frequency of all transitions changes by
about 12 MHz, but there is negligible change in the offsets
listed in the table. Our error estimate is reasonable because
the two values for each transition, which implies a different
set of cavity mode numbers and complete re-optimization of
all the feedback loops, overlap quite well. In addition, the
maximum standard deviation in each set of 40 measurements
(from which the average is determined) is only 170 kHz. One
of the self-consistency checks that we can perform on the
error bar is the {7/2 − 5/2} hyperfine interval in the 3P 2 state.
It can be evaluated in two ways: (7/2 → 5/2) − (5/2 → 5/2)
and (7/2 → 7/2) − (5/2 → 7/2). The value of 0.22 MHz is
consistent with zero when we take into account the error in
each value of 0.2 MHz.

A. Extracting the hyperfine coefficients

To fit the measured intervals to the hyperfine coefficients,
we first need to know the energy shift of an F level due to
the hyperfine interaction. From perturbation theory, the shift
is given by

WF = W
(1)
F + W

(2)
F , (1)

where the first-order shift arises due to the various nuclear
moments. It has the progressively weaker magnetic-dipole (A),
electric-quadrupole (B), and magnetic-octupole (C) terms.
The prefactors multiplying these coefficients for each F level
in the 3P 2 state are well-known functions of I , J , and F [3],
and are listed in Table II. The A, B, and C coefficients are

related to the corresponding nuclear moments: μI , Q, and
�, respectively. In particular, B = 2Q〈T e

2 〉, where 〈T e
2 〉 is the

matrix element of the quadrupole field operator with the atomic
state; and C = −�〈T e

3 〉, where 〈T e
3 〉 is the matrix element of

the octupole field operator with the atomic state. Therefore,
these matrix elements can be calculated if we have the wave
function describing the 3P 2 state. For this, we use the Fock
space RCC theory [8]. The atomic state is then defined as
eT (1 + S) |�0〉, where T and S are the core and valence cluster
operators and |�0〉 is the closed-shell reference state. For the
RCC calculations, we use the no-virtual-pair Dirac-Coulomb
Hamiltonian defined in our earlier work [8]. It includes the
nuclear Coulomb potential and the electron-electron Coulomb
interactions.

The second-order shift in Eq. (1) arises mainly because
of perturbations from the nearby 3P 1 and 1P 1 states [18]. If
we limit ourselves to the dipole-dipole and dipole-quadrupole
interactions, then the correction can be expressed in terms
of the parameters η and ζ defined in Ref. [4]. The calculation
involves summation over a complete set of intermediate states,
and is done in the same way as described above [8]. Due to
the near degeneracy of the 3P 1 state, it is the most dominant
intermediate state. The calculated second-order corrections
are listed in the last line of Table II. We have also verified that
these corrections are reasonable—we obtained similar values
using an alternate method described in Ref. [18], which uses
measured hyperfine coefficients of the nearby states to estimate
the values.

The procedure to extract the coefficients is now straight-
forward. The shift of each level in terms of A, B, C, and
the second-order correction is known. This gives a set of
six equations corresponding to the six measured transition
frequencies. We then do a least-squares fit to these equations
with the hyperfine coefficients as fit parameters. To see the
relative importance of C and the second-order correction,
we have calculated the coefficients with and without these
parameters. The results are shown in Table III. The difference

TABLE II. Prefactors multiplying the hyperfine coefficients of
the first-order shift for each F level in the 3P 2 state of 173Yb. The
last row is the second-order correction to the shift in MHz.

F 1/2 3/2 5/2 7/2 9/2

W
(1)
A −7 −11/2 −3 1/2 5

W
(1)
B 7/10 1/4 −1/4 −17/40 1/4

W
(1)
C −42/5 12/5 27/5 −22/5 1

W
(2)
F 0 −0.05 0.02 0.20 0
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TABLE III. Calculated values of the hyperfine coefficients for
the 3P 2 state in 173Yb. The second row is calculated without
including the second-order correction and the third row is calculated
without the magnetic octupole coefficient C. All values in MHz.

A B C Reduced χ 2

Corrected −742.11(2) 1339.2(2) 0.54(2) 0.23
Uncorrected −742.11(2) 1339.4(2) 0.55(2) 0.23
Without C −742.53(2) 1342.5(2) – 118

from not including the second-order corrections is negligible,
which is to be expected since the corrections are much smaller
than our overall error bars. However, not including C makes
a large difference: of 15σ (combined) in A and of 11σ

(combined) in B. This shows that there is compelling evidence
for C from our measurement, and the extracted value of
0.54(2) MHz demonstrates that its value lies between 0.48
and 0.60 MHz with nearly 100% confidence [19].

Our values are compared to previous values in Table IV.
The most recent experimental value is a 1992 measurement
by Maier et al. [20]. The two sets of values are consistent
but our error bars are about 100 times smaller. An earlier
1962 measurement by Ross and Murakawa [21] gives values
in cm−1 with no error bars. Their values appear to be close but
we cannot judge the overlap without errors. Not surprisingly,
none of these values are sensitive to the octupole coefficient
C. There is also a theoretical calculation in 1999 by Porsev
et al. [22], which yields values within a couple of MHz (less
than 0.5%) of our values.

To estimate the uncertainty in the RCC theory, we use the
difference between the calculated and measured values of the
magnetic-dipole coefficient A. From the difference of 3%, we
conservatively estimate the uncertainty in theory to be 5%.
The calculations yield B/Q as 544.6 MHz/b. Combined with
our measured value of B, we get the quadrupole moment as
Q = 2.46(12) b. This compares reasonably well with the 1962
value of 2.8(2) b [21]. The calculation also yields C/� as

TABLE IV. Comparison of hyperfine coefficients for the 3P 2

state in 173Yb from this work to previous values.

A B C Reference

−742.11(2) 1339.2(2) 0.54(2) This work
−742(5) 1342(38) – [20]
−738 1310 – [21]a

−745 1335 – Theory [22]

a1962 measurement with values given in cm−1 and no error bars.

−15.99 kHz/(b × μN ). From the measured value of C, we get
the octupole moment as � = −34.4(21) b × μN .

V. CONCLUSIONS

In summary, we have made a precision measurement of
hyperfine structure in the 3P 2 state of 173Yb, and see an
unambiguous signature of the magnetic octupole coefficient
C. The frequencies of the 3P 2 → 3S1 transition at 770 nm are
measured using a Rb-stabilized ring-cavity resonator with an
accuracy of 200 kHz. Second-order corrections are negligible
at this level of precision, and do not affect the value of C. Using
atomic-structure calculations for two-electron atoms [8], we
extract the nuclear octupole moment as −34.4(21) b × μN .
The observation of this moment in two-electron atoms, to the
best of our knowledge, was never reported before. We plan
to complete similar measurements in the other odd isotope,
171Yb, and thereby get a handle on higher-order effects such
as the Rosenthal-Breit effect and the Bohr-Weisskopf effect.
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