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We discuss a β-dependent family of electronic density scalings of the form nλ(r) = λ3β+1 n(λβr) in the context
of density functional theory. In particular, we consider the following special cases: the Thomas-Fermi scaling
(β = 1/3 and λ � 1), which is crucial for the semiclassical theory of neutral atoms; the uniform-electron-gas
scaling (β = −1/3 and λ � 1), that is important in the semiclassical theory of metallic clusters; the homogeneous
density scaling (β = 0) which can be related to the self-interaction problem in density functional theory when
λ � 1; the fractional scaling (β = 1 and λ � 1), that is important for atom and molecule fragmentation; and the
strong-correlation scaling (β = −1 and λ � 1) that is important to describe the strong correlation limit. The
results of our work provide evidence for the importance of this family of scalings in semiclassical and quantum
theory of electronic systems, and indicate that these scaling properties must be considered as important constraints
in the construction of new approximate density functionals. We also show, using the uniform-electron-gas scaling,
that the curvature energy of metallic clusters is related to the second-order gradient expansion of kinetic and
exchange-correlation energies.
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I. INTRODUCTION

In density functional theory (DFT) [1–3], the density
scaling is a key concept and was used along the years to
derive many exact constraints [4–12], as well as useful virial
relations [4,13–18] for the kinetic, exchange and correlation
energy functionals. Furthermore, the density scaling has a
fundamental role in DFT due to its intimate relation with the
adiabatic connection formalism [4,19,20].

One important family of scaling transformations for the
particle density n is defined by the general linear transforma-
tion [5],

nM,a(r) = det(M) n(Mr + a), (1)

where M is a real invertible 3 × 3 matrix and a ∈ R3. Scaling
transformations of this kind correspond to changing the
external potential associated with the density while preserving
the normalization of the density, i.e.,∫

nM,a(r)dr =
∫

n(r)dr = N. (2)

The most important scalings connected with Eq. (1) are the
ones defined by

Mij = λj δij , λj > 0 and a = 0, (3)

i.e., with Mij a diagonal matrix with positive elements. In
particular, there are three cases of high physical interest:

(i) the uniform scaling de-
fined by λ1 = λ2 = λ3 = λ � 0, hence
nλ(r) = λ3n(λr). Under uniform scaling the Kohn-Sham
exchange and the noninteracting kinetic energies transform
as Ex[nλ] = λEx[n] and Ts[nλ] = λ2Ts[n], respectively [4].
However, the interacting kinetic energy T [n] and the nonlocal
Hartree-Fock exchange energy EHF

x [n] do not have these
properties [4]. All popular exchange and kinetic energy
functionals are nowadays designed to satisfy the uniform
scaling relation [2,3].

(ii) The two-dimensional nonuniform scaling of the density
defined by λ1 = 1 and λ2 = λ3 = λ � 0, hence n

zy

λ (x,y,z) =
λ2n(x,λy,λz), under which the system approaches the one-
dimensional limit when λ → ∞. Although there are important
conditions for both Kohn-Sham exchange and correlation
energies under this scaling [5], they are not satisfied by any
popular XC functional (to our knowledge).

(iii) The one-dimensional nonuniform scaling of the density
defined by λ1 = λ2 = 1 and λ3 = λ � 0, hence nz

λ(x,y,z) =
λn(x,y,λz) [21], under which the system approaches the
two-dimensional (2D) limit when λ → ∞. This density
scaling, that is related to the dimensional crossover of the
XC energy (from three-dimensional to 2D) [22–24], has
been recently incorporated in a semilocal XC functional,
named q2D-generalized-gradient approximation (q2D-GGA)
[25], constructed for mild and strong quasi-2D regimes. The
remarkable performance of the q2D-GGA for surface energies
and lattice constants of transition metals, showed the power of
the one-dimensional nonuniform scaling.

In this paper we consider a different type of scaling for
the density and focus the attention on the family of scaling
relations of the form,

nλ(r) = λ3β+1n(λβr), λ > 0, (4)

where β is a parameter. These scaling transformations differ
from those defined by Eq. (1) in the fact that they do not
only change the external potential associated with the density
n, but also provide a change in the particle number (N →
λN). Well-known members of the scaling family defined by
Eq. (4) are the Thomas-Fermi [26,27] and the homogeneous
density scaling [9], which are relevant for the semiclassical
theory of the many-electron, nonrelativistic, neutral atom [26],
and for the self-interaction error [9], respectively. (Unless
otherwise stated, atomic units are used throughout, i.e., e2 =
h̄ = me = 1.)

This article is organized as follow: in Sec. II we shortly
review the fractional-particle density functional theory, that is,
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the correct framework for the scalings of Eq. (4); in Sec. III
we present scaling properties of useful density functionals;
Sec. IV is devoted to the physical properties of selected density
scalings (for β = 1/3, −1/3, 0, 1, and −1); and in Sec. V we
briefly analyze the performance of popular density functionals
for the above scalings. Finally, in Sec. VI we summarize our
conclusions.

II. THEORY AND DEFINITIONS

Under the scaling transformations defined by Eq. (4) the
normalization of the particle density is modified, thus the
number of particles in the system is varied as N → λN , with
λN being in general a noninteger number. The conventional
picture of DFT, based on the Hohemberg-Kohn theorems [28]
and/or the Levy constrained search [29] is thus inappropriate
in this case. In fact, a proper definition of densities with a
noninteger number of particles is required in this case [30–32].
In this work we achieve this through the introduction of
ensemble densities within a zero-temperature grand canonical
ensemble theory [30].

The central quantity to consider is therefore the density-
matrix operator [3],

�̂ =
∑
M

∑
i

pMi |�Mi〉〈�Mi |, (5)

where the sums are extended over all possible particle numbers
M and over all the states of the M-particle Hamiltonian, |�Mi〉
is the ith eigenstate of the M-particle Hamiltonian, and pMi

is the probability weight to find the system in the eigenstate
|�Mi〉 (hence, we have 0 � pMi � 1 and

∑
Mi pMi = 1). The

expectation value of any operator Â is consequently obtained
as Tr[�̂Â]. In particular, for the particle density we have

n(r) = Tr[�̂n̂(r)] =
∑

k

pknk(r), (6)

where we defined the superindex k = Mi, nk is the pure-state
density of the M-particle ith state, and we used

n̂(r) = ψ̂†(r)ψ̂(r), ψ̂(r) =
∑

j

φj (r)âj , (7)

with φi and âi the single-particle orbital and annihilation
operator of state i, respectively. The total number of particles
is, according to Eq. (6),

N =
∑

k

pkNk, Nk =
∫

nk(r)dr. (8)

Similarly, for the one-particle density-matrix operator we have
γ̂1(r1,r2) = ψ̂†(r1)ψ̂(r2) and

γ1(r1,r2) = Tr[�̂γ̂1(r1,r2)] =
∑

k

pkγ1k(r1,r2). (9)

The ensemble Hohemberg-Kohn universal functional and
the noninteracting kinetic energy are defined as [3]

F [n] = min
�̂→n

Tr[�̂(T̂ + V̂ee)], (10)

Ts[n] = min
�̂→n

Tr[�̂T̂ ], (11)

where V̂ee is the electron-electron repulsion operator and the
kinetic energy operator is defined by

T̂ =
∫ [∇2

r2
γ̂1(r1,r2)

]
δ(r1 − r2)dr1dr2. (12)

The electron-electron repulsion operator can be further decom-
posed into Coulomb, exchange, and correlation contributions
to yield

J = 1

2

∫
n(r1)n(r2)

|r1 − r2| dr1dr2, (13)

Ex[n] = Tr[�̂minÊx], (14)

Ec[n] = Tr[�̂minÊc], (15)

where �̂min is the density-matrix operator minimizing either
T̂ + V̂ee or T̂ , according to Eqs. (10) and (11), and with the
exchange energy operator defined as [3]

Êx = −1

2

∫ |γ̂1(r1,r2)|2
|r1 − r2| dr1dr2, (16)

while no explicit expression is known for Êc. Note that all
the traces can be easily evaluated by use of Eqs. (6) and (9),
together with the resolution of identity Î = ∑

Mi |�Mi〉〈�Mi |.
Within the theoretical framework sketched above the

scaling relations of Eq. (4) can be interpreted as a uniform
scaling of the pure-state densities (nk(r) → λ3βnk(λβr) ∀k)
accompanied by a remodulation of the statistical weights
such that the particle number is changed to λN . Note that
this latter is in general a complicated transformation because
it must accomplish the required particle-number variation
preserving the correct density and without violating the nor-
malization conditions for the statistical weights (0 � pk � 1
and

∑
k pk = 1). In particular, the simple transformation pk →

λpk in general is not a suitable transformation, as it brings a
violation of the normalization conditions. Nevertheless, one
special case is when we consider a system with one electron
or less and λ � 1. In this case, in fact, the density of frac-
tional charge q can be written nq(r) = qn1(r) + (1 − q)n0(r),
where n1 and n0 are the densities for one particle and zero
particles, respectively (the latter is of course identically zero
everywhere). The scaling transformation yields then nqλ =
λqλ3βn1(λβr) + (1 − λq)λ3βn0(λβr). Thus, in this special
case we have indeed p → λp (all information concerning
the n0 term can be neglected). This important result will be
employed in the next section to derive exact scaling relations
for the noninteracting kinetic energy and the Kohn-Sham
exchange for systems with fractional occupation.

More insight into the properties of the transformation gov-
erning the statistical weights can be achieved by considering
(in analogy with the usual adiabatic connection procedure)
the M-particle Hamiltonian with a local potential which gives
the right pure-state densities to recover Eq. (4). In this way
the transformation of the statistical weights, connected to
scaling transformations of the type defined in Eq. (4), can be
defined explicitly in two separate cases. When, upon scaling,
the variation in the particle number is smaller than one (i.e.,
1 � λ � (N + 1)/N or similarly (N − 1)/N � λ � 1), the
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statistical weights change with λ as

pN : 1 → 1 − N (λ − 1); pN+1 : 0 → N (λ − 1), (17)

and consequently, the exact total energy functional E[n] varies
linearly with λ [30]:

E[nλ] = [1 − N (λ − 1)]E[nN ] + N (λ − 1)E[nN+1], (18)

where nN and nN+1 denote N - and (N + 1)-densities. When
the variation in the particle number is larger than one (i.e., the
number of particles changes from N to N + L + ω, with L an
integer and |ω| < 1), the statistical weights change as

pN : 1 → 0; pN+L : 0 → 1 − ω; pN+L+1 : 0 → ω.

(19)

Therefore, the transformation can be seen as a chain of trans-
formations like the one in Eq. (17) concerning successively
pN , pN+1, . . ., pN+L, pN+L+1. As a consequence, the exact
total energy functional will be described as a succession of
straight lines. Thus, the derivative discontinuity [30] plays
an important role for the scaling transformations, especially
when N and L are finite. However, in the limit L → ∞ the
role of derivative discontinuity is diminished and one can
always consider ω = 0. In this case the behavior of the system
is closely related to the semiclassical physics, as shown in
the next sections. Because of the complexity of this density
scaling, in this paper we mainly consider only two extreme
cases of interest: when N = 1 and λ � 1, and the semiclassical
limit λ → ∞.

III. GENERAL SCALING PROPERTIES

Using the definition of Eq. (4) we can immediately find the
scaling properties of several quantities which depend explicitly
on the particle density. This is the case, for example, of the
the Coulomb energy and any external potential (e.g., Enuc =∫

nvnucdr with vnuc ∝ 1/r). Hence,

J [nλ] = λβ+2J [n], (20)

Enuc[nλ] = λβ+1Enuc[n]. (21)

Another interesting quantity is the local Seitz parameter
rs = [3/(4πn)]1/3 which scales as

rsλ(r) = λ−β− 1
3 rs(λ

βr). (22)

Therefore, for β > −1/3 we have that λ → ∞ implies rsλ →
0, while λ → 0 implies rsλ → ∞. Thus, the conditions λ →
∞ and λ 
 1 correspond to scalings to the high- and low-
density limits, respectively. The opposite is true for β < −1/3.
For the special case β = 1/3 instead the local Seitz parameter
is independent on λ and the density regime cannot be modified
by a scaling transformation.

On the other hand, the usual density parameters
s = |∇n|/2kF n, q = ∇2n/{4(3π2)2/3n5/3}, t = |∇n|/2ksn,
and v = |∇n|/2kvn, with kF = (3π2n)1/3 being the lo-
cal Fermi wave vector [33,34], ks = (4kF /π )1/2 being the
Thomas-Fermi screening wave vector [33,34], and kv =
2[3/(4π4)]1/18n1/9 being the wave vector suitable for bonding

and valence regions [35], scale according to

sλ(r) = λ− 1
3 s(λβr), qλ(r) = λ− 2

3 q(λβr), (23)

tλ(r) = λ
β

2 − 1
6 t(λβr), vλ(r) = λ

2β

3 − 1
9 v(λβr). (24)

Thus, the reduced gradient and Laplacian for exchange and
kinetic energies (s and q) are independent on β so that the
slowly varying density limit (s,q → 0) is reached whenever
λ → ∞, while for λ 
 1 a rapidly varying density regime is
always set up. On the contrary the density parameters t and
v, which are relevant for the correlation, have a dependence
on β. Therefore, they can describe different density regimes
depending on the actual value of the parameter β.

Because for any value of β the reduced gradient for
exchange and kinetic energy s and the reduced Laplacian q

become small in the limit λ → ∞, it is also interesting to in-
vestigate the scaling behavior of local density approximations
(LDA) and gradient expansions for the noninteracting kinetic
energy and the exchange energy. These expressions will in fact
become almost exact in the limit λ → ∞. The required scaling
relations are given by the formulas,

ELDA
x [nλ] = λβ+4/3ELDA

x [n], (25)

EGE2
x [nλ] = λβ+2/3EGE2

x [n], (26)

T LDA
s [nλ] = λ2β+5/3T LDA

s [n], (27)

T GE2
s [nλ] = (1/9)T W

s [nλ] = (1/9)λ2β+1T W
s [n], (28)

T GE4
s [nλ] = λ2β+1/3T GE4

s [n], (29)

where EGE2
x is the second-order gradient correction (GE2) term

of the exchange energy [36], T GE2
s is the second-order gradient

correction term of the noninteracting kinetic energy [2], T W
s is

the von Weizsäcker kinetic energy functional [2], and T GE4
s is

the fourth-order kinetic energy gradient expansion term (GE4)
[37,38]. Using these expressions, as well as Eq. (20), it is
possible to provide an useful accurate approximation for the
universal functional of Eq. (10) in the slowly varying limit
(λ → ∞):

F [nλ] ≈ λβ+2J [n] + λ2β+5/3T LDA
s [n]

+ λ2β+1T GE2
s [n] + λ2β+1/3T GE4

s [n]

+ λβ+4/3ELDA
x [n] + λβ+2/3EGE2

x [n]. (30)

In this formula we neglected correlation contributions. In
fact, the leading term of LDA correlation energy in the
high-density limit is [39] ELDA

c [n] ∝ ∫
drn ln(rs), and does

not respect any simple scaling; whereas the leading term in the
low-density limit is [39] ELDA

c [n] ∝ − ∫
drnr−1

s , and scales
as ELDA

c [nλ] = λβ+4/3ELDA
c [n]. Moreover, the second-order

correction to the correlation energy [40] scales always as
EGE2

c [nλ] = λβ+2/3EGE2
c [n]. However, due to the dependence

on β of the reduced gradients t and v, the slowly varying limit
is only reached for β < 1/6. In addition, for any β > −1/3 the
scaling to the slowly varying limit corresponds also to a scaling
to the high-density limit (rsλ → 0 when λ → ∞). In this limit
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the correlation contributions are negligible with respect to the
exchange part, and thus Eq. (30) becomes almost exact. For
β � −1/3, however, correlation corrections to Eq. (30) might
be needed.

To conclude this section we consider briefly the cases
of Kohn-Sham kinetic and exchange energies. Using the
convexity arguments derived in Ref. [9], and taking into
account that the scaling family of Eq. (4) can be seen as
a uniform scaling followed by a homogeneous scaling [i.e.,
nλ(r) = λ[λ3βn(λβr)]], the following inequalities hold:

Ts[nλ] � λ2β+1Ts[n], λ > 1, (31)

Ts[nλ] � λ2β+1Ts[n], λ < 1, (32)

and

|Ex[nλ]| � λβ+1|Ex[n]|, λ > 1, (33)

|Ex[nλ]| � λβ+1|Ex[n]|, λ < 1. (34)

Moreover, using the rigorous bound Ts � T W
s , and the one

conjectured by Lieb [27] Ts � T LDA
s + T W

s [for a rigorous,
and tighter upper bound of Ts in terms of T LDA

s , T W
s , and N ,

see Eq. (23) of Ref. [41]], we can easily derive the following
inequalities:

λ2β+1T W
s [n] � Ts[nλ] � λ2β+5/3T LDA

s [n] + λ2β+1T W
s [n],

(35)

for any λ and β. In the case of exchange energy, the Lieb-
Oxford bound [42–44] Ex � Exc � 2.27ELDA

x gives

Ex[nλ] � 2.27λβ+4/3ELDA
x [n]. (36)

In the special case of one particle or less (N � 1) and λ � 1,
using the formalism presented in Sec. II (especially the fact
that p → λp) it can be shown (see Appendix) that

Ts[nλ] = λ2β+1Ts[n], (37)

and

Ex[nλ] = λβ+2Ex[n]. (38)

These results correctly agree with the scalings of J [n] and
T W

s [n], because in case λN � 1, Ex[n] = −J [n] and Ts[n] =
T W

s [n] [45]. [Note also that Eq. (37) holds for N � 2 [45].]

IV. SELECTED SCALING RELATIONS

In this section we analyze in more detail the scaling relations
corresponding to special values of the parameter β. In this
way we can highlight the physical significance of the family
of scaling transformations defined by Eq. (4) and provide
evidence for its importance in electronic structure theory.

A. Thomas-Fermi scaling (β = 1/3)

If we require the LDA noninteracting kinetic energy to scale
as the Coulomb energy, we find β = 1/3, which corresponds
to the well-known Thomas-Fermi scaling [26]. With this
choice the scaling of the density and the reduced gradients

are

nλ(r) = λ2n(λ1/3r), rsλ(r) = λ−2/3rs(λ
1/3r), (39)

sλ(r) = λ−1/3s(λ1/3r), qλ(r) = λ−2/3q(λ1/3r), (40)

tλ(r) = t(λ1/3r), vλ(r) = λ1/9v(λ1/3r). (41)

Thus, for λ → ∞ the high-density limit is reached and the
exchange and kinetic energies, whose behavior is controlled by
the density parameters s and q, are in a slowly varying density
regime. Therefore, the universal functional can be written [26]
as

F [nλ] ≈ λ7/3
(
T LDA

s [n] + J [n]
) + λ5/3

(
T GE2

s [n] + ELDA
x [n]

)
+ λ

(
T GE4

s [n] + EGE2
x [n]

)
, (42)

and the Thomas-Fermi kinetic energy (T LDA
s ) and the classical

Coulomb energy are the leading terms in the total electronic
energy (Enuc scales as λ4/3). This result is very important. In
fact, the semiclassical theory of the many-electron neutral atom
[46–48] is based on Eq. (42), which leads to the semiclassical
asymptotic expansion for the kinetic energy:

Ts = c0N
7/3 + c1N

2 + c2N
5/3 + . . . ; N ∝ λ, (43)

and a similar one for exchange [49], that are very accurate (typ-
ical error of order 0.5%–0.2% even for real atoms [26,49,50]).
Note that the second term in the kinetic energy expansion
(c1λ

2), cannot be captured by the Thomas-Fermi scaling, being
a quantum correction. Recently, it has been demonstrated
that these asymptotic expansions are also important tools
in DFT [26,51–53], as they have been used to construct
accurate nonempirical exchange-correlation [51] and kinetic
[52] energy functionals.

Extensions of Eq. (43) have been also proposed for general
ions and atoms [54–57], which constitute a more challenging
problem than neutral atoms alone. However, even for the
first ionization potential of many-electron atoms, the extended
semiclassical Thomas-Fermi theory shows serious drawbacks
and limitations [58], and accurate results can be obtained only
within Kohn-Sham DFT or other orbital-dependent schemes.

Concerning correlation, we can obtain some insight by
considering that, any reasonable generalized gradient correc-
tion to the LDA correlation must be designed to cancel the
logarithmic divergence of the LDA term under uniform scaling
to the high-density limit [59]. Thus, in the high-density limit
εGGA
c ∝ ln(t2). However, under the Thomas-Fermi scaling,

while vλ = λ1/9v, so that correctly v → ∞ for λ → ∞ (v
is a density parameter suitable for valence and tail regions that
are evanescent in a many-electron neutral atom), the density
parameter t is just independent on λ. Hence, the gradient
corrections to the correlation are independent on the scaling
and the whole correlation energy is dominated by the LDA con-
tribution εLDA

c ∝ ln(rs) for λ → ∞. As a consequence, popular
GGA functionals (e.g., PBE [59]) that recover LDA correlation
in this limit, can be argued to be accurate (exact) [26].

Finally, we mention the importance of the Thomas-Fermi
scaling also for the atomic densities. In fact, under a Thomas-
Fermi scaling to the high-density limit, the hydrogenic density
n = exp(−2r)/π resembles features of the Thomas-Fermi
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density [60], becoming slowly varying over a Fermi wave-
length (but not over the screening length 2π/ks). We recall
that the Thomas-Fermi density, even if does not show shell
structure and does not decay correctly, is a very good model
for the densities of heavy atoms [50,61–63]. For an excellent
discussion, see Ref. [26].

B. Uniform-electron-gas scaling (β = −1/3)

Consider a generic density parameter d ∝ |∇n|/nα . We
define the uniform-electron-gas (UEG) scaling, as the scaling
belonging to the family of Eq. (4) that makes d small for any
value of α in the limit λ → ∞. It is easy to prove that this
scaling is defined by the parameter β = −1/3. Under such a
scaling the density and the reduced gradients behave as

nλ(r) = n(λ−1/3r), rsλ(r) = rs(λ
−1/3r), (44)

sλ(r) = λ−1/3s(λ−1/3r), qλ(r) = λ−2/3q(λ−1/3r), (45)

tλ(r) = λ−1/3t(λ−1/3r), vλ(r) = λ−1/3v(λ−1/3r). (46)

Thus, both the density and the local Seitz parameter are
independent on λ (except for a coordinate scaling), so that the
scaling does not involve any transformation towards the high-
or low-density limit. On the contrary, by construction, all the
density parameters vanish in the limit λ → ∞, so the slowly
varying density limit is fully recovered in this case (hence, the
name uniform-electron-gas scaling). Interestingly, Eqs. (45)
and (46) also show that for first-order density parameters (i.e.,
those depending on ∇n) exactly the same dependence on λ−1/3

is found under the uniform-electron-gas scaling.
For large values of λ the universal functional is well

approximated by

F [nλ] ≈ λ5/3J [n] + λ
(
T LDA

s [n] + ELDA
x [n] + ELDA

c [n]
)

+ λ1/3
(
T GE2

s [n] + EGE2
x [n] + EGE2

c

)
+ λ−1/3T GE4

s [n], (47)

where the full LDA correlation energy is considered in
Eq. (47). Of course, in the limit λ → ∞ the LDA approxi-
mation of F becomes exact (all the density parameters vanish
in this limit, by construction). In particular, we have

lim
λ→∞

Exc[nλ] = ELDA
xc [n∞], (48)

where n∞(r) = n(0) = const. Note that while this constraint
is satisfied by most nonempirical XC semilocal functionals
(that recover the LDA for a constant density), it can be out
of reach for some wave-function methods, as the second-
order perturbation theory of Møller-Plesset (MP2) and its
modifications [64,65], or the random phase approximation
(RPA) [66,67]. However, the sophisticated orbital-based in-
homogeneous Singwi-Tosi-Land-Sjölander (ISTLS) method
[68,69], as well the XC kernel of linear response time-
dependent DFT (in the context of the adiabatic-connection
fluctuation-dissipation theorem [66,70,71]) of Ref. [72], are
accurate for the uniform-electron-gas scaling.

To provide an example of the utility of the uniform-electron-
gas scaling let us consider neutral jellium clusters with N

electrons and radius R = rsN
1/3, having the external potential,

V
jel

ext(r) =
{

N
(− 3

2R
+ r2

2R3

)
, r < R,

−N 1
r
, r � R,

(49)

due to a positive background density,

n+(r) =
{

3/4πr3
s r < R

0 r � R
. (50)

This external potential has no singularities, so the reduced
gradients and Laplacian of the density, are finite everywhere
inside the bulk. Moreover, the values of the density parameters
decrease for increasing number of electrons N . Indeed, even
for intermediate values of N , the density is slowly varying
over a Fermi wavelength, so the extensions of Thomas-Fermi
theory become accurate [73–75,83].

Jellium clusters with different numbers of electrons may be
thought therefore to be well described by the uniform-electron-
gas scaling, since under the scaling procedure the number
of electrons is changed to λN , the local Seitz parameter is
kept fixed to rs , and the reduced gradients are decreased as
λ−1/3, in full analogy to what happens in the jellium clusters.
The relation between the uniform-electron-gas scaling and the
jellium clusters can be in fact clearly recognized by a detailed
analysis of the cluster’s electron densities.

To this end, in Fig. 1 we show the densities of 58e−
and 92e− Na jellium clusters, together with the UEG-scaled
density of the 58e− cluster where a value λ = 92/58 was
used. Remarkably, the scaled density agrees very well with
the 92e− cluster density showing that the variations of the
physical properties of the different clusters with N can be
well captured by the uniform-electron-gas scaling. Note that
the small differences between the scaled and the true density
are due to quantum oscillations [83] that are not accounted
by the scaling procedure, but are of course included in the
self-consistent Kohn-Sham scheme. These are, however, not
very relevant for the analysis that we consider henceforth.
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r2 n λ (
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 , λ=1]
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 , λ=1]
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-
 , λ=92/58]

FIG. 1. (Color online) 4πr2nλ versus the radial distance r for the
58e− Na jellium cluster (λ = 1 and λ = 92/58), and for the 92e−

Na jellium cluster (λ = 1).The areas under the curves are the total
number of electrons (58 and 92, respectively).
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The total energy of a jellium cluster can be written as

E[n] = F [n] + Eext[n] = F [n] +
∫

V
jel

ext(r)n(r)dr. (51)

Therefore, using the uniform-electron-gas scaling for λ → ∞
we can write

E[n] ≈ λ
(
T LDA

s [n] + ELDA
x [n] + ELDA

c [n]
)

+ λ1/3
(
T GE2

s [n] + EGE2
x [n] + EGE2

c

) + O(λ−1/3),

(52)

where we used the fact the Coulomb and external potentials
cancel each other in the limit of a large number of electrons.
This expression agrees well with the asymptotic expansion of
the total energy of the clusters derived from the liquid drop
model [73–75] (recall that N ∼ λ):

E = α
4πr3

s

3
N + σ4πr2

s N2/3 + γ 2πrsN
1/3, (53)

where α is the volume (bulk) energy and σ and γ are the
surface and curvature energies. A comparison of the first terms
(those scaling as λ) in Eqs. (52) and (53) shows in fact that
the uniform-electron-gas scaling correctly yields α ∼ T LDA

s +
ELDA

x + ELDA
c . Moreover, similar with the previous Thomas-

Fermi scaling [see Eq. (43)], the second term in Eq. (53) is a
quantum oscillation term, that apparently cannot be described
by the simple UEG scaling, without a careful analysis of the
Friedel oscillations near the surface of the cluster. Finally, the
third term is related to the curvature energy:

γ ∼ T GE2
s + EGE2

x + EGE2
c . (54)

This is an important result, because the real edge gas contains
curvature corrections [76], that until now had not been
addressed.

C. Homogeneous density scaling (β = 0)

The homogeneous density scaling [9,11,77–82] is obtained
from Eq. (4) by setting the parameter β = 0. Under this
condition the scaling relations for the density and the various
density parameters are

nλ(r) = λn(r), rsλ(r) = λ−1/3rs(r), (55)

sλ(r) = λ− 1
3 s(r), qλ(r) = λ− 2

3 q(r), (56)

tλ(r) = λ− 1
6 t(r), vλ(r) = λ−1/9v(r). (57)

For λ → ∞ the high-density slowly varying limit is obtained
and the universal functional is well approximated as

F [nλ] ≈ λ2J [n] + λ5/3T LDA
s [n] + λ4/3ELDA

x [n] + λT GE2
s [n]

+ λ2/3EGE2
x [n] + λ1/3T GE4

s [n]. (58)

In this case the functional of Eq. (58) is dominated by the
classical Coulomb term, and the second leading term is the
Thomas-Fermi kinetic energy. (Note that the nuclear energy
grows only linearly with λ.)

More importantly, the homogeneous scaling is a valuable
tool to investigate DFT, when the opposite limit, i.e., with
λ < 1, is considered. For this case in fact several studies

exist on the scaling properties and exact constraints of the
kinetic and exchange energy functionals [9,11] as well as
on the static correlation treatment in DFT [84,85]. In this
work we focus instead on the role of the homogeneous scaling
in the determination of the delocalization error [85] of the
exchange(-correlation) functionals. To this end we consider
the simple H+

2 dissociation problem, that is associated with
the hydrogen atom with fractional charge [84], and compute

�EH (q) = EH − EHq − EH (1−q), (59)

where EH = Exc + J for the hydrogen atom and 0 � q � 1
is the partial electronic charge. The quantity �EH represents
thus the Coulomb and XC energy difference between the
dissociation of H+

2 into one hydrogen atom plus one proton
and that of the dissociation into two hydrogen atoms with
fractional electron charge q and 1 − q. For the exact exchange-
(correlation) functional it shall be zero at any value of q.
However, due to the one-electron self-interaction error [8], for
approximated XC functionals �EH > 0 for any 0 < q < 1,
indicating that a fractional dissociation is favorable with
respect to the exact one.

For a generic exchange functional we can assume (see
Sec. V) the scaling E

any
x [nλ] = λaE

any
x [n], with a � 2. Thus,

Eq. (59) becomes

�EH (q) = [1 − q2 − (1 − q)2]J [nH ]

+ [1 − qa − (1 − q)a]Eany
x [nH ], (60)

with nH the density of the hydrogen atom and J [nH ] = 0.3125
Ha. Note that in this case correlation plays no role, since
for q � 1 the correlation energy is zero. Nevertheless for
semilocal functionals, which are not self-correlation free, it
is also possible to consider an E

any
xc in place of E

any
x . Now, in

analogy with Ref. [8], we can define the self-interaction error
as

SIE[n] = J [n] + Exc[n]. (61)

Equation (60) then becomes

�EH (q) = [f2(q) − fa(q)]J [nH ] + fa(q)SIE[nH ], (62)

with fa(q) = 1 − qa − (1 − q)a . A plot of fa for several
values of a is provided in Fig. 2.

Equation (62) shows that �EH is always positive whenever
the self-interaction error is not zero and the scaling behavior of
the functional differs from the exact one (Ex[nλ] = λ2Ex[n]),
since J � SIE and SIE is in general positive. Moreover, due to
the form of the function fa , a symmetric fractional dissociation
is always favored. The most important result of Eq. (62) is,
however, the fact that the delocalization error (or dissociation
error in H+

2) has a twofold origin and only the second term on
the right-hand side depends on the self-interaction error for the
hydrogen atom. The remaining contribution traces back only to
the wrong behavior of the functional under the homogeneous
scaling. Note also that the first term might be the dominant one
since the SIE is typically one order of magnitude smaller than
the Coulomb energy in the H atom (see Table I for the value
of SIE[nH ] for some popular functionals).

This result shows the importance of the homogeneous
density scaling in the development of accurate XC functionals.
In fact, several functionals were constructed to minimize
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FIG. 2. (Color online) Plot of fa(q) = 1 − qa − (1 − q)a for
several values of the parameter a.

the self-interaction error of the hydrogen atom [93], but
no semilocal approximation exists that provides the correct
scaling behavior under uniform density scaling.

D. Fractional scaling (β = 1)

Let consider the disintegration of the hydrogen atom into
two neutral atoms having a fractional number of electrons and
corresponding fractional nuclear charge. The electron density
of the hydrogen atom with a fractional number of electrons
q, must be considered as the ensemble density given by the
superposition of the density of an hydrogen atom with one
electron and nuclear charge q, with weight q, and that of one
hydrogen atom with no electrons and nuclear charge q, with
weight zero (this latter thus does not contribute). Recalling
that for the hydrogen atom, a scaling of the nuclear charge
corresponds to an uniform scaling of the density, we find that

nq(r) = q4n1(qr). (63)

Generalizing the result of Eq. (63), we define the fractional
scaling as the scaling obtained from the family of relations
given in Eq. (4) when β = 1. Under this scaling the density

TABLE I. Self-interaction error (SIE) as defined in Eq. (61) for
different popular exchange and exchange-correlation functionals. All
values are computed for the hydrogen density and expressed in
mHartree.

X-only functionals XC functionals

Functional Ref. SIE Functional Ref. SIE

LDAx [86,87] 44.5 LDA [39,86,87] 22.3
PBEx [59] 6.6 PBE [59] 5.8
APBEx [51] 1.8 APBE [51] −3.4
revPBEx [88] 2.0 revPBE [88] −4.0
PBEsolx [89] 19.8 PBEsol [89] 11.9

zPBEsol [89,92] 0.0
PBEintx [90] 16.9 PBEint [90] 9.7

zPBEint [90,92] 0.1
B88 [91] 2.7

and the various density parameters behave as

nλ(r) = λ4n(λr), rsλ(r) = λ−4/3rs(λr) (64)

sλ(r) = λ− 1
3 s(λr), qλ(r) = λ− 2

3 q(λr), (65)

tλ(r) = λ
1
3 t(λr), vλ(r) = λ5/9v(λr). (66)

In the limit λ → ∞ the system is scaled towards the high-
density limit (rs → 0) and the universal functional is well
approximated as

F [nλ] ≈ λ11/3T LDA
s [n] + λ3

(
J [n] + T GE2

s [n]
)

+ λ7/3
(
ELDA

x [n] + T GE4
s [n]

) + λ5/3EGE2
x [n]. (67)

Note, however, that in this limit the reduced gradients for the
correlation are not small (and thus the correlation energy is not
important). Equation (67) shows a particular classical behavior
of the electrons: their kinetic energies become dominant over
the classical Coulomb and exchange energies. Thus, in the limit
λ → ∞, the electronic system shows similarities with a gas
of noninteracting particles, with nonuniform density nλ(r) =
λ4n(λr).

In the opposite limit (λ < 1), the fractional scaling de-
scribes, as discussed above, the scaling towards a fractional
atom. In fact, in this case the system is correctly scaled
towards the low-density limit with the reduced gradient and
Laplacian for the kinetic and exchange energy becoming large.
To strengthen the significance of such a scaling we consider
its application to the disintegration of an atom, as introduced
above. For simplicity we consider the disintegration of a hy-
drogen atom into two neutral atoms having a fractional number
of electrons q and 1 − q, respectively, and corresponding
fractional nuclear charge. We define the XC disintegration
energy as

M(q) = Exc(1) − Exc(q) − Exc(1 − q), (68)

where Exc(q) denotes the XC energy of the H atom with
fractional electron number and nuclear charge q. Note that
correlation will only play a role when approximate non-self-
interaction-free DFT functionals are considered (MDFT), while
only exchange will contribute in the computation of Mexact.
This quantity is very important since the accuracy of any GGA
functional in computing the values of M(q) is directly related
to its ability to predict good atomization energies, because
both processes (disintegration and atomization) preserve the
total number of electrons. This fact is clearly shown in Fig. 3
where it can be noted the linear relation between the mean
absolute error (MAE) on the computation of atomization
energies of organic molecules (we considered here the AE6 test
[94], which is representative for organic molecule atomization
energies) and the disintegration error � defined as

� =
∫ 1

0
[MDFT(q) − Mexact(q)]dq, (69)

for several representative XC functionals. Of course, a linear
relation is obtained as well with the errors on the XC energy
of a Gaussian one-electron density, which was shown to be a
model system for atomization energies [35,92].
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FIG. 3. (Color online) Gaussian density XC error versus disinte-
gration error �(upper panel) and disintegration error � versus mean
absolute errors of the AE6 test (lower panel), for several functionals
(LDA [1], PBE [59], revPBE [88], APBE [51], PBEint [90], and
PBEsol [89]. The dashed lines are linear interpolations of the data.

The disintegration error can be written, alternatively, as

� = EDFT
xc (1) − Eexact

xc (1) − 2
∫ 1

0

[
EDFT

xc (q) − Eexact
xc (q)

]
dq.

(70)

For the exact energy we have Eexact
xc (q) = Eexact

x (q) =
q3Eexact

x (1), while for the approximate functionals we found
numerically (see Sec. V) EDFT

xc (q) = qaEDFT
xc (1) with a ∼2.3.

Substituting into Eq. (70) we obtain

� ∼ 0.39EDFT
xc (1) − 1

2Eexact
xc (1). (71)

Equation (71) shows that (i) the hydrogen disintegration
problem is not related to the hydrogen one-electron density,
as might appear at a first sight. Indeed, for a GGA which is
exact for the hydrogen atom we would have � ∼ 22 kcal/mol.
In fact, Fig. 3 shows that the hydrogen atom disintegration
is rather linearly related to the Gaussian one-electron density.
(ii) The error � is determined basically from the behavior of
the functional for q = 1. (iii) To minimize the disintegration
error (and thus yield good atomization energies), EDFT

xc must
be about 10%–20% larger than Eexact

xc for the hydrogen atom;
this condition is well met by GGA functionals accurate
for atomization energies (APBE [51], revPBE [88]), and is
also well satisfied by the recently proposed zvPBEsol, and
zvPBEint [35]. However, this result shows that in fact all these
functionals base their performance on an error cancellation
effect which is made inevitable by their inability to respect the
fractional scaling.

Thus, the fractional scaling appears as an important exact
constraint that XC functionals should respect. At present all
popular approximations to the XC energy are only designed
to respect the uniform scaling and are unable to fulfill the
fractional scaling relations.

E. Strong-correlation scaling (β = −1)

For β < −1/3, and in the semiclassical limit λ →
∞, ELDA

x [nλ] = λβ+4/3ELDA
x [n] starts to dominate over the

Thomas-Fermi kinetic energy T LDA
s [nλ] = λ2β+5/3T LDA

s [n],
and thus the system may reach a strongly correlated limit.
Let us briefly consider the case β = −1.

With this choice the scaling of the density and the reduced
gradients are

nλ(r) = λ−2n(λ−1r), rsλ(r) = λ2/3rs(λ
−1r), (72)

sλ(r) = λ−1/3s(λ−1r), qλ(r) = λ−2/3q(λ−1r), (73)

tλ(r) = λ−2/3t(λ−1r), vλ(r) = λ−7/9v(λ−1r), (74)

and thus, under this scaling with λ → ∞, the system is in a
slowly varying, low-density limit. Thus, our approximation for
the universal functional becomes

F [nλ] ≈ λJ [n] + λ1/3
(
ELDA

x [n] + ELDA
c [n]

)
,

λ−1/3
(
T LDA

s [n] + EGE2
x [n]

) + λ−1T GE2
s [n] + λ−5/3T GE4

s [n],

(75)

which shows that the kinetic energy of the electrons, is
much smaller than the Coulomb interaction, and the system
resembles the features of a Wigner crystal, being in a strongly
correlated limit. Note that in this limit, the LDA correlation
energy scales as ELDA

c [nλ] = λ1/3ELDA
c [n], being as important

as the exchange part. We recall that such a Wigner crystal
is well described by a semilocal functional [see Eq. (23)
of Ref. [100] derived from the point-charge-and-continuum
(PC) model [100]. Note that the PC model was incorporated
in high-level methods (e.g., ISI method of Ref. [101]), and
recent excellent work has been done for further development
of the PC model (see Refs. [102,103]), as well as for a DFT of
strongly correlated systems [104,105]. Thus, further study of
this scaling can be important.

V. EFFECTIVE SCALING FOR SEMILOCAL
FUNCTIONALS

In this section we consider an assessment of semilocal XC
density functionals for various scalings discussed above. In
previous sections we discussed the scaling properties of several
exact energy functionals under the scaling transformations
of the type of Eq. (4) and we proved the utility of such
scaling relations in various contexts. At the same time,
we noted that these scaling relations are not respected by
approximate functionals even at the LDA or second-order
gradient-corrected level (the von Weizsäcker kinetic energy
functional being one exception). The situation is even worst
for generalized gradient approximations which indeed do
not have a well-defined scaling behavior under the scaling
transformations of Eq. (4).

Nevertheless, it can be seen that most XC functionals in
fact display an effective scaling Exc[nλ] = λaExc[n]. Solving
this equation for the parameter a, we find a = {ln(|Exc[nλ]|) −
ln(|Exc[n]|)}/ ln(λ). Therefore, it is conceivable to define an
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effective scaling order for a generic functional Exc as

seff =
∫ 1

0

ln(|Exc[nH ]|) − ln(|Exc[nHλ]|)
ln(λ)

dλ. (76)

Because our interest for the scaling of general exchange
(-correlation) functionals in this work was motivated by
the homogeneous and fractional scaling, we restricted our
definition to use hydrogen density nH = exp(−2r)/π and the
interval λ ∈ (0 : 1), where we can compare with exact results.

The effective scaling order provides a measure for the
scaling behavior of different functionals, resembling in this
respect the effective homogeneity of XC functionals [95–97].
Of course, for functionals having a well-defined scaling
behavior (e.g., LDAx), the effective scaling order will coincide
with the analytic scaling exponent. For other functionals it will
provide a measure of the effective scaling behavior, so that the
deviations of the effective scaling order from the true value
could give an estimation of the accuracy of the functional to
fulfill the scaling relation. We note that for the latter cases the
integrand of Eq. (76) was always found to be almost constant
over the entire integration interval (except very close to the
boundaries; note, however, that the function is integrable over
the given range), showing the robustness of our definition.

In Table II we report the values of seff for several exchange
and exchange-correlation functionals at β = 0 and β = 1. An
inspection of the data shows that all the functionals perform
similarly and quite differently from the exact reference, that
in this case is the exact Kohn-Sham exchange, since for
n = nH and λ < 1 there is no correlation. Remarkably, the best
scaling behavior is found for LDA exchange, while slightly
worst results are obtained for GGA functionals. The use of

TABLE II. Effective scaling order seff [see Eq. (76)] for several
semilocal functionals at β = 0 and β = 1. The last line reports the
reference value for the exact exchange functional. The second column
reports the reference to the appropriate literature for each functional.

Functional Ref. β = 0 β = 1

Exchange-only functionals
LDAx [86,87] 1.333 2.666
B88 [91] 1.254 2.206
PBEx [59] 1.266 2.323
APBEx [51] 1.262 2.316
revPBEx [88] 1.252 2.252
PBEsolx [89] 1.280 2.356
PBEintx [90] 1.272 2.329
TPSSx [98] 1.297 2.399
revTPSSx [99] 1.309 2.439
Exact 2.000 3.000

Exchange-correlation functionals
LDA [39,86,87] 1.317 2.517
PBE [59] 1.272 2.342
APBE [51] 1.268 2.333
revPBE [88] 1.258 2.271
PBEsol [89] 1.287 2.378
zPBEsol [89,92] 1.268 2.316
PBEint [90] 1.279 2.351
zPBEint [90,92] 1.261 2.289
Exact 2.000 3.000

meta-GGA functionals, as TPSS [98] or revTPSS [99], which
are constructed taking into account the physics of one-electron
systems, is found finally to bring a slight improvement in
the effective scaling behavior. Moreover, at the GGA level
the addition of approximate correlation seems to bring some
small improvement in the scaling behavior, in line with the fact
that indeed semilocal DFT functionals are not really exchange
or correlation functionals but rather rely on a heavy error
compensation between the two. We recall instead that meta-
GGA functionals are one-electron-self-correlation free [106].

VI. CONCLUSIONS

In summary, we have investigated the scaling with a
variable particle number of the form of Eq. (4): nλ(r) =
λ3β+1 n(λβr). For such scaling transformations we provided
a formal definition within the ensemble formalism of DFT
and studied the basic features, also in relation to the scaling
properties of different important density functionals.

The density scalings defined in Eq. (4) span an impressive
set of physical properties: in the limit of large λ they are crucial
for the semiclassical theory of many-electron systems (e.g.,
Thomas-Fermi scalings is related to atoms, uniform-electron-
gas scaling is related to metallic clusters, strong-correlation
scaling is related to Wigner crystals), whereas in the limit of
small λ they are connected with the physics of small systems
with fractional particle number, and to self-interaction errors.

The here proposed uniform-electron-gas scaling (β =
−1/3) is the right basic concept for jellium clusters. Simple
scaling manipulations showed that the curvature corrections
are in fact related to the second-order gradient expansion. On
the other hand, the surface corrections (described by the Airy
gas model [76]), are quantum oscillations terms. By analogy
with the recent work on the semiclassical atom [26,49,50],
a modified second-order gradient expansion (MGE2) can be
constructed for jellium clusters, in order to recover the exact
surface corrections. However, we expect that such a MGE2 will
be very close to the regular GE2 that is accurate for surfaces
of simple metals when the Kohn-Sham densities are used [89].

Moreover, the idea of MGE2, that can account for the
principal quantum corrections, can be generalized for any
β (in the limit of large λ). Such a βMGE2 will be very
useful especially for the strongly correlated scaling (β = −1)
where the LDA term is not exact (in the limit λ → ∞) due
to the self-interaction problem in Wigner crystals [100]. For
example, βMGE2 for the exchange energy may have the form,

EβMGE2
x [n] =

∫
dr n εLDA

x f (β)[1 + μ(β)s2], (77)

where f (β) and μ(β) should be derived in further investi-
gations. (For the Thomas-Fermi scaling f (β = 1/3) = 1 and
μ(β = 1/3) = 0.26 [49]; whereas the regular GE2 has f = 1
and μ = 0.12346).

Finally we have shown the usefulness of the here proposed
fractional scaling (β = 1) for the atomization energies of
molecules. Recently, it has been derived an atomization energy
constraint (i.e., minimization of an entropy-like function for an
ensemble one-electron density model) [35,92]. This constraint
was derived from an empirical observation relating errors in
the model one-electron densities to errors in the atomization
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energies, of popular GGAs (see Fig. 2 of Ref. [92]); and
from the physical explanation that one-electron densities
are simple models for simple bonding regions, where the
iso-orbital regime can be significant (see Fig. 1 of Ref. [92],
and the corresponding discussion). Using the fractional scaling
(β = 1), we have better explained the significance of the one-
electron Gaussian model for atomization energy of molecules
and disintegration of the hydrogen atom [see Eq. (71) and its
related discussion].

We recall that the semilocal exchange hole models satisfy
the sum rule for systems with an integer number of electrons
[107], but violate the exchange hole sum rule in case of
a fractional number of electrons, and thus predicting too-
negative energies for such systems [108]. The here proposed
effective scaling (see Sec. V), measures in fact the functional
accuracy for systems with a fractional particle number, and
can be used to develop (and test) new better approximations.

Our work provides a deeper insight into the relevance
of the scaling relations having the form defined in Eq. (4)
and highlights the importance of these scaling relations in
DFT. In particular, Eqs. (31)–(34) provide useful scaling
relations with varying particle number that are important
constraints in the construction of approximate exchange-
correlation (or noninteracting kinetic) functionals. Moreover,
for the λ → 0 limit, Eqs. (37) and (38) are exact constraints
for the Kohn-Sham exchange and kinetic energy functionals,
respectively, and the effective scaling order [Eq. (76)] is
a more general requirement, which is relevant for the SIE
problem. Unfortunately, no such explicit expressions exist

instead for the λ → ∞ limit, where, however, the recovery of
the semiclassical atom physics was shown to be an important
condition.
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APPENDIX: SCALING RELATIONS FOR KOHN-SHAM
KINETIC AND EXCHANGE ENERGIES FOR

ONE-ELECTRON SYSTEMS

In this Appendix we consider briefly the special case of
a fractional number of particles (with N � 1) and λ � 1.
In this case, using the formalism of Sec. II we can derive,
in line with Ref. [4], the general scaling properties for the
noninteracting kinetic energy and the Kohn-Sham exchange
functionals. Under coordinate scaling the density operator is
transformed into another valid density operator and because
of the simple scaling behavior of the statistical weight we
have �̂λ(r) = λ�̂(λβr). At this point we can write Tr[�̂λT̂ ] =
λ2β+1Tr[�̂T̂ ], where we used the fact that T̂ (r/λβ) = λ2βT̂ (r),
and we note that, for any λ, if Tr[�̂T̂ ] is a minimum so must
be Tr[�̂λT̂ ]. Hence,

Ts[nλ] = λ2β+1Ts[n]. (A1)

In a similar way it can be proved that

Ex[nλ] = λβ+2Ex[n]. (A2)
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