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Analytical matrix elements of the Uehling potential in three-body systems
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Exact analytical expressions for the matrix elements of the Uehling potential in a basis of explicitly correlated
exponential wave functions are presented. The obtained formulas are then used to compute with an improved
accuracy the vacuum polarization correction to the binding energy of muonic and pionic molecules, both in a
first-order perturbative treatment and in a nonperturbative approach. The first resonant states lying below the
n = 2 threshold are also studied, by means of the stabilization method with a real dilatation parameter.
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I. INTRODUCTION

The involvement of muonic molecular ions in nuclear
fusion as fusion catalysts, through the Vesman mechanism [1],
generated great interest for precise energy-level calculations in
small muonic molecules [2]. In particular, precise knowledge
of the binding energy of the weakly bound state (L = 1,v =
1) in ddμ and dtμ is required to predict the temperature
dependence of molecular formation rates. The analysis of
ddμ fusion experiments performed at Petersburg Nuclear
Physics Institute (PNPI) actually resulted in a very precise
determination of the (L = 1,v = 1) binding energy (with
0.7-meV uncertainty), in impressive agreement with theory
[3]. Knowledge of the spectrum of resonant states below the
n = 2 threshold is also useful for evaluating their impact in
the muon catalyzed fusion cycle [4,5].

Exotic molecular ions also play a role in the interpretation
of spectroscopy experiments in muonic or pionic atoms.
The existence of μp atoms in the metastable 2S state, a
prerequisite for the measurement of the 2S-2P Lamb shift [6],
was observed through a quenching mechanism by collisions
with H2 which involves resonant states of ppμ below the
n = 2 threshold [7]. In experiments on pionic hydrogen or
deuterium [8], atoms are produced from highly excited states
through an atomic cascade in which resonances of ppπ or ddπ

may be populated [9]; the properties of these resonances are
useful input parameters for an accurate modeling of the atomic
cascade, which is indispensable to understand the observed line
shape and extract strong interaction broadening.

Some of these applications (most notably muon catalyzed
fusion studies) require accurate energy-level calculations,
which means that leading corrections to the nonrelativistic
energies have to be taken into account. In muonic systems,
by far the largest correction originates from the vacuum
polarization contribution to the interaction energy, whereas in
pionic systems the strong interaction shift is of the same order
[9]. The first-order polarization correction to the interaction
potential is usually referred to as the Uehling potential [10]; it
is given by a nonelementary integral over a parameter. Most
calculations of the Uehling correction in three-body systems
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have been performed by means of a numerical integration of its
matrix elements, either with a Gaussian [5,9,11] or exponential
[12] basis set. An analytical expression of its matrix elements
in a correlated exponential basis set was published in [13].
However, that expression is quite complicated, and numerical
results obtained from it [14] are in disagreement with those of
other authors.

In the present work, we give in Sec. II a more compact
analytic expression for the matrix elements of the Uehling po-
tential in a correlated exponential basis set, which greatly sim-
plifies its application in actual calculations. These results may
also be applied to calculations with the generalized Hylleraas
expansion [15]. The obtained expressions are then used in
Sec. III to obtain a new set of reference results for bound- and
resonant-state energies in muonic and pionic molecules.

II. MATRIX ELEMENTS OF THE UEHLING POTENTIAL

We use atomic units, scaled to the mass m of the lightest
particle of the studied three-body system (e.g., the muon
mass in the case of muonic molecules). The Uehling potential
between two particles of charges Z1,Z2 reads [10]

Vvp(r) = αfscZ1Z2

3πr

∫ ∞

1
du e−2xru

√
u2 − 1(2u2 + 1)

u4
, (1)

with x = (αfscm)−1 (here αfsc represents the fine-structure
constant). We consider a variational expansion of the three-
body wave function in the form

� (r1,r2,r12) =
N∑

n=1

Cn e−αnr1−βnr2−γnr12 Y l1l2
LM(r̂1,r̂2), (2)

where r1, r2, and r12 are the interparticle distances and
Y l1l2

LM(r̂1,r̂2) are bipolar spherical harmonics. αn, βn, and
γn are real exponents satisfying the relations αn + βn > 0,
αn + γn > 0, and βn + γn > 0. The matrix elements of the
Uehling potential in such a basis set involve integrals of the
form

I
(i)
l,m,n(α,β,γ ) =

∫∫∫
dr1dr2dr12 rl

1r
m
2 rn

12 e−αr1−βr2−γ r12

×
∫ ∞

1
du e−2xuri

√
u2 − 1(2u2 + 1)

u4
, (3)
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where ri = r1, r2, and r12 for Vvp (r1), Vvp (r2), and Vvp (r12), respectively, and l,m,n are non-negative integers. These
integrals can be generated from I0,0,0(α,β,γ ) by partial differentiation with respect to α, β, and γ , as is usually done in the case
of the Coulomb potential (see, e.g., [16,17]). The basic integral to be calculated is thus

I
(i)
0,0,0(α,β,γ ) =

∫∫∫
dr1dr2dr12 e−αr1−βr2−γ r12

∫ ∞

1
du e−2xuri

√
u2 − 1(2u2 + 1)

u4
. (4)

The first step is to change the order in which the integrations over space coordinates and the parameter u are performed. For
Vvp (r1) one obtains

I
(1)
0,0,0(α,β,γ ) =

∫ ∞

1
du

√
u2 − 1(2u2 + 1)

u4

∫∫∫
dr1dr2dr12 e−(α+2xu)r1−βr2−γ r12 . (5)

The integral over spatial coordinates is well known [16,17] and reads 2/(β + γ )(α + β + 2xu)(α + γ + 2xu), so that

I
(1)
0,0,0(α,β,γ ) = 1

2(β + γ )x2
I1(a,b), (6)

where a = (α + β)/2x, b = (α + γ )/2x, and

I1(a,b) =
∫ ∞

1
du

√
u2 − 1(2u2 + 1)

u4(u + a)(u + b)
. (7)

The integral Eq. (7) can be obtained analytically by standard procedures (the work can be done using a symbolic computation
program such as Mathematica):

I1(a,b) = 3π (a + b)[2(a2 + b2) + 3a2b2] − ab[12(a2 + ab + b2) + 20a2b2]

12a4b4

+
√

1 − a2(1 + 2a2) arccos(a)

a4(a − b)
−

√
1 − b2(1 + 2b2) arccos(b)

b4(a − b)
. (8)

Since the last two terms in this expression diverge for a = b, one should study the limit b → a. The result is

I1(a,a) = 3π (4 + 3a2) − 2a(12 + 11a2)

6a5
+ (2a4 − a2 − 4) arccos(a)

a5
√

1 − a2
. (9)

For S states, the matrix elements of Vvp(r1) involve the integral

I
(1)
0,1,1(α,β,γ ) = ∂2I

(1)
0,0,0(α,β,γ )

∂β ∂γ
. (10)

Straightforward (but tedious) algebraic manipulations lead to

I
(1)
0,1,1(α,β,γ ) = 1

(β + γ )x2

[
I1(a,b)

(β + γ )2
+ I2(a,b)

4x(β + γ )
+ I3(a,b)

8x2

]
, (11)

where

I2(a,b) = 3π [4(a4 + a3b + a2b2 + ab3 + b4) + 3(a4b2 + a3b3 + a2b4)] − 2ab(a + b)[12(a2 + b2) + 11a2b2]

6a5b5

+ (4 + a2 − 2a4) arccos(a)

a5(a − b)
√

1 − a2
− (4 + b2 − 2b4) arccos(b)

b5(a − b)
√

1 − b2
, (12)

I3(a,b)

= 3π (a + b)[4(a2 + b2) + 2ab + 3a2b2] − 2ab[12(a4 + b4) + 11(a4b2 + a2b4) − 6(a3b + a2b2 + ab3) − 10a3b3]/(a − b)2

6a5b5

+ (4b − 6a + a2b − 3a3 − 2a4b + 6a5) arccos(a)

a5(a − b)3
√

1 − a2
− (4a − 6b + ab2 − 3b3 − 2ab4 + 6b5) arccos(b)

b5(a − b)3
√

1 − b2
. (13)

In the case a = b, these expressions are replaced by

I2(a,a) = 3π (20 − 11a2 − 9a4) − 2a(60 − 23a2 − 28a4)

6a6(1 − a2)
− (20 − 21a2 − 6a4 + 4a6) arccos(a)

a6(1 − a2)3/2
, (14a)

I3(a,a) = 3π (20 + 6a2)(1 − a2)2 − a(120 − 184a2 + 23a4 + 32a6)

6a7(1 − a2)2
− (40 − 88a2 + 45a4 + 10a6 − 4a8) arccos(a)

2a7(1 − a2)5/2
. (14b)

012506-2



ANALYTICAL MATRIX ELEMENTS OF THE UEHLING . . . PHYSICAL REVIEW A 87, 012506 (2013)

The matrix elements of Vvp(r2) [respectively, Vvp(r12)] can
be deduced from this result by interchange of the parameters
α and β [respectively, α and γ ].

For P states, three integrals are needed: I
(1)
2,1,1, I

(1)
0,3,1, and

I
(1)
0,1,3. Their expressions are too lengthy to be reported here, but

they can be easily evaluated by symbolic calculations programs
and translated into C or FORTRAN code. For higher values of the
orbital angular momentum, it is doubtful whether evaluation
of analytical formulas remains advantageous with respect to
numerical integration, because of growing calculation time
and numerical instabilities.

III. NUMERICAL APPROACH AND RESULTS

A. Numerical approach

In this section, we present the results of variational
calculations using the nonrelativistic three-body Hamiltonian:

H = − 1

2m1
∇2

r1
− 1

2m2
∇2

r2
− 1

m
∇r1∇r2 − 1

r1
− 1

r2
+ 1

r12
.

(15)

Here, the nuclei are numbered by 1 and 2, and the light particle
(muon or pion) is numbered by 3. The notations r1 ≡ r13,
r2 ≡ r23 are used. m1 and m2 are, respectively, the 1 − 3 and
2 − 3 reduced masses. The vacuum polarization correction to
the binding energy is determined from first-order perturbation
theory:

�E
(1)
b = �E

(1)
at − (〈Vvp(r1)〉 + 〈Vvp(r2)〉 + 〈Vvp(r12)〉), (16)

where �E
(1)
at is the first-order shift of the related atomic

threshold.
The Uehling potential behaves like ln(r)/r at r → 0 [18].

This not too singular behavior enables good convergence of a
nonperturbative calculation, where the vacuum polarization
potential Vvp(r1) + Vvp(r2) + Vvp(r12) is directly added to
the Coulomb Hamiltonian H before diagonalization. The
correction to the binding energy is then

�Eb = E
(CU)
at − E(CU) − (

E
(C)
at − E(C)

)
, (17)

where E(C)(CU) and E
(C)(CU)
at are the energies of the three-body

state and of the related atomic threshold, obtained with the
Coulomb potential C or the Coulomb + Uehling potential
CU. While corrections beyond the first order are not useful
in themselves at the present level of theoretical accuracy,
this provides a simple and reliable way of evaluating higher-
order corrections and thus controlling the accuracy of the
results. In addition, the perturbative approach fails for weakly
bound resonant states close to a n � 2 atomic threshold.
One way to understand this is to consider that the lifting
of the atomic manifold degeneracy induced by the Uehling
potential modifies the long-range behavior of the atom-nucleus
interaction potential, from a 1/r2 dipole potential to a 1/r4

induced dipole potential. A nonperturbative calculation is thus
mandatory in such cases [9,19,20]. In all the tables below,
we give both the first-order perturbation result �E

(1)
b and

higher-order corrections �E
(>1)
b = �Eb − �E

(1)
b .

The expansion Eq. (2) was used, with real exponents αn,
βn, and γn generated in a pseudorandom way in intervals

TABLE I. Vacuum polarization shift of the 1S and 2S atomic
states of muonic and pionic atoms, in eV. Both the first-order
perturbation result �E(1) and the nonperturbative result �E are given.

Atom State �E(1) �E

μp 1S − 1.898 829 6 − 1.900 865 8
2S − 0.219 584 0 − 0.219 737 2

μd 1S − 2.129 272 6 − 2.131 642 2
2S − 0.245 319 4 − 0.245 494 5

μt 1S − 2.214 430 5 − 2.216 926 1
2S − 0.254 804 0 − 0.254 987 2

πp 1S − 3.240 801 9 − 3.244 916 5
2S − 0.368 276 3 − 0.368 560 0

πd 1S − 3.732 175 0 − 3.737 120 2
2S − 0.422 196 4 − 0.422 529 5

[A1,A2], [B1,B2], and [C1,C2], respectively [21,22]. Here the
variational parameters are the bounds of the intervals and
were optimized separately for each calculated level. Basis
sets of N = 1000–2500 vectors were used to obtain good
convergence of the results.

It should be noted that complex exponents are generally
better suited for molecular systems [23]. The analytical
formulas of Sec. II are still valid for complex exponents
αn, βn, and γn, provided their real parts satisfy the relation-
ships Re[αn + βn] > 0, Re[αn + γn] > 0, and Re[βn + γn] >

0. However, with an expansion that uses complex exponents
and/or complex coordinate rotation [24] to study resonant
states, numerical problems appear when the Uehling potential

TABLE II. Vacuum polarization correction to the binding energies
for bound states of muonic molecules, obtained using the variational
expansion Eq. (2) with real exponents. The binding energy Eb

calculated with the pure Coulomb potential is given in the fourth
column. The vacuum polarization shift at first order of perturbation
theory is given in the next column. The last column shows the differ-
ence between results of nonperturbative and first-order perturbative
treatments.

Eb �E
(1)
b �E

(>1)
b

Molecule L v (eV) (meV) (meV)

ppμ 0 0 253.150 104 284.875 0.430
1 0 107.265 303 50.581 0.089

pdμ 0 0 221.547 587 234.419 0.376
1 0 97.497 678 21.445 0.053

ptμ 0 0 213.838 459 222.385 0.365
1 0 99.126 024 21.009 0.055

ddμ 0 0 325.070 580 412.131 0.657
0 1 32.844 224 39.129 0.074
1 0 226.679 812 226.216 0.358
1 1 1.974 980 − 8.657 0.003

dtμ 0 0 319.136 858 402.275 0.653
0 1 34.834 420 28.074 0.061
1 0 232.469 701 233.597 0.377
1 1 0.660 329 − 16.604 0.013

t tμ 0 0 362.906 436 480.211 0.781
0 1 83.770 686 99.858 0.172
1 0 107.265 303 331.988 0.534
1 1 45.205 712 34.072 0.072
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TABLE III. Same as Table II, for bound states of the pionic
molecules ppπ and ddπ .

Eb �E
(1)
b �E

(>1)
b

Molecule L v (eV) (meV) (meV)

ppπ 0 0 294.859 450 431.020 0.763
1 0 80.227 512 6.808 0.055

ddπ 0 0 392.301 211 660.791 1.237
0 1 15.777 113 19.426 0.053
1 0 237.301 428 291.614 0.556

is included in the Hamiltonian. This suggests that the Uehling
potential may not be dilation analytic [25]. A rigorous analysis
of this point is beyond the scope of the present paper, but
would certainly be useful for further studies with the Uehling
potential.

For nonperturbative calculations, it is important to add
higher exponents in the basis set in order to describe accurately
the behavior of the Uehling potential at small r . This is done
by adding several subsets defined by

A
(0)
1 = A2, A

(0)
2 = τA

(0)
1

A
(n)
1 = τnA

(0)
1 , A

(n)
2 = τnA

(0)
2 .

(18)

Typically τ ∼ 3–5, and nmax = 1–2. We add similar basis sets
for r2 (if the basis is not symmetrized) and r12.

With the above-mentioned typical basis size, quadruple-
precision arithmetic is generally required to maintain sufficient
numerical stability. However, the derived expressions of the
Uehling potential’s matrix elements are numerically unstable
(for a ≈ b), so that sextuple-precision arithmetic had to be used
in most cases. For the weakly bound (L = 1,v = 1) states in
ddμ and dtμ, which require the largest basis sets, octuple
precision proved necessary.

We used the latest CODATA (2010) values [26] of the particle
masses (muon, proton, deuteron, and triton) and of the fine-
structure constant. For the pion mass, the latest value from the
Particle Data Group [27] was used. The quantity x appearing
in the expression Eq. (1) of the Uehling potential is xμ =
0.6627515411 for muonic systems and xπ = 0.5017207015
for pionic systems.

B. Results

We first determined the vacuum polarization shift of the 1S

and 2S atomic thresholds, both in the perturbative and nonper-
turbative approaches, using a variational approach similar to
the one described above. The radial atomic wave function
�(r) is expanded on a set of N = 50–100 exponentials
e−αnr with pseudorandomly chosen real exponents. Results
are summarized in Table I.

Table II gives the energies of all the bound states of
muonic molecules with orbital angular momentum L = 0,1.
The results are in perfect agreement with earlier calculations
[28], with an accuracy improved from 0.1 meV to 1 μeV. The
contribution from higher perturbation orders is also obtained
and typically amounts to a fraction of meV for the ground
vibrational state. Precise experimental results are available
only for the (L = 1,v = 1) state of ddμ [3], where there is
good agreement with theoretical predictions [29–31] that also
take leading relativistic and nuclear structure corrections, as
well as corrections caused by the finite size of the (ddμ)dee

molecular complex. The discrepancy is only 0.5 meV, while
experimental and theoretical uncertainties are, respectively,
of 0.7 and 0.4 meV. The 0.097-meV difference (−8.657 meV
instead of −8.56 meV) between our new result for the Uehling
correction and the value of [29] does not alter the agreement
with experimental data. The newly obtained contribution
from higher perturbation orders (0.003 meV) is currently not
relevant in view of the overall theoretical uncertainty.

Results for the bound states of pionic molecules are given
in Table III. We have limited our study to ddπ and ppπ , which
could play a role in the interpretation of pionic hydrogen and
deuterium spectroscopy experiments [8]. It should be noted
that accuracy is much less essential than for muonic systems,
because (i) experimental resolution is limited to about 10 μeV
by the pion lifetime τ = 26 ns and (ii) theoretical accuracy is
limited to a fraction of meV by the 2.5-ppm relative uncertainty
on the pion mass. However, the vacuum polarization correction
is relevant since it typically amounts to a fraction of eV for the
ground vibrational state.

In the following, we consider quasibound states (or res-
onances). In view of the problems with complex coordinate
rotation mentioned in Sec. III A, we used the stabilization

TABLE IV. Vacuum polarization correction to the binding energy for resonant states of the muonic molecules ddμ and dtμ below the
n = 2 threshold, obtained using the variational expansion Eq. (2) with real exponents. The binding energy Eb obtained with the pure Coulomb
potential is given in the fourth column. The fifth column contains the resonance widths taken from [32], which give a measure of the precision of
the results. The vacuum polarization shift, both at first order of perturbation theory and in a nonperturbative treatment, are given in the next two
columns. The first-order result is given only in the cases in which the precision is sufficient to evidence the difference with the nonperturbative
result.

Molecule L v Eb (eV ) 
 (μeV) [32] �E
(1)
b (meV) �Eb(meV) (this work) �Eb(meV) [19]

ddμ 0 0 218.111 60 1.9 − 54.77 − 54.79
0 1 135.279 02 5.8 − 82.76 − 82.79
1 0 211.924 50 5.8 − 58.44 − 58.46
1 1 130.350 1 15.3 − 85.5

dtμ 0 0 217.889 86 3.0 − 59.83 − 59.86 −60
0 1 139.731 40 7.2 − 86.66 − 86.70 −85
1 0 212.545 744 0.5 − 63.006 − 63.030 −63
1 1 135.379 516 0.9 − 89.069 − 89.104 −91
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TABLE V. Same as Table IV, for resonant states of the pionic molecules ppπ and ddπ below the n = 2 threshold.

Molecule L v Eb(eV) 
(μeV) [32] �E
(1)
b (meV) �Eb(meV) (this work) �Eb(meV) [9]

ppπ 0 0 236.173 1.5 − 78 − 80
0 1 100.146 1.9 − 136 − 140
1 0 220.381 8 0.20 − 92.0 − 90
1 1 89.641 0.38 − 145 − 150

ddπ 0 0 275.280 3 0.050 − 85.5
0 1 156.821 8 0.097 − 139.7
1 0 265.180 84 0.0041 − 93.87 − 93.90
1 1 149.088 74 0.0054 − 145.56 − 145.60

technique with a real dilatation parameter, similarly to [19].
The accuracy of this method is limited by the width of the
resonances. In the following tables, we report the widths
calculated in [32] in order to explain the accuracy of the results.
While a complete investigation of the resonance spectrum
would lie beyond the scope of this paper, we give illustrative
results for the first two vibrational and rotational states below
the 2S threshold.

Among the muonic molecules, we have considered ddμ

and dtμ, in which fusion research has been the most active
(see Table IV). The involvement of resonances was originally
proposed in the framework of d − t fusion, whereas its impact
in d − d fusion is expected to be much less important [4,33].
In the case of dtμ, our results are in good agreement with
those of [19] and represent an improvement in accuracy by
two to three orders of magnitude.

Table V summarizes results for the pionic molecules ppπ

and ddπ , where resonant states play a role in the de-excitation
cascade of pionic atoms [8]. In the case of ppπ , our results are
in good agreement with those of [9] and bring an improvement
in accuracy by one to two orders of magnitude. Note that the

binding energies of the resonances we have studied are large
enough for the perturbative approach to yield precise results.
The difference with the result of a nonperturbative calculation
is typically of 20–40 μeV only.

In conclusion, we have shown that the matrix elements
of the Uehling potential in a basis of correlated exponential
functions may be expressed in an analytical form. We have
used the obtained expressions to calculate the vacuum polar-
ization shift for a wide range of bound and resonant states
in muonic and pionic molecules, either for the first time or
with a greatly improved accuracy. The excellent agreement
with earlier calculations which used a numerical evaluation of
matrix elements fully confirms the validity of the analytical
formula.
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