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Hyperfine structure of the 7d 2D3/2 level in cesium measured by Doppler-free two-photon
spectroscopy
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We report the measurement of the hyperfine structure in the 7d 2D3/2 state of 133Cs isotope by Doppler-free
two-photon fluorescence spectroscopy in a gas cell. The hyperfine level separations were measured using a
frequency-stabilized Ti:sapphire laser locked to one of the hyperfine transitions and an acousto-optic modulator
locked to another hyperfine transition. The frequency separation between various hyperfine levels has been
measured with a precision of ∼100 kHz. From the measured hyperfine separations of the excited state, we have
determined the magnetic dipole coupling constant (A) and electric quadrupole coupling constant (B) for the
7d 2D3/2 state. The determined hyperfine structure constants are A = 7.38 (0.01) MHz and B = −0.18 (0.1)
MHz. The values measured are found to be in good agreement with the earlier reported results using stepwise
excitation process.
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I. INTRODUCTION

In the recent past, there has been greater interest in the
precision measurement and accurate determination of the
excited-state properties of atomic systems [1–5]. The hyperfine
splitting (HFS) results from electron-nuclear interactions and
hence, the strength of the magnetic dipole, electric quadrupole,
and magnetic octopole interactions between the nucleus and
the orbital electrons can be determined from the measurements
of the hyperfine splittings [6]. Further, measurement of the
lifetime of excited states and their hyperfine splitting can
help in the construction and modification of the atomic
wave functions. They are particularly important while making
a careful comparison of the experimental data with the
theoretical predictions [7]. Comprehensive research [8] on
the hyperfine structures of alkali elements has been carried
out and their spectroscopic investigations have been a matter
of considerable interest. Recently, there has been a renewed
interest in the hyperfine structures of alkali atoms, and various
groups have carried out experiments on the atomic structure of
Cs. [4,9–14]. Precision measurements in Cs can lead to greater
understanding of atomic and fundamental physics, including
current measurement on atomic parity violation [15], search
for the permanent electric dipole moment of an electron [16],
and also help in the determination of the fine structure constant
by photon recoil measurements [17]. Extensive precision
measurements on the excited states of 133Cs have been reported
by Doppler-free two-photon spectroscopy [18–28]. Fendel
et al. [23] have recently used the optical-frequency comb
spectroscopy technique to determine the absolute frequency
of the 6s 2S1/2 → 8s 2S1/2 transition. Precision measurements
of the hyperfine splitting of the 6d 2D3/2,5/2 have been carried
out using two-photon spectroscopy and also by the stepwise
excitation process [4,29–31].

Belin et al. [32] have determined the magnetic dipole
coupling constant of the Cs 7d 2D3/2 state with a two-step
level-crossing excitation process using a rf lamp and a cw
dye laser. The accurate energies of nS, nP , nD, nF , and
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nG levels of neutral Cs have been determined by using non-
resonant and resonantly enhanced Doppler-free two-photon
spectroscopy [33]. The experimental and theoretical study on
the polarizabilities and hyperfine structure constants of the
7d 2D3/2,D5/2 states in Cs has been carried out by Auzinsh
et al. [34,35]. The measurement of the 7d 2D3/2 hyperfine
splitting intervals with resonant two-photon laser-induced
fluorescence of an effusive beam of atomic Cs has been
carried out by Kortyna et al. [36]. In this study, a radio-
frequency phase modulation technique directly references the
relative frequency scale to the ground hyperfine splitting
of 87Rb. The absolute transition frequencies and hyperfine
coupling constants for the 8s 2S1/2, 9s 2S1/2, 7d 2D3/2, and
7d 2D5/2 states in 133Cs vapor have been determined with high
precision by stepwise excitation through either the 6p 2P1/2 or
6p 2P3/2 intermediate states with broadband laser light from
a stabilized femtosecond laser optical-frequency comb [37].
The measurement of the hyperfine structure constants of the
7d 2D3/2 and 7d 2D5/2 states in Cs has been reported by Lee
et al. by Doppler-free two-photon spectroscopy [27] using an
electro-optic modulator for frequency calibration.

Recently, we have carried out the measurement of the
transition isotope shift, hyperfine splittings, and the magnetic
dipole constant (A) for the excited 6s 2S1/2 state of both the
isotopes of atomic potassium using an electro-optic modu-
lator technique [38]. We have also measured the hyperfine
splitting between the two hyperfine components and have also
determined the magnetic dipole coupling constant (A) for the
excited 9s 2S1/2 state for the 133Cs isotope [28].

The ground state of Cs is not directly coupled to the
nd states via electric-dipole transition; therefore, we use the
two-photon excitation process to access the 7d 2D3/2 state. In
this paper, the hyperfine splitting of Cs 7d 2D3/2 was measured
with an improved precision by using Doppler-free two-photon
spectroscopy. We have adopted a locking technique to measure
hyperfine splitting. A frequency-stabilized Ti:sapphire laser is
locked to one of the hyperfine transitions and an acousto-
optic modulator is locked to another hyperfine transition,
thus enabling direct measurement of the frequency separation
between the two hyperfine transitions. In general, by locking
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the laser to an atomic reference, the center frequency can at
best be measured to an accuracy of 1/100 of peak width [39].
Considering the peak width of about 2 MHz, the locking
accuracy is expected to be about 20 kHz. The technique
utilized in the current paper has been extensively applied
for measurements of hyperfine structure of alkali elements
in single-photon transitions by Natarajan and his co-workers
[40–42], who have consistently achieved a precision better
than 20 kHz. Though this technique requires utilization of
identical setups, it provides good precision in measurements of
the separations between various hyperfine components. Rapol
et al. [40] have reported that, though the stability of the laser
lock by a similar technique is only of the order of 1/20 of
the line center, they could still achieve high precision because
fluctuations of the two laser beams are correlated since they are
derived from the same laser. The additional advantage of the
current technique is that we can minimize the systematic errors
by varying the locking frequency across various components
of the hyperfine spectrum. We have determined both the
hyperfine coupling constants (A and B) for the excited
7d 2D3/2 state. We have also compared our results with earlier
measurements carried out by stepwise excitation through an
intermediate state using radio-frequency phase modulation
technique [36], femtosecond-frequency comb technique [37],
and also Doppler-free two-photon spectroscopy [27].

II. EXPERIMENT

The schematic of the experimental setup for the measure-
ment of hyperfine splitting of the excited 7d 2D3/2 state of
cesium in a gas cell is shown in Fig. 1. Light, resonant with the
6s 2S1/2 → 7d 2D3/2 transition by absorption of two photons
at 767.8 nm was generated by a cw ring Ti:sapphire laser
pumped by a 10-W diode-pumped solid-state (DPSS) laser.

FIG. 1. Schematic of the experimental configuration.

The Ti:sapphire laser was actively stabilized to a thermally
insulated reference cavity having a free spectral range of
750 MHz and a finesse >200 to reduce its frequency jitter
to ∼60 kHz.

Two sealed Pyrex cells containing cesium were used for the
experiments and the cells were maintained at about 100 ◦C,
while the finger temperature was maintained at about 10 ◦C–
15 ◦C lower than the cell to avoid coating of Cs vapor on the
window. The Cs cell has been covered with a special two-layer
magnetic shield (μ metal) to reduce the stray magnetic field
to the level of ∼10 mG. The laser beam from the Ti:sapphire
laser was retroreflected into the Cs gas cell. The overlap of
the forward- and the retroreflected beams was optimized by
maximizing the two-photon signal. A small fraction of the
laser beam is fed to a wavemeter for monitoring the laser
wavelength. In the Cs gas cell, the laser beam diameter is
estimated to be about 2 mm and the laser power is about
150 mW, corresponding to a power density of ∼4.8 W/cm2.

The atoms excited to the 7d 2D3/2 state through the
6s 2S1/2 → 7d 2D3/2 two-photon transition decay to the
7p 2P1/2 and the 7p 2P3/2 by emitting photons at ∼2334.6
and 2437.6 nm, respectively, and further cascade to the lower
6s 2S1/2 state by emitting photons at ∼455.5 and 459.3 nm,
respectively. The fluorescence signal was monitored using
a photomultiplier tube (PMT) fitted with an interference
filter centered at 450 nm and having a bandpass of 40 nm.
The bias voltage applied to the PMT was typically about
−800 V. Prior to carrying out any frequency measurements, the
signal-to-noise (S/N) ratio was optimized to better than 100 for
all the measurements. The output of the single-mode cw laser
was split into two beams of equal power and is used for two
different Doppler-free two-photon setups in two identical Cs
gas cells. Two acousto-optic modulators (AOMs) are used for
shifting the laser frequencies to precisely known values (νaom 1

and νaom 2) based on the separations between the hyperfine
components. We have adopted three different approaches for
measuring the hyperfine separations. They are (i) the frequency
shifting technique, (ii) the wavemeter method, and (iii) the
AOM locking technique. The detailed description of each of
these methods has been described in their respective sections.

III. RESULTS AND DISCUSSION

The Cs atoms in a gas cell absorb two photons, i.e., one
photon from the forward laser beam and another photon from
the retroreflected beam, to excite Cs atoms from the ground
6s 2S1/2 state to the 7d 2D3/2 state. Since the nuclear spin (I ) for
the 133Cs isotope is 7/2, for the S-D two-photon transition, two
sets of four hyperfine transitions originating from the ground
F = 3 level and F = 4 level to the upper levels F ′ = 2,3,4,
and 5 are feasible according to the two-photon selection rules
(Fig. 2). A typical Doppler-free two-photon spectrum recorded
for the 6s 2S1/2 → 7d 2D3/2 transition is depicted in Fig. 3.

A. Frequency shifting technique

The full width at half maximum (FWHM) of the hyperfine
transitions has been measured by relatively shifting the
frequencies of the two acousto-optic modulators by ∼5 MHz.
The laser frequency into the first cell is upshifted by 110 MHz
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FIG. 2. Partial energy level diagram of Cs (not to scale).

(νaom 1) using an acousto-optic modulator while the frequency
into the second Cs cell is upshifted by 105 MHz (νaom 2)
using another AOM, thus resulting in a precise relative shift of
5 MHz ± 1 Hz between the same hyperfine transitions in two
cells (Fig. 4). With this accurately known relative frequency
shift, we have estimated the linewidth of hyperfine transitions.
The spectral width is measured to be ∼1.8 MHz by fitting the
Lorentzian peaks to the experimental data. The contribution
from the natural broadening due to the lifetime (160 ns) of Cs
7d 2D3/2 state was estimated to be ∼1.0 MHz [43] and the rest
could be ascribed either to the residual Doppler broadening due
to imperfect overlap of the two counterpropagating laser beams
or to the residual magnetic field causing Zeeman broadening.
It is perhaps relevant to note that the spectral resolution of
the hyperfine transitions was reported to be 3 MHz for the

FIG. 3. The Doppler-free two-photon fluorescence spectrum for
the 2S1/2 → 7d 2D3/2 transition.

FIG. 4. (Color online) Two photon fluorescence spectrum of the
6s 2S1/2(F = 4) → 7d 2D3/2(F ′ = 2,3,4,5) recorded with a 5MHz
relative frequency shift.

6s 2S1/2 → 7d 2D3/2 two-photon transition carried out by Lee
et al. [27]. It can be clearly observed that, in our study the
S/N ratio is better and also the FWHM of the hyperfine
transitions is significantly narrower than that reported earlier
[27]. The hyperfine separations between the various levels
have been determined using the relative shift of 5 MHz for
frequency calibration. However, due to nonlinearity in the scan
of the laser frequency, we could only achieve a precision of
∼500−600 kHz in our measurements.

B. Wavemeter method

Development of high-precision wavelength meters has
made great progress in the recent past and presently com-
mercial Fizeau-based wavelength meters are available which
enable one to measure the absolute frequency to an accuracy of
∼2 MHz [44]. One significant advantage of these wavelength
meters, compared with other available instruments, is the
absence of any mechanical moving parts. However, relative
frequencies can be measured with an accuracy of 500 kHz
[28]. In the present study, a commercial wavemeter was
utilized to initially measure the frequency of the hyperfine
transition when the laser is locked to the fluorescence peak. To
cross-check the hyperfine separations with the earlier reported
results, the frequency of the laser is locked to the centers of
various hyperfine components and the values are measured
from a continuously calibrated commercial wavemeter. With
our locking technique the laser frequency jitter is within
100 kHz. Normally, the center frequency of the line can be
determined to a small fraction of the linewidth [39]. The
measured hyperfine separations were found to be consistent
with the earlier reported values of both Stalnaker et al. [37]
and Kortyna et al. [36]. With this method we could measure
the separations between various hyperfine transitions with a
precision of 500 kHz. However, to improve the precision in
the measurement of hyperfine separations, we have utilized
the AOM locking technique adopted by Natarajan and his co-
workers [40–42] to lock the constituent hyperfine components
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FIG. 5. The two photon fluorescence spectrum of the
6s 2S1/2(F = 3) → 7d 2D3/2(F ′ = 2,3,4,5) along with the error sig-
nal.

using an acousto-optic modulator (AOM); the details are
discussed in the next section.

C. AOM locking technique

In this technique, the fluorescence signal in the first cell was
used to lock the laser to one of the hyperfine transitions, while
the fluorescence signal in the other cell is used for locking
the AOM to another (or the same) hyperfine transition. The
hyperfine separation is measured using the relation

vaom 2 − vaom1 = �vhf s. (1)

For these experiments, the error signal in the first cell has
been generated by modulating the AOM frequency at fm =
25 kHz, using a commercial rf-signal generator whose internal
clock is phase locked to a reference Rb oscillator having a
short-term stability of 2 × 10−11�ν/ν per second and long-
term accuracy of 5 × 10−10�ν/ν per year. The error signal is
obtained by phase-sensitive detection at the same modulation
frequency (fm). The time constant of the low-pass filter of the
lock-in amplifier was chosen as 1 ms with a filtering slope of
24 dB/octave. A typical error signal along with the two-photon
Doppler-free fluorescence spectrum is shown in Fig. 5.

The fluorescence signal from the second cell is also mod-
ulated at fm ≈ 25 kHz by modulating the voltage-controlled
oscillator (VCO) that drives the AOM, and the demodulated
output is fed back to the VCO of the AOM driver through a
loop filter. This feedback acts as a servo loop and locks the
AOM frequency (νaom 2) to the frequency separation between
the two hyperfine components. The demodulated fluorescence
signal generates the error signal for locking the AOM to the
fluorescence peak in cell 2. The observed error signal obtained
by scanning the AOM is shown in Fig. 6, while the laser is
locked to one of the hyperfine components in cell 1. The AOM
frequency is measured using a frequency counter, which is
also phase locked (or referenced) to a stabilized Rb oscillator.

FIG. 6. (Color online) The fluorescence signal (circle) and the
error signal (solid line) for the 6s 2S1/2(F = 3) → 7d 2D3/2(F ′ = 4)
recorded by scanning the AOM2. The laser is locked to the same
hyperfine transition.

The rubidium frequency standard in turn is referenced to
the 87Rb 5s 2S1/2(F = 1) → 5s 2S1/2(F = 2) ground hyperfine
transition at 6 834 682 612.8 Hz. The hyperfine separations
have been determined using Eq. (1).

As mentioned earlier, two sets of hyperfine transitions, i.e.,
F = 3 → (F ′ = 2,3,4, and 5) and F = 4 →(F ′ = 2,3,4, and
5), are possible according to two-photon selection rules. Due
to the large hyperfine splitting of the 6s 2S1/2 ground state of
Cs (9192.631 770 MHz), the hyperfine transitions originating
from ground F = 3 and F = 4 levels are well separated. Since,
the same upper levels are populated in both sets of hyperfine
transitions, the hyperfine structure constants can be measured
with either set. Experiments have been carried out to measure
hyperfine separations of 7d 2D3/2 level using the hyperfine
transitions originating from both F = 3 and F = 4 levels of
6s 2S1/2. The hyperfine separations have been determined for
all the six possible combinations, by locking the laser to each of
the hyperfine transition in cell 1 and then locking the second
AOM to the remaining three hyperfine transitions in cell 2.
Since hyperfine separations have been measured for all the
possible combinations, the results are expected to yield better
accuracy. Each hyperfine interval is determined by averaging
the measured AOM frequencies over 200–250 independent
measurements, and the results have been repeatedly checked
for their consistency over several days. This resulted in an
overall statistical error of about 100 kHz in each value, except
in the case of the hyperfine transition F = 3 → F ′ = 2 where
the precision was about 150 kHz. The larger uncertainty in
the measured separation between these two components is
primarily due to the smaller intensity of the F = 3 → F ′ = 2
hyperfine component. Further, we have interchanged the laser
locking (cell 1 to cell 2) and AOM locking (cell 2 to cell
1) and have repeated the entire set of measurements for this
configuration. The measured frequency separations between
the various hyperfine levels from both these configurations
are found to be consistent with each other within a statistical
uncertainty of <100 kHz. The average values of the hyperfine
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TABLE I. The measured hyperfine separations between the various hyperfine levels of the 7d 2D3/2 level of cesium for the present work
along with the earlier reported results.

Hyperfine interval of Measured
the 7d 2D3/2 level of cesium (this work) (MHz) Reference [27] (MHz) Reference [37]a (MHz) Reference [36] (MHz)

F ′ = 5 → F ′ = 4 36.93 (0.08) 37.28 (0.25) 36.80 37.0 (0.20)
F ′ = 5 → F ′ = 3 66.30 (0.08) 67.49 (0.43)b 66.40 66.2 (0.28)b

F ′ = 5 → F ′ = 2 88.59 (0.11) 90.50 (0.32)b 88.68 88.4 (0.28)b

F ′ = 4 → F ′ = 3 29.59 (0.08) 30.21 (0.35) 29.60 29.2 (0.20)
F ′ = 4 → F ′ = 2 51.79 (0.09) 53.22 (0.40)b 51.88 51.4 (0.28)b

F ′ = 3 → F ′ = 2 22.49 (0.15) 23.01 (0.20) 22.29 22.2 (0.20)

aThe separations have been calculated from the reported A and B values.
bThese separations have been deduced from the experimentally measured separations of consecutive hyperfine transitions.

separations along with the previously measured values from
the literature are listed in Table I.

We have also verified the lock point tracking of the
master-slave system, by gradually varying the frequency of
first AOM from 110 to 120 MHz, and thus checked the tracking
of the slave lock in cell 2. Within the range of 10 MHz,
the second AOM has been found to consistently follow the
AOM frequency in the first cell, resulting in a precision of
50–100 kHz for all the measurements.

It can be observed from Table I that the measured
hyperfine separations are in good agreement with the results
of Stalnaker et al. [37] and Kortyna et al. [36], except for
the F = 3 → F ′ = 2 transition, whereas our results deviate
from the reported values of Lee et al. [27] by more than
350–600 kHz. From the initial observation of Table I, we
find that our measured frequency separations deviate from the
separations of Kortyna et al. [36] by ∼70–400 kHz; however,
by considering an effective standard deviation (σ ) for each
splitting and by combining the individual σ in quadrature, our
measured hyperfine separations deviate from that of Kortyna
et al. [36] by an average of only 0.9σ . It can also be observed
that the measurements in the current study deviate from that
of Stalnaker et al. [37] by 1.0σ , however, they deviate by
an average of 2.8σ with that of Lee et al. Because of this
insignificant difference (1.0σ ), we conclude that our results
are consistent with the earlier reported works of both Stalnaker
et al. [37] and Kortyna et al. [36]. Our results also agree with
Lee et al. [27] but at a much lower certainty.

Hyperfine separations measured by Kortyna et al. [36]
deviate from Lee et al. [27], though both of them adopted a
phase modulation technique wherein the electro-optic mod-
ulator (EOM) is used to generate sidebands for frequency
calibration of laser frequency. The only difference is that
Kortyna et al. [36] have used a stepwise excitation while Lee
et al. [27] have used Doppler-free two-photon spectroscopy.
Due to phase modulation, the atomic spectral features are
reproduced at precise intervals. From our experience, such
a method should be followed by an accurate and careful
approach of identifying the calibration factor and a reliable
peak fitting procedure to account for the nonlinearities in
the laser scan to avoid erroneous results. Kortyna et al. [36]
have utilized a calibration factor for individual sideband and
the corresponding center frequency peak from six calibration
factors per spectrum; they have carefully evaluated the linearity
of the frequency scan and have made first-order correction

in their data analysis procedure. For identifying the centroid
of each peak they have used nonlinear fitting to locate the
center. A Voigt profile has been fitted to each of the six peaks
using a Levenberg-Marquardt residual minimization algorithm
and a linear function to the background. Due to this accurate
and reliable approach, their results were in good agreement
by Stalnaker et al. [37], who have used a frequency comb
technique for the measurements. Lee et al. [27] have probably
overlooked this important aspect of accurately determining
the proper calibration factor and rigorous peak fitting routine
while analyzing their data.

It is evident that though Lee et al. [27] have carried out
nonlinear fitting to identify the center of each fluorescence
peak, the uncertainty arising solely from the frequency-scale
calibration was 200 kHz leading to a total uncertainty of
250 kHz. It is noteworthy to observe that Kortyna et al. [36]
have reported the overall uncertainty as 200 kHz, which is
comprised of the quadrature sum of the statistical uncertainty,
the centroid uncertainty due to the fitting algorithm, and
the calibration uncertainty due to jitter in the calibration
procedure. Moreover, the hyperfine separations reported by
Lee et al. [27] are consistently higher than the present work,
and also higher than the values quoted by Kortyna et al. [36]
and Stalnaker et al. [37] by 350–600 kHz, indicating a probable
unknown source of error in either their measurements or data
analysis. The experimental approach discussed in this paper
differs significantly from that adopted by both Lee et al. [27]
and Kortyna et al. [36]. On the contrary, in our case, due
to the smaller peak widths (∼1.8 MHz), it is possible to
lock to the peak of each hyperfine component within an
uncertainty of <100 kHz using the locking technique. Since
the hyperfine separations are measured from the difference
frequencies of AOMs, the uncertainty is expected to be
lower.

D. Analysis of the hyperfine spectrum of Cs

In a two-photon transition between a 2S1/2 and a 2Dj state,
the two-photon transition operator is purely quadrupolar in
nature [45] and the relative hyperfine line intensities between
the two hyperfine components of the two different states is
given by Ref. [46]

I (Fg → Fe) ∝ (2Fg + 1)(2Fe + 1)

(2I + 1)

{
Je 2 Jg

Fg I Fe

}2

, (2)
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where J , I , and F are the electronic, nuclear, and total
angular momentum quantum numbers, respectively [47,48];
the subscripts “g” and “e” denote the ground and the upper
states. The energy of the hyperfine structure component (WF )
is given by the Casimir relation [48]

WF = C

2
A + 3C(C + 1) − 4I (I + 1)J (J + 1)

8I (2I − 1)J (2J − 1)
B, (3)

where C = F (F + 1) − I (I + 1) − J (J + 1).
The energy WF of the hyperfine structure component is

a function of two electromagnetic multipole terms, namely,
the magnetic dipole moment (A) and the electric quadrupole
moment (B).

After measuring the hyperfine separation between the
various components of the 7d 2D3/2 state of 133Cs isotope,
we have determined the magnetic dipole constant (A) and
electric quadrupole coupling constant (B) for the 7d 2D3/2

level. The hyperfine structure constants are determined by
inserting the measured hyperfine intervals into the Casimir
formula. A set of coupled linear equations for the hyperfine
separations �W = WF ′′ − WF ′ in terms of A and B for a
nuclear spin of I = 7/2 and J = 3/2 are obtained and are
listed below:

W5 − W4 = 5A + 5
7B = 36.93 (0.08), (4)

W5 − W3 = 9A + 3
7B = 66.30 (0.08), (5)

W5 − W2 = 12A − 2
7B = 88.59 (0.11), (6)

W4 − W3 = 4A − 2
7B = 29.59 (0.08), (7)

W4 − W2 = 7A − B = 51.79 (0.09), (8)

W3 − W2 = 3A − 5
7B = 22.49 (0.15), (9)

where the quantities on the right-hand side of the coupled
equations are the measured hyperfine separations.

Using the method of least-squares minimization, we
determine the magnetic dipole coupling constant A and
the electric quadrupole coupling constant B and we propagate
the uncertainties through these formulas. In the present
technique, unlike in earlier reports, we have measured all the
six possible hyperfine separations between various hyperfine
components. Hence, in the least-squares minimization routine,
the values for A and B have been derived by inclusion of all
the six hyperfine separations instead of three.

Before applying the minimization routine to our measured
hyperfine separations, the least-squares minimization proce-
dure has been evaluated for its correctness, by deducing the A,
B constants from the measured hyperfine separations reported
earlier [30,37]. The calculated hyperfine separations for the 7d
2D3/2 state from the reported A and B values of Ref. [37] were
used as the input parameters for the least-squares minimization
routine. We could exactly deduce the A and B values reported
by Stalnaker et al. [37]. In the case of Ref. [30], the calculated
A and B values by our minimization routine were within an
error of 10 kHz for the A value and ∼40 kHz for the B value.

TABLE II. The hyperfine coupling constants for the 7d 2D3/2

state of cesium deduced from the hyperfine separations along with
the earlier reported values.

Hyperfine coupling constants

A (MHz) B (MHz) Reference

7.38 (0.01) −0.18 (0.1) This work
7.36 (0.07) −0.88 (0.87) Reference [27]
7.386 (0.015) −0.18 (0.16) Reference [37]
7.36 (0.03) −0.1 (0.2) Reference [36]

The least-squares minimization method has yielded the A

value to be 16.33 MHz and the B value to be 0.14 MHz, while
the reported values were 16.34 and 0.1 MHz, respectively.
This difference is inconsequential when rounded off to the
significant digits as mentioned in Ref. [30]. As mentioned
earlier, it is noteworthy to observe that though the hyperfine
separations (Table I) measured by Lee et al. [27] are relatively
higher compared to the results of Kortyna et al. [36], Stalnaker
et al. [37], and those of the present work, the deduced A

and B values of Lee et al. from their measured hyperfine
separations are unexpectedly in close agreement with the
hyperfine coupling constants reported by Refs. [36] and [37].
We have utilized our least-squares minimization program for
deducing the A and B values from the measured hyperfine
separations of Lee et al. [27]. However, the obtained A and
B values were significantly different from those reported
by Lee et al. [27]. From our least-squares minimization
routine the values were 7.53 and −0.54 MHz for A and B,
respectively, while the reported values of Lee et al. were 7.36
and −0.88 MHz.

Agreement between the deduced A and B values from
our minimization routine with those reported by Refs. [30]
and [37] has given us enough confidence to proceed for
the determination of hyperfine structure constants of the
7d 2D3/2 level. After verification of the correctness of the
minimization program, we have utilized this least-squares
minimization program for deducing the A and B values
from our measured hyperfine separations. Inclusion of six
separations in the minimization routine predictably yields
much more precise and accurate values for A and B. We have
deduced the magnetic dipole coupling constant A and electric
quadrupole constant B from the least-squares minimization
of the coupled linear equations by inserting the measured
hyperfine separations. The six measured hyperfine frequency
separations in Table I have been utilized to deduce the magnetic
dipole coupling constant A and electric quadrupole coupling
constant B; the results are listed in Table II.

Our results are in good agreement with those of Stalnaker
et al. [37] and Kortyna et al. [36], who have adopted
a stepwise excitation through either the 6p 2P1/2 or the
6p 2P3/2 intermediate state. The measurement by Stalnaker
et al. [37] is performed directly with a broadband laser
light from a frequency-stabilized femtosecond laser optical-
frequency comb, while the measurement by Kortyna et al. [36]
is based on the radio-frequency phase modulation technique.
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IV. SYSTEMATIC AND STATISTICAL ERRORS

A. Statistical errors

We briefly discuss the different sources of error in our
measurements. The primary sources of statistical error are due
to the fluctuations in the lock point of the laser and the AOM.
To minimize these errors, we have used an integration time
of 10 s for each measurement of the AOM frequency in the
frequency counter. Additionally we have obtained the average
value for about 200–250 measurements for a given transition,
and have repeated the set several times on different days. This
results in an overall statistical error of ∼100 kHz in each value.

B. Systematic errors

The possible systematic errors could be (i) the second-order
Doppler effect, (ii) Zeeman shifts, (iii) the Stark shift (light
shift caused by the electric field of the light in two-photon
transitions), (iv) pressure shifts, and (v) peak pulling errors.

Two-photon spectroscopy eliminates the first-order
Doppler effect but not the second-order term which is given by

δυ =
(u

c

)2
υ. (10)

For the case of Cs, for the 6s 2S1/2 → 7d 2D3/2 transition,
u
c

is 7.2 × 10−7 and ν = 780.89 THz, and the magnitude of
second-order Doppler shift is ∼410 Hz which is negligible
compared to the other uncertainties in our measurements.

The effects of optical pumping and Zeeman shifts associ-
ated with the stray (or Earth’s) magnetic field are one potential
source of systematic error. The stray (or Earth’s) magnetic field
splits the Zeeman sublevels. Peak shifts occur due to optical
pumping into Zeeman sublevels. This systematic shift of the
peak of the hyperfine transition |F,mF 〉 → |F ′,mF ′ 〉 due to
optical pumping can be calculated from the expression

μB (gF ′mF ′ − gF mF )B, (11)

where the Bohr magneton μB = 1399.6 kHz/G while gF

represents the Lande g factor for the two hyperfine levels
of the transition, and B is the magnetic field. In the present
experiments, we have utilized pure, linearly polarized light by
utilizing PBS cubes with a high extinction ratio (Tp/Ts) of
1000:1. Since the two-photon excitation is carried out by a
perfectly linearly polarized light, there will be no asymmetric
pumping of the hyperfine transition and hence the line center
will remain unaffected. We have also minimized the stray
magnetic fields by surrounding the Cs cell with two layers
of μ-metal shield to a level of 10 mG. Under such conditions,
the Zeeman shift is expected to be less than 40 kHz.

The light shift (ac Stark shift) which is a disadvantage for a
two-photon transition is proportional to the laser intensity and
can be calculated from the expression

Stark shift = −
∑

i

(
�2

2i

4�2i

− �2
1i

4�1i

)
, (12)

where �1i and �2i are the one-photon Rabi frequencies for
the coupling of the intermediate state |i〉 with the ground state
|1〉 and the final state |2〉, respectively. �ji is the frequency
detuning between the virtual and real intermediate levels and
the summation is taken over all the real intermediate levels.

TABLE III. Magnitude of the contributions of systematic errors
to the error budget.

Source of error Magnitude (kHz)

Second-order Doppler shift 0.4
Zeeman shift 40
ac Stark shift 0.7
Pressure shift 12
Peak pulling shift 4

This value can be evaluated by considering only the nearby in-
termediate levels which are close to the virtual level. The Rabi
frequencies were evaluated using Einstein’s spontaneous emis-
sion coefficients from the Kurucz database [49]. To calculate
the ac Stark shift, we have considered the 6p 2P1/2, 6p 2P3/2,
7p 2P1/2, 7p 2P3/2 intermediate levels. The ac Stark shift was
calculated to be ∼0.7 kHz for a laser intensity of 4.8 W/cm2.

The other source of error could be the pressure (collisional)
shift in the vapor cell. From the detailed study of shifts due
to collisions by Stalnaker et al. [37], we expect the collisional
shift to be about ∼12 kHz.

Peak pulling arises basically due to the shift in the peak
due to wing overlap from the neighboring transitions. Peak
pulling effects do contribute significantly, in particular for
the situations where significant overlap exists between the
neighboring atomic resonances and also for the cases where
the atomic spectral features ride over the underlying Doppler
profile. Peak pulling effects can also cause significant system-
atic errors if there is a substantial difference in the intensities
of the peaks. For the case of F = 4 →(F ′ = 2,3,4, and 5)
hyperfine transitions, the intensities of hyperfine transitions
are nearly comparable, therefore, peak pulling effects are
expected to be insignificant. However, for the F = 3 →(F ′ =
2,3,4, and 5) hyperfine transition set, there could be peak
pulling effect for the F = 3 → F ′ = 2 hyperfine transition
causing systematic shift owing to the low intensity (6.49%)
of the hyperfine transition. The peaks are also susceptible to
being pulled away from the resonance when the line shape
of the atomic resonance is significantly dependent on the
Doppler broadening, which has a direct dependence on the
temperature.

However, in the present case, the peaks due to Doppler-
free two-photon excitation have a linewidth of ∼1.8 MHz
which is much less than the smallest hyperfine separation of
∼11.4 MHz. Since these Doppler-free peaks are observed on
a flat background, pulling effects for Doppler-free peaks are
expected to be negligible. We have simulated the Doppler-free
peaks and have estimated the peak pulling effects and these
are found to be of the order of ∼4 kHz.

The various systematic errors considered for the calculation
of the overall uncertainty have been shown in Table III. The
average frequency separations between the various hyperfine
transitions are measured with a total error of 108 kHz obtained
by adding in quadrature all the systematic errors listed in
Table III with a statistical error of 100 kHz. Since, the
contribution from the systematic shifts to the overall error
budget is ∼7%; we have ignored the contribution from
systematic shifts in our measurements.
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V. CONCLUSIONS

We have measured the hyperfine separations of the
7d 2D3/2 using a Doppler-free two-photon transition for the
6s 2S1/2 → 7d 2D3/2 in a Cs gas cell. The hyperfine separations
have been measured by locking the laser to one of the hyperfine
transitions using a Doppler-free two-photon technique, and
an AOM was utilized to scan the stabilized laser about the
resonance of the neighboring hyperfine transition (or another
hyperfine transition) in another Doppler-free two-photon
setup. The AOM is locked to this neighboring component
and thus the difference in the two AOMs was utilized to

measure the hyperfine separation between the two locked
peaks. From the measurement of the hyperfine separations, we
have derived the precise values of the magnetic dipole coupling
constant and the electric quadrupole coupling constant of
the 7d 2D3/2 state. By utilizing this technique we could
achieve a precision of ∼100 kHz for the frequency separations
between the hyperfine levels. The A and B coupling constants
agree with previous measurements, and to our knowledge
the precision achieved by the current technique is so far
the best in Doppler-free two-photon spectroscopy for the
7d 2D3/2 state.
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