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Relation between properties of long-range diatomic bound states
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Long-range states of diatomic molecules have average values of internuclear separations 〈R〉 at least one
order of magnitude larger than the equilibrium value of R. For example, the helium dimer 4He2 has a single
bound state with 〈R〉 of about 50 Å. We show that the properties of these states, such as 〈R〉, the dissociation
energy, or the s-wave scattering length, can be related by simple, yet very accurate, formulas if a potential-energy
curve is known. By examining a range of ab initio and empirical helium dimer potentials as well as scaling
these potentials, we found that the formulas remain accurate, even if very approximate potentials were used. In
addition to 4He2, we present results for 9Be2,

20Ne2, and KRb.
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I. INTRODUCTION

The highest rovibrational states of diatomic molecules
play a fundamental role in cold-atom scattering as their
properties, such as dissociation energies D0 and average
values of internuclear separations 〈R〉 are closely related
to the s-wave scattering lengths a, which fully determine
low-energy behavior of such systems including creations of
Bose-Einstein condensates and degenerate Fermi gases. In
the first approximation, D0 = (h̄2/2μ)(1/a)2 and 〈R〉 = a/2,
where μ is the reduced mass of the dimer [1,2]. As shown
below, for 4He2 this approximation gives about 10% errors.
The knowledge of more accurate relations is of significant
practical interest (see, e.g., Refs. [3–6]) as it allows one to
predict these properties if only one of them is known and
to estimate relative accuracies if more than one quantity is
known. Gao [5] has shown that one way of deriving a more
accurate relation between D0 and a can be based on the angular
momentum-insensitive quantum defect theory, whereas other
relations have been derived from the semiclassical approach
[4]. However, since these theories are approximate, alternative
approaches are still needed. The aim of the present paper
is to show that a simple, yet accurate, method can be
developed utilizing potential-energy curves of diatoms, even
very approximate ones. For 4He2, the resulting relations were
fitted by low-degree rational polynomials, which may be useful
in the interpretation of future experiments and in discussions
of the Efimov states of the helium trimer [7–11].

We test the proposed approach mainly on the helium dimer
since, for this system, a nearly exact interaction potential is
available [12]. We will refer to this potential as PCKLJS
(Przybytek-Cencek-Komasa-Lach-Jeziorski-Szalewicz). The
4He2 very weakly bound state is of significant interest by
itself with its ab initio predicted dissociation energy D0 =
1.62 ± 0.03 milliKelvin (mK) and the average internuclear
distance 〈R〉 = 47.1 ± 0.5 angstrom (Å) [12]. The separation
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〈R〉 is the only property of the helium dimer bound state that
has been measured. The best experimental value is 52 ± 4 Å,
obtained by Grisenti et al. in 2000 [13]. The measurements
of 〈R〉 are very difficult, and one may recall that the previous
best experimental result of Luo et al. [14] was 62 ± 10 Å. The
helium dimer also exhibits other fairly unusual and interesting
properties, such as an ultra-long-range energy transfer by
interatomic Coulombic decay [15–22] and quantum reflections
[23].

Grisenti et al. [13] also published “experimental” values
of D0 = 1.1+0.3

−0.2 mK and of a = 104+8
−18 Å. These values are

often compared to the theoretical ones (see, e.g., Refs. [9,10])
and are used to evaluate the accuracy of the potentials. In most
cases, the discrepancies are much larger for D0 and a than for
〈R〉. This can be seen, for example, by comparing to the values
from Ref. [12] quoted above and to a = 90.42 ± 0.92 Å also
computed in Ref. [12]. The actual reason for this behavior
is that D0 and a were not measured in any way but were
simply calculated [13] from the value of 〈R〉 using the relations
given below. The upper error bars for the former quantity and
the lower ones for the latter were increased as indicated by
the results from the Tang-Toennies-Yiu (TTY) theoretical He2

potential of Ref. [24]. Much better estimates of what should be
the values of D0 and a, corresponding to the experimental 〈R〉
were recently obtained in Ref. [25] by adding to the potential of
Ref. [12] such a percentage of its estimated error that the new
potential exactly gives the experimental 〈R〉. This procedure
gave D0 = 1.30+0.25

−0.19 mK and a = 100.2+8.0
−7.9 Å, substantially

closer to and nearly consistent with the ab initio results. One
may conclude that, if D0 and a were actually measured, these
values would be, at least, nearly consistent with the theoretical
ones similarly as in the case of 〈R〉.

II. COMPARISONS OF He2 LITERATURE POTENTIALS

In order to show that the predictions of the method proposed
by us do not depend on the accuracy of the potential used, we
have selected a subset of He2 potentials developed in the past
30 years, which vary dramatically in accuracy. The predictions
of these potentials for D0, 〈R〉, and a are listed in Table I. Until
the 1990s, helium dimer potentials were fitted to experimental
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TABLE I. Comparison of the average bond lengths 〈R〉, dissociation energies D0, and s-wave scattering lengths a, from literature and
computed in this paper. In the lower part, values from the selected scaled potentials are given with the target value in bold. Numbers in
parentheses are the predictions from our fits of Eqs. (2) and (3), corresponding to a given 〈R〉.

Potential Calculation D0 (mK) 〈R〉 (Å) a (Å) f

HFDHE2 [26] Reference [27] 0.830 (0.830) 64.21 89.30 (124.59)
HFDHE2 [26] This paper 0.835 (0.835) 64.02 124.30 (124.21)
HFD-B [28] Reference [10] 1.685 (1.685) 46.18 88.50 (88.58)
LM2M2 [29,30] Reference [10] 1.303 (1.303) 52.00 100.23 (100.20)
LM2M1 [29,30] Reference [27] 1.209 (1.209) 53.85 101.10 (103.90)
LM2M1 [29,30] This paper 1.209 (1.209) 53.85 103.89 (103.90)
LM-2a [29] This paper 1.140 (1.140) 55.34 106.90 (106.87)
HFD-ID [30,31] Reference [27] 0.402 (0.402) 91.50 177.40 (109.20)
HFD-ID [30,31] This paper 1.090 (1.091) 56.50 109.24 (109.19)
TTY [24] Reference [10] 1.310 (1.309) 51.89 100.01 (99.98)
HFD-B3-FCI1 [32,33] This paper 1.594 (1.594) 47.38 91.00 (90.98)
HFD-B3-FCI1b [32,33] Reference [34] 1.417 (1.405) 50.22 96.27 (96.65)
HFD-B3-FCI1b [32,33] This paper 1.448 (1.448) 49.52 95.30 (95.26)
SAPT96b [35,36] Reference [34] 1.712 (1.712) 45.84 87.92 (87.90)
HM [37] This paper 1.722 (1.722) 45.72 85.55 (85.53)
HMb [37] This paper 1.551 (1.551) 47.98 92.21 (92.17)
CCSAPT07b [38] Reference [38] 1.56 (1.563) 47.8 91.8 (91.81)
HBV [39] This paper 1.813 (1.813) 44.65 85.55 (85.53)
HBVb [39] This paper 1.637 (1.636) 46.81 89.87 (89.87)
PCKLJS [12] Reference [12] 1.615 ± 0.034 47.09 ± 0.46 90.42 ± 0.92

Scaled LM-2a 1.615 (1.615) 47.09 90.43 (90.40) 1.004 613
Scaled HBV 1.615 (1.615) 47.09 90.43 (90.40) 0.998 29
Scaled HBVb 1.615 (1.615) 47.09 90.43 (90.40) 0.999 809
Scaled-D0 PCKLJS 1.100 56.27 108.73 0.994 985
Scaled-〈R〉 PCKLJS 1.303 52.00 100.20 0.997 079
Scaled-a PCKLJS 1.206 53.90 104.00 0.996 102

Grisenti et al. [13] 1.1+0.3
−0.2 52 ± 4 c 104+8

−18

Cencek et al. [25] 1.30+0.25
−0.19 52 ± 4 100.2+8.0

−7.9

aPotential fitted in this paper (see Table IV in the Appendix).
bIncluding the retardation correction for all R.
cMeasured in Ref. [13].

data, mainly thermophysical and scattering measurements, and
the best known such potentials were HFDHE2 [26] and HFD-B
[28]. The empirical potentials obtained in this way reproduced
measured quantities much better than the theoretical potentials
of that time. However, since no spectroscopic data—providing
most accurate input to such fittings—are available for the
helium dimer, many empirical fits utilized some theoretical
information, in particular, about the asymptotics and the
repulsive wall of the potential. In 1989, Liu and McLean [29]
computed an ab initio interaction potential denoted as
LM-2. In 1991, Aziz and Slaman [30] constructed an
analytic representation of LM-2, called by them LM2M1, by
modifying an empirical potential in such a way that its values
were within the error bars of LM-2. This restriction was then
lifted, and the parameters of LM2M1 were tuned [30] to
recover experimental data as closely as possible. The resulting
empirical potential dubbed LM2M2 provided the best
predictions of the measurements at that time. Since LM2M2
was only a minor modification of LM-2 and the computed
interaction energies were a part of the fit data set, this potential
can also be called a “tuned” or “morphed” ab initio potential.
LM2M2 was the last widely recognized empirical potential
for the helium dimer. The HFD-ID potential, taken from

Table II of Ref. [30], is a fit to unpublished ab initio
interaction energies computed by Vos et al. [31] using an
approach applied earlier by Vos et al. in Ref. [40]. Since Aziz
and Slaman found HFD-ID to be slightly inferior to LM2M1,
it was not pursued further.

Starting from the mid-1990s, purely ab initio potentials
have provided the best predictions. The HFD-B3-FCI1 po-
tential of van Mourik and van Lenthe [32] and the SAPT96
potential of Williams et al. [35] and Korona et al. [36] were
shown by Aziz and collaborators to reproduce experiments
still better than LM2M2 [33,34]. Let us also mention that the
SAPT96 potential from Refs. [35,36] (based on calculations
using symmetry-adapted perturbation theory [41,42]) is often
wrongly attributed to Janzen and Aziz [34], whereas, these
authors only used SAPT96, under the names SAPT1 and
SAPT2—depending on how the retardation correction was

TABLE II. Fit parameters of Eqs. (2) and (3).

A0 2.981 6185 × 103 A1 9.468 7166
B0 1.747 7753 B1 0.361 5444 × 10−2

B2 − 0.402 8595 × 10−4 B3 0.166 7976 × 10−6
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applied, in calculations of properties of helium. Another pop-
ular ab initio potential of that time named TTY was computed
by Tang et al. [24]. This trend continued, and the current most
accurate potential for helium is the PCKLJS potential [12] with
the Born-Oppenheimer part from Refs. [38,43,44]. This poten-
tial reproduces thermophysical data with uncertainties several
times smaller than experimental uncertainties and is used
by the thermophysics community to calibrate instruments and
to develop new metrology standards [25]. Two other recent ab
initio potentials are the one fitted by Hurly and Mehl (HM) [37]
to a weighted average of several ab initio calculations and that
of Hellmann et al. [39], denoted by HBV.

The data in Table I show enormous progress in the accuracy
of predictions. Very surprisingly, and probably completely
accidentally, the TTY potential gives values almost identical
to those produced by LM2M2. It is interesting to compare
the LM-2, LM2M1, and LM2M2 fits. In this sequence, the
amount of empirical information is gradually increased, and
the predictions are gradually improved. Also, one can see
that the LM-2 predictions are slightly better than those of HFD-
ID. The predictions of the purely empirical HFD-B potential
are significantly better than those of the discussed older ab
initio-based potentials, in fact, in excellent agreement with
those of PCKLJS. This shows that, until the early 1990s, the
empirical potentials were more accurate than ab initio or tuned
ab initio ones. The pure ab initio potentials of the 1990s are,
however, getting close to the accuracy of HFD-B: In particular,
SAPT96 is in almost perfect agreement with HFD-B. The
three potentials of recent years: HM, CCSAPT07, and HBV
are more accurate than HFD-B, and HBV is within the error
bounds of PCKLJS. The predictions of the CCSAPT07 and
HM potentials are nearly identical since the latter potential
utilized a number of virtually the same ab initio interaction
energies as used in CCSAPT07. All the potentials giving such
disparate predictions will be shown below to reproduce the
PCKLJS values of D0, 〈R〉, and a upon a very simple scaling.

III. SCALED POTENTIALS

In order to better understand the relations among D0, 〈R〉,
and a, we tuned various potentials in such a way that a
given value of one of these quantities is recovered exactly.
Accordingly, we have used only one tuning parameter in the
potential. After some experimentation, we have found that the
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FIG. 1. 4He2 dissociation energies versus average bond lengths.
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FIG. 2. 4He2 scattering lengths versus average bond lengths.

simplest possible procedure, scaling of the whole potential by
a constant,

V sc(R) = f V (R) (1)

worked the best. Scaled results for the LM-2 [29], HBV [39],
and PCKLJS [12] potentials are shown in Table I. In the first
two cases, the potentials were scaled to recover the values of
〈R〉 given by PCKLJS. As one can see, the scaled values of
D0 (a) agree to better than 0.001 mK (within 0.01 Å) with
the values computed from the PCKLJS potential, a virtually
perfect agreement. This agreement should be contrasted with
up to 0.48 mK (16.5 Å) discrepancies between the prediction
of PCKLJS and the original potentials. In the PCKLJS case,
we scaled this potential to recover the values from Ref. [13].
It is very interesting that scaling on 〈R〉 = 52.00 Å produces
the values of D0 and a identical to those obtained by quite a
different procedure in Ref. [25]. As expected, scaling on the
values of D0 or a from Ref. [13] gives poor values of the
predicted quantities.

The observed relations among D0, 〈R〉, and a show that
these three quantities are strongly correlated. Therefore,
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FIG. 3. 9Be2 scattering length versus average bond length of the
highest rotationless state. The curve was obtained by scaling the
potential from Ref. [45] [point PSS (Patkowski-Spirko-Szalewicz)
corresponds to f = 1]. The remaining points were obtained using
the potentials from references: Røeggen and Veseth (RV) [46]; Koput
(KOP) [47]; Stärk and Meyer (SM) [48]; Gdanitz (GD) and GD
corrected for relativistic effects (GDr) [49]; and Jamieson-Cheung-
Ouerdane-Jeung-Geum (JCOJG) [50].
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FIG. 4. 20Ne2 scattering length versus average bond length of
the highest rotationless state. The curve was obtained by scaling the
HBV potential from Ref. [51] (point HBV corresponds to f = 1). The
remaining points were obtained using the potentials from references:
Wüst and Merkt (WM) [52]; Aziz and Slaman (AS) [53]; Cybulski
and Toczylowski (CT) [54]; GD [55]; and Bytautas and Ruedenberg
(BR) with aug-cc-pV6Z basis set [56].

we have developed simple formulas relating pairs of these
quantities, which may be handy in future investigations of
4He. In particular, we found that D0 and a can be represented
as the following functions of 〈R〉 (any other quantity can be
taken as the independent variable):

D0 = A0[1 + A1/〈R〉]/〈R〉2, (2)

a = B0〈R〉[1 + B1〈R〉 + B2〈R〉2 + B3〈R〉3], (3)

where D0 is in mK whereas 〈R〉 and a are in Å. The
linear parameters were least-squares fitted to a suitable set
of pairs (D0,〈R〉) or (a,〈R〉) generated by scaling the PCKLJS
potential by the factor f ranging from 0.987 to 1.005. The
values of the parameters are given in Table II.

The values predicted by Eqs. (2) and (3) are listed in
parentheses in Table I. As one can see, these simple formulas
work amazingly well for all of the potentials, despite the
fact that only the PCKLJS potential was used to derive
them. In virtually all cases, nearly four significant digits
are predicted exactly. The literature values computed with
the HFD-B3-FCI1 potential are the only exception, but our
calculations with the same potential show that this is only

due to a limited accuracy of the calculations of Ref. [34].
The functions of Eqs. (2) and (3) are plotted in Figs. 1 and
2, respectively. The values computed with various potentials
are also plotted as symbols. The figures show the excellent
agreement already discussed above as all the points lay almost
exactly on the lines given by Eqs. (2) and (3). The figures show
very clearly that the dependence of D0 and a on 〈R〉 is very
generic, independent of the details of the potentials.

To check if our approach is applicable to other diatoms,
we performed similar calculations for 9Be2,

20Ne2, and KRb.
For the two former systems, a large number of published
potentials are available so that we could prepare figures
analogous to those for 4He2. As can be seen in Figs. 3 and
4, the behavior is the same as observed for 4He2, i.e., all the
values computed from vastly different literature potentials lie
on the curve computed from best literature potentials scaled
according to Eq. (1). For 9Be2, the dependence becomes
nonlinear for small 〈R〉 since such values correspond to
probing the region where the potential becomes quickly
deeper due to the onset of chemical interactions. For KRb,
a model for ultracold gases, we present our results in
Table III. Here, just two potentials are available: a fairly
accurate empirical one fitted to spectroscopic data [57] and
a much less accurate ab initio one [58], both independent of
atomic masses. We computed D0’s for all combinations of
isotopes from the former potential and then used the latter one
scaled to reproduce these D0’s to compute a’s. The agreement
with experimental scattering lengths is excellent: only 4 out of
36 predicted values are (slightly) outside experimental error
bars.

IV. SUMMARY

In conclusion, we have shown that parameters characteriz-
ing the highest bound state of a diatomic molecule and low-
energy scattering of the atoms involved can be found with high
precision if one of these parameters is accurately measured.
One needs to know a potential-energy curve for the dimer, but
even low-accuracy curves give high-accuracy predictions after
being scaled to reproduce the measured quantity. This strong
correlation indicates that the properties of the dimers in the
investigated energy range are mainly sensitive to the values of
the potential in the same range. Since all potentials produce
virtually identical vertical walls at small R, the scaling that
recovers accurate D0 must produce a very accurate potential

TABLE III. Experimental and predicted scattering lengths (in units of a0) for the a3�+ electronic state of KRb.

Isotopes Expt.a Reference [57]b Reference [58]c 39K 85Rbd 39K 87Rbd 40K 85Rbd 40K 87Rbd 41K 85Rbd 41K 87Rbd

39K 85Rb 63.0 ± 0.5 63.9 63.2 63.2 63.3 63.4 63.5 63.6 63.6
39K 87Rb 35.9 ± 0.7 35.9 36.0 36.0 36.1 36.2 36.4 36.5 36.5
40K 85Rb − 28.4 ± 1.6 − 28.6 − 28.4 − 28.5 − 28.3 − 28.0 − 27.7 − 27.4 − 27.3
40K 87Rb − 215 ± 10 − 215.6 − 215.0 − 216.3 − 215.3 − 213.0 − 211.3 − 209.6 − 208.8
41K 85Rb 348 ± 10 349.8 350.1 348.8 349.8 352.0 353.8 355.5 356.3
41K 87Rb 163.7 ± 1.6 164.4 164.6 164.4 164.6 165.0 165.2 165.5 165.7

aReference [59].
bCalculated from an empirical potential fitted to dimer spectra.
cCalculated from an ab initio potential tuned to exactly reproduce the experimental scattering length of 40K 87Rb.
dCalculated in this paper by scaling the purely ab initio potential of Ref. [58] to reproduce the binding energies of the highest rotationless
bound states of the indicated isotopes computed from the empirical potential of Ref. [57].
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near the outer turning point. Since this potential is in this
region, well approximated by C6/R

6, it is also accurate for all
larger R’s. Our results can be compared with approximate
semiclassical relations. As already discussed, the simplest
such relations [1–3] are too approximate. However, more
sophisticated relations of this type have been published more
recently. For example, formulas (2) and (32) in Ref. [4] allow
one to calculate a quantity κ , which gives D0 = h̄2κ2/2μ from
the knowledge of a and of C6. This formula, applied to He2,
gives only a 0.25% error, but fails completely for Be2.
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APPENDIX

As there is no analytic representation for the LM-2 ab initio
calculations of Ref. [29] available in the literature (as described

TABLE IV. The parameters (all in atomic units) of the LM-2 ab
initio potential.a

a 2.517 3059 P0 − 65.277 1699
b 2.334 5579 Q0 72.294 7935
c 0.024 2266 Q1 − 9.269 2253
η 1.790 7966

aThe coefficients Cn were fixed at their reference Born-Oppenheimer
values from Ref. [60]: C6 = 1.460 977 837 725, C8 = 14.117 857 37,
and C10 = 183.691 075.

earlier, LM2M1 is not a true fit of LM-2 data), we have fitted
it using the following functional form, similar to that used for
the PCKLJS potential of Ref. [12]:

V (R) = e−aR−cR2
P0 + e−bR(Q0 + Q1R)

−
∑

n=6,8,10

fn(ηR)Cn/R
n, (A1)

where fn(x) is the Tang-Toennies damping function,

fn(x) = 1 − e−x

n∑

k=0

xk/k! (A2)

The fit was constrained by fixing the long-range asymptotic
coefficients Cn at their reference values taken from Ref. [60].
The parameters of the fit are given in Table IV.
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