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Confinement approach to pressure effects on the dipole and the generalized
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(Received 22 November 2012; published 9 January 2013)

Initial calculations to explore the role of pressure on generalized oscillator strengths (GOSs) for the hydrogen
atom are presented. Our work is based on models of quantum confinement where the hydrogen atom is assumed to
be spatially confined in a spherical cavity bounded by a barrier potential of finite height. For a given confinement
radius and barrier height the energy spectrum for all available bound states and a number of continuum states
(pseudocontinuum) is obtained by solving the Schrödinger equation using a finite-differences method. In contrast
with the free atom case, the GOS momentum-transfer distribution for the 1s → nl transitions is enhanced
in amplitude and width as pressure increases. A turnover of this behavior takes place at a critical pressure,
indicating the approach to the limit of confining capacity for the system to hold the nl state. As a consequence
of this behavior, the corresponding dipole oscillator strength (DOS) values provide a useful way to characterize
the critical pressures for the fading and ultimate bleaching of the spectroscopic emission lines. It is also found
that the height of the barrier—simulating different confining media—also affects these properties. These findings
may be equally applicable to the study of inelastic energy loss from swift bare ions incident on matter under high
pressures, photoabsorption, and photoionization cross sections of caged atoms as well as on optical properties of
hydrogenic impurities trapped in spherical quantum dots.
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I. INTRODUCTION

Any process of interaction of radiation with matter is funda-
mentally defined by the ability of the medium to absorb energy
from the incident radiation (ions, electrons, or photons), which
is intimately related to its electronic structure whether it is due
to an aggregate of atoms or an isolated atom or molecule [1]. At
the atomic level, the mechanisms of energy absorption depend
on the allowed electronic transitions in the target atom consis-
tent with the quantum-mechanical description of the target.

As originally pointed out by Bethe in his study of
excitation and ionization cross sections for swift ion energy
loss [2], the generalized oscillator strength (GOS) constitutes
a measure of the bound-bound and bound-continuum transition
probabilities for the electronic states of the target. This
is a useful concept for the construction of the excitation
function to account for the target energy absorption due to
projectile momentum transfer [1]. This characteristic function
not only pertains to ion-atom collision processes, but also to
electron-atom collisions and photoionization processes [3–6].
In the limit of small momentum transfer, q → 0, the function
becomes the dipole oscillator strength (DOS) to account for
dipole optical transitions. Therefore, knowledge of the GOS
is not only of paramount importance in the study of radiation
effects in matter but it is also important for understanding
atomic spectroscopic properties.

To date, a great deal of knowledge has been accumulated
on the properties of the GOS for free atomic and molecular
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systems [1,3,4,7–10]. However, it is now well established that
low-dimensionality materials have quite different electronic
and optical properties as compared to their macroscopic
counterparts [11]. This is also true for the behavior of
atoms and molecules under high pressures as compared to
their free condition [12,13]. Accordingly, the GOS (DOS)
under such circumstances should be explored to develop
a better understanding of energy absorption processes and
spectroscopic properties of matter under nonconventional
conditions.

The advent of new technologies for the synthesis of
materials with low-dimensionality structures calls for the
development of improved theoretical models to account for the
electronic and optical properties of such systems. In this area,
models of quantum confinement have proved to be appropriate
(see Refs. [14–17] for a review).

With regard to the study of optical properties, recent
years have seen an increasing interest in the use of confine-
ment models to account for the behavior of dipole optical
transitions—DOS—of low-dimensionality systems. One of
the simplest and earliest examples where these ideas have been
employed is that of color centers in alkali-metal halides [18],
where one or two electrons are trapped in anion vacancy sites
in the ionic lattice. More recently, the spectroscopic properties
(DOS) of the hydrogen atom confined by hard [19–23] and soft
[24] spherical cavities have been reported, as well as similar
studies on the optical absorption of hydrogenic impurities in
semiconductor quantum dots [25].

Recently, increasing attention has been focused on the
study of photoionization cross sections of individual atoms
inside endohedral fullerene cages for which giant resonances
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have been predicted [5,6,26] and observed [27]. Here, the
GOSs play a major role and have been calculated through
suitable confinement models. These findings motivated us to
pursue—at the fundamental level—a systematic analysis of
the GOS behavior for confinement conditions applicable to
various physical situations such as the effect of pressure on
the atomic excitation function.

The aim of this work is to present accurate calculations
for the GOS of a hydrogen atom—as a basic reference
system—confined by a penetrable spherical cavity of radius
R0 and barrier height V0, where V0 is assumed constant outside
the confining cavity. In this context, different confinement
radii and barrier heights correspond, respectively, to different
pressures and host media. These two characteristics are not
independent, since different host media provide different
potential barrier heights which in turn—for a given cavity
radius (pressure)—support different numbers of bound states.
The assumption of a constant potential outside the confining
region can be thought of as being produced by a metallic
environment, since once the electron is out of the confinement
region it does not feel the Coulomb attraction of the confined
nucleus. However, this interpretation may also be assigned to
an effective background constant potential due to the collec-
tive interactions with the medium, which is not necessarily
metallic.

Although exact solutions for this Schrödinger problem
exist [28,29], our aim here is to construct the whole energy
spectrum through corresponding numerical solutions by means
of a finite-differences approach. This is done for as many
discrete states (E < V0) as can exist inside a confining box
of radius R0 for a given barrier height V0, as well as for a
commensurable number of states (E � V0) in the continuum
(pseudocontinuum). The corresponding wave functions, GOS,
and DOS are calculated for different confinement conditions.
Where available, our results are compared with other theoret-
ical approaches.

Our work is organized as follows. In Sec. II, we provide an
outline of the confinement model and the method followed to
solve the time-independent Schrödinger equation by means
of the finite-differences approach as well as its numerical
implementation. In Sec. III, the results of this work together
with their analysis and a discussion are presented. Finally, in
Sec. IV, the general conclusions of this study are presented.
Atomic units (energy in hartrees, length in bohrs) are used
throughout unless otherwise specified.

II. THEORETICAL APPROACH

We model the hydrogen atom under isotropic pressure by
placing the atom inside a penetrable spherical confining box
of radius R0. We assume the nucleus is clamped at the center
of the sphere and the electron is spatially limited within the
confining box by a constant potential barrier of height V0 at the
surface and outside of the cavity. Accordingly, our confining
model potential is expressed as

Vc(r) =
{

−Z
r
, r < R0,

V0, r � R0,
(1)

where Z is the nuclear charge and r is the electron-nucleus
separation.

Our first task is to find the electronic spectrum of the system
under these confinement conditions. This requires solving the
stationary one-electron Schrödinger equation associated with
the potential function given by Eq. (1):{

−1

2
∇2 + Vc(r)

}
� = E� . (2)

Due to the spherical symmetry of the confining potential,
we use spherical coordinates to simplify the three-dimensional
Eq. (2). The radial and angular parts of this equation may be
separated as usual so that the eigenfunctions of Eq. (2) become
�(r,θ,ϕ) = Rnl(r)Ym

l (θ,ϕ), where Ym
l (θ,ϕ) are the spherical

harmonics associated to the orbital and magnetic quantum
numbers l and m, respectively, and the functions Rnl(r) satisfy
the radial equation{

− 1

2r2

∂

∂r

(
r2 ∂

∂r

)
+ l(l + 1)

2r2
+ Vc(r)

}
Rnl = ERnl. (3)

This equation can be further simplified by making the
change to unl(r) = rRnl(r) obtaining{

−1

2

∂2

∂r2
+ l(l + 1)

2r2
+ Vc(r)

}
unl = Eunl (4)

which results in a one-dimensional self-adjoint equation for
the radial variable.

In contrast with previous treatments of this problem, here
we shall solve Eq. (4) numerically using the finite-differences
approach which will be briefly described further below. An im-
portant characteristic of this method is that the only acceptable
solutions are those consistent with the requirements unl(r =
0) = 0, unl(r → ∞) = 0 and which connect smoothly at the
boundary r = R0. Accurate eigenvalues and eigenfunctions
are found for several sets of confinement conditions (R0 and
V0). An advantage of this method is that it can efficiently
compute as many states as necessary both in the discrete as
well as in the continuous spectrum (pseudocontinuum). This
feature will prove to be very useful for the purposes of this
work.

A. Finite differences

We wish to find the eigenvalues and eigenvectors for each
value of the angular momentum l and for each confining radius
R0 and potential height V0 in Eq. (4). The finite-differences
approach has been previously used in several time-dependent
collision problems, e.g., wave-packet dynamics [30], transmis-
sion and reflection coefficients in quantum impurities [31], and
charge transfer in atomic collisions under the influence of an
ultrafast and strong laser pulse [32,33]. Thus, we will provide
here only a brief sketch of the method. For further details, see
Refs. [34,35].

We discretize the function u(x) → uk where x → xk is
known at the kth point on a numerical grid. One type of
computational grid consists of a set of fixed coordinate
positions xk , which may or may not be uniformly spaced. Thus,
k = 0 represents u0 and k = N + 1 represents uN+1 which are
the boundary conditions of the system, respectively, and thus
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the wave function uk is solved for k = {1 . . . N} points in the
grid.

Equation (4) together with the boundary condition, which
specify the value of u0 and uN+1, can be written in matrix
form by making a vector array �u = {uk} and using the finite-
differences definition for derivative and integration [34]. Thus

H �ϕ = E �ϕ , (5)

where H is a tridiagonal matrix. The elements of H are

Hi,i = 1

2

[
1

ri − ri−1
+ 1

ri+1 − ri

]
1

ri+1/2 − ri−1/2
+ Vi ,

Hi,i+1 = − 1

2(ri+1 − ri)

1√
(ri+1/2 − ri−1/2)(ri+3/2 − ri+1/2)

,

Hi,i−1 = − 1

2(ri − ri−1)

1√
(ri+1/2 − ri−1/2)(ri−1/2 − ri−3/2)

,

(6)

where Vi = l(l+1)
2r2

i

+ Vc(ri) and ri+1/2 = (ri+1 + ri)/2 defines

the midpoint between two points in the grid. Here �ϕ is related
to �u by means of �ϕ = LT �u where Lij = √

ri+1/2 − ri−1/2δij is
a diagonal matrix.

Equation (5) is just an eigenvalue problem in matrix algebra
with the advantage of being a tridiagonal matrix which can be
solved by LU decomposition [36]. The number of eigenvectors
and eigenvalues thus depends on the number of grid points.
One advantage of the finite-difference method is that the matrix
H includes the evaluation of the potential through the boundary
r = R0 such that the eigenvalue solution also includes the
correct behavior.

The only limitation of the finite-differences approach is the
size of the numeric box, such that r → ∞ is replaced by rmax.
A suitable choice of rmax renders as many states as required.

B. Numerical implementation

The grid box we used to solve Eq. (5) extends from r = 0
to r = 500 with a total number of points N = 500 spaced
logarithmically in this range. Thus, the small increments are
in the region of small r , providing a good cusp resolution on
the wave function for r → 0. This also provides a matrix of
N × N and N eigenvalues and eigenvectors. We note that in
the finite-differences approach the precision requirements are
controlled by �r or by N , the number of points. The larger the
number of points for the same range box, the better precision
but larger matrices to invert.

The method has been implemented in a FORTRAN 95 code
that generates the solutions and calculates the DOS and the
GOS.

The eigenvectors and eigenvalues were obtained via tested
LAPACK subroutines [37]. In a 2.8-GHz Pentium computer, a
single R0 and V0 takes up to 120 min of CPU time.

C. Elements of the generalized oscillator strength

As described in the Introduction, the excitation function
for an atom to absorb energy from momentum transfer
to its bound electrons is strongly defined by their probability
to make a transition to a particular excited state. According to

Bethe [2], the GOS properly accounts for this probability and
is defined as

Fn0(q) = 2

q2
(En − E0)|〈�n|eiq·r|�0〉|2 , (7)

where q is the momentum transfer, �n is the final excited
state, and �0 is the initial state from which the transition
occurs. Additionally, after considering all possible excitations,
the following relation—known as the Bethe sum rule (BSR)
[1]—holds: ∑

n

Fn0(q) = Ne , (8)

which is valid for any value of q and where the summation
includes all discrete and continuum excited states and Ne is
the number of bound electrons. The case q → 0 in Eq. (8)
corresponds to the optical dipole oscillator strength which is
the familiar Thomas-Reiche-Kuhn sum rule (TRK).

For our single electron problem under the previous assump-
tions, and considering the momentum transfer along the z axis,
Eq. (7) becomes

Fn0(q) = 2

q2
(En − E0)|〈n|eiqr cos θ |0〉|2 (9)

where

〈n|eiqr cos θ |0〉 = il
√

2l + 1
∫ ∞

0
jl(qr)u∗

nl(r)u10(r)dr (10)

with jl the spherical Bessel function of order l. The integration
is understood to be carried out only for the numerical radial
wave functions unl complying with the boundary conditions,
as prescribed by the finite-differences method. Note that we
have chosen the ground state of the confined hydrogen atom
(u10) as the initial state in Eq. (10). However, the same relation
may be used for any other s-type initial state.

III. RESULTS

A. Bound energies

In order to test the accuracy of the finite-differences
approach here proposed, we have calculated the energy
dependence on cavity radius for the ground state and several
excited states of the hydrogen atom for different values of
the confining barrier height. Calculations were performed for
several values of the confining radius R0 from 1.0 to 10 in
steps of R0 = 0.2. For the potential barrier heights we used the
values of V0 = 0, 0.1, 0.2, 0.5, 2.0, 5.0, 10.0, 50.0, 100, and
V0 = ∞ (this last value is calculated by assuming numerically
V0 = 10300).

Figure 1(a) displays the energy behavior for the 1s, 2s,
and 3s states as a function of R0 for a selected set of barrier
heights: V0 = 0 (continuous line), V0 = 2 (long dashed line),
V0 = 10 (short dashed line), and V0 = ∞ (dotted line). In
the same figure, we compare our results with corresponding
accurate calculations by Ley-Koo and Rubinstein [28] (open
squares), Montgomery and Sen [24] (crosses), Goldman and
Joslin [19] (open circles), and Laughlin [22] (plus signs). Also,
for finite barrier heights, the critical cavity radius for which
a given bound state exists is clearly observed at the leftmost
side of each curve. The results of Montgomery and Sen [24]
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FIG. 1. (Color online) (a) Energy dependence on confinement
radius (R0) and potential barrier height (V0) for the first three s states
of the hydrogen atom. (b) Corresponding dependence for the 1s →
2p and 1s → 3p transition energies. Symbols represent accurate
calculations available in the literature (see text): (�) Ley-Koo and
Rubinstein [28]; (×) Montgomery and Sen [24]; (+) Laughlin [22];
(©) Goldman and Joslin [19]. Note the critical radius for finite
barrier heights below which the corresponding state is no longer
bound. These values for V0 = 10 (∗) from Ref. [24] are shown for
comparison.

(V0 = 10) for these critical values are also shown (asterisks)
for comparison. Our numerical values for both energies and
critical radii correspond up to five decimal figures to those
reported by the latter authors. Complementary to this figure, we
show in Fig. 1(b) the energy difference between the 1s and 2p

states and the 1s and the 3p states as a function of confinement
radius for the same set of barrier heights. A blueshift of
the associated optical transition, as the confinement radius
is reduced, is apparent for all cases. This blueshift has already
been predicted by Goldman and Joslin [19] for an infinite
barrier potential. The open circles in this figure correspond to
the transition energies reported by these authors as compared
with the results of this work for a selected set of confinement
radii. Also shown are the corresponding values reported by
Laughlin [22] (plus signs).

As may be gathered from Figs. 1(a) and 1(b), the finite
differences calculation gives excellent quantitative agreement
with the other calculations, giving us confidence in the
accuracy of our method. We can estimate the hydrostatic
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FIG. 2. (Color online) The computed atomic hydrogen pressure
in GPa as a function of the cavity confinement radius R0 for different
confinement potentials V0. On the right are labeled some characteristic
pressures that show some orders of magnitude.

pressure affecting the electronic system due to confinement
effects in terms of the variations in the ground-state energy as
the confinement volume changes, i.e.,

Pe = −∂E1s

∂V
= − 1

4πR2
0

dE1s

dR0

∣∣∣∣
V0

, (11)

where V0 stands for the barrier height representing a particular
environment.

In Fig. 2 we show the pressure in GPa as a function of
the confining radius for the various potential barrier heights
treated here. We note that the higher the potential barrier,
the higher the confinement pressure for the same confinement
radius. Note that below the critical radius for barrier heights
V0 = 0, 2, and 10 no bound state is available [see Fig. 1(a)]
and hence the electron is no longer confined by the cavity. For
R0 � 2, a relative difference of about one order of magnitude
for barriers within V0 = 0 and V0 = ∞ is observed for a given
radius R0. In the same figure, we show the order of magnitude
of some characteristic pressures to give an idea of the ones we
are dealing with. This figure will be useful as an aid to easily
convert confinement radius to pressure units when discussing
the associated behavior of the GOS and the DOS further below.

B. Dipole oscillator strength

As pointed out in the Introduction, the DOS behavior of the
confined hydrogen atom has been explored mainly through
the infinitely hard spherical confinement model [19,21–23].
Only recently, Montgomery and Sen [24]—in their analysis of
1s static and dynamic dipole polarizabilities—have reported
calculations of the DOS sums equivalent to Eq. (8) for soft
spherical confinement. In their calculation, the Bethe sum
is truncated so as to include only all available 1s → np

bound-bound transitions allowed by a confining potential of
height V0. They conclude that neglecting contributions from
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the continuum brings the Bethe sum close to unity, hence this
is a reasonable approximation.

We note here that—by construction—if N is the number
of grid points, the finite-differences method used in this work
allows us to obtain all NB bound states for a particular value of
R0 and V0 as well as the remaining states in the continuum. Of
course, one would require an infinite number of grid points to
include all the continuum states. However, we may call these
unbound states a pseudocontinuum approximation enabling us
to include these states in the Bethe sum.

Once the energy spectrum is obtained, together with the
eigenfunctions, we can calculate the dipole oscillator strength
for any allowed optical transitions nl → n′l′. In particular,
for the DOS calculation we must solve Eq. (4) for all states
and substates with l = 0 and l = 1. Since our interest here is
to explore confinement effects on the DOS, we shall restrict
ourselves to two specific calculations, namely for the 1s → 2p

and 1s → 3p transitions.
Table I displays the individual DOS values obtained in this

work for 1s → np (n = 2–5) transitions for a selected set of
confining barrier heights (V0) and radii (R0). We also include
in this table corresponding accurate values reported in the
literature for V0 = ∞ (R0 = 1, 5, 10) [22,23] and for V0 = 100
(R0 = 1) [24]. For these latter conditions, the results of this
work show excellent quantitative agreement with those from
the aforementioned independent calculations for all the DOS
contributions. This allows us to gain confidence in the accuracy
of the remaining DOS results for the other soft confinement
conditions shown in this table, complementing the previous
studies. In this connection, values for the TRK sum rule for all
confinement conditions indicated in Table I are given in the last

row, where the only available calculations by Montgomery and
Sen [24] for V0 = 10 (R0 = 1, 5, 10), V0 = 100 (R0 = 1), and
V0 = ∞ (R0 = 1, 10) are included also for comparison. We
note here that the TRK sums obtained in this work are closer
to unity than those from the latter authors. This quantitative
difference seems to arise from our inclusion of a higher number
(500) of excited states in the calculation and considering the
pseudocontinuum states.

We now turn our attention to the behavior of the DOS with
changes in the degree of confinement. To this end, we have
plotted in Figs. 3 and 4 the DOS dependence on R0 (pressure)
for the 1s → 2p and 1s → 3p transitions, respectively, for
different values of V0.

We first observe from Fig. 3 that for the higher potential
barriers (V0 = 10, 100, and ∞) the 1s → 2p DOS contribution
increases as pressure increases (decreasing R0), reaching
almost a value of unity for R0 ∼ 1. Also, for comparison
purposes, the results for V0 = ∞ by Laughlin (crosses) [22]
and Stevanović (open squares) [23] and the one for V0 = 100
by Montgomery and Sen (solid triangle) [24] are also shown
for specific confinement radii. The free-atom DOS exact value
f2p = 0.416 196 0 [39] for this transition (solid square) is also
included as the limiting reference value for large values of
R0 in our calculation. Excellent overall agreement is observed
among all calculations (see further below). Note, however,
that for the lower barrier heights (V0 = 0 and 2) a dramatic
reduction of the DOS contribution takes place just before the
critical radius is attained, at which point the excited state is
no longer contained by the confining sphere and thus becomes
part of the continuum. For the 1s → 3p transition, the DOS
behavior is shown in Fig. 4. Again excellent overall agreement

TABLE I. Individual DOS contribution from 1s → np (n = 2–5) transitions and TRK sum-rule values for a selected set of confinement
radii and barrier height.

State V0 = 0 V0 = 2

R0 = 1 R0 = 5 R0 = 10 R0 = 1 R0 = 5 R0 = 10
2p 0.645413 0.440749 0.802359 0.475681
3p 0.172295 0.139561 0.251260
4p 0.003984 0.137730
5p 0.065761
TRK Sum 0.999919 0.999922 0.999923 0.999801 0.999918 0.999923
State V0 = 10 V0 = 100 V0 = ∞

R0 = 1 R0 = 5 R0 = 10 R0 = 1 R0 = 1 R0 = 5 R0 = 10
2p 0.996363 0.827395 0.483303 0.985625 0.984553 0.848786 0.492028

(0.986111)a (0.984558)b (0.848799)b (0.492039)b

(0.984558)c (0.846322)c (0.492040)c

3p 0.123408 0.255048 0.006799 0.007725 0.108277 0.258159
(0.006753)a,d (0.007726)b (0.108275)b (0.258174)b

4p 0.035764 0.134951 0.005761 0.005666 0.031944 0.131491
(0.005788)a (0.005666)b (0.031942)b (0.131496)b

5p 0.007197 0.062813 0.000673 0.000744 0.005801 0.059562
(0.000672)a (0.000742)b (0.005800)b (0.059561)b

TRK Sum 0.999673 0.999916 0.999923 0.999532 0.999993 0.999993 0.999988
(0.996623)a (0.999199)a (0.999325)a (0.999983)a (0.999813)a

aValues correspond to those reported by Montgomery and Sen [24].
bValues correspond to those reported by Stevanović [23].
cValues correspond to those reported by Laughlin [22].
dThis is the correct value for the corresponding entry in Table 7 of Ref. [24] which was inadvertently inserted there as a typographic error [38].
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FIG. 3. (Color online) Dependence on confinement radius (R0)
and potential barrier height (V0) of the dipole oscillator strength for the
1s → 2p transition in atomic hydrogen. Comparison is shown with
accurate calculations: (�) for V0 = 100 [24]; (×) [22] and (�) [23]
for V0 = ∞; (�) free-atom case [39] (coincident with our calculation)
(see text).

is observed with available calculations by Stevanović [23] for
V0 = ∞ and with Montgomery and Sen [24] for V0 = 100
as well as with the corresponding free-atom DOS exact
value f3p = 0.079 101 6 [39] for large R0. Note, however,
that the results shown in this figure for the 1s → 3p DOS
dependence on pressure (R0) indicate a contrasting behavior
as compared to the 1s → 2p transitions previously discussed.
Namely, as pressure increases (decreasing R0) the 1s →
3p DOS contribution to the radiation intensity decreases
and—except for V0 = 0—a slightly larger DOS amplitude
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FIG. 4. (Color online) Same as in Fig. 3 for the 1s → 3p

transition in atomic hydrogen.

is observed as V0 decreases (as long as it can still hold the
bound 3p state). The reasons for this behavior are still under
study.

C. Generalized oscillator strength

In contrast with the increasing number of DOS studies
for the optical spectroscopic properties of the confined atom,
the number of studies devoted to GOS properties is scarce.
Analytical expressions for the free hydrogen atom GOS have
been available in the literature for a long time [1,2,40]. The
following analytical GOS expressions for a set of selected
transitions for a free hydrogenlike atom of nuclear charge Z

can serve as a reference in corresponding calculations for the
confined system,

1s → 2s:

F2s(q) = 24Z10 q2(
q2 + (

3Z
2

)2)6 , (12)

1s → 2p:

F2p(q) = 54Z12 1(
q2 + (

3Z
2

)2)6 , (13)

and 1s → 3p:

F3p(q) = 24

9
Z12

(
32

√
6

81

)2 (
3q2 + (

4Z
3

)2)2

(
q2 + (

4Z
3

)2)8 . (14)

We now focus our attention to the study of the GOS
properties of the confined hydrogen atom treated so far. In
contrast with the DOS calculation, for the GOS we require a
high value for l, the angular momentum quantum number. We
have calculated the GOS for values of the momentum transfer
q up to 30 in steps of �q = 0.1 and we have found that a
value of l up to lmax = 100 fulfills the Bethe sum rule up to
five decimals.

Figures 5–7 show the GOS q dependence for the 1s →
2s, 2p, and 3p transitions, respectively, for a selected set of
confinement radii and keeping a fixed barrier potential height
V0 = 0 as an example. For comparison, the corresponding
free-atom GOS distributions according to Eqs. (12)–(14) are
also shown in each case. We first note the excellent agreement
between our numerical calculation for R0 = 500 (continuous
curve) and the free atom analytical results in all cases (open
circles) giving us confidence on the reliability of our GOS
numerical calculation.

In all cases, both the height and width of the GOS
distribution increase as the confinement radius decreases
(increasing pressure). This behavior is in agreement with the
Heisenberg uncertainty principle, since larger pressure means
smaller confinement volume and therefore larger electronic
momenta. Larger momentum transfer from the excitation
source is thus required to produce a transition. This is more
clearly evident for the 1s → 2s transition (Fig. 5), where a
shift in the maximum of the distribution to higher momentum
transfer is observed while in the optical threshold (q → 0)
F2s → f2s = 0 as expected, due to selection rules. Note,
however, the dramatic reduction in the GOS amplitude for
confinement radii close to the critical value for which the
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FIG. 5. (Color online) The generalized oscillator strength for
the 1s → 2s transition for atomic hydrogen as a function of the
momentum transfer q for several confinement radius R0 for the
potential model with V0 = 0. The circle symbols are the selected
points from Eq. (12) the analytical expression for the free-atom case
which shows good overall agreement with our selection R0 = 500 for
this case.

excited transition state is still bound. Indeed, for V0 = 0
the critical radius holding the 2s state is R2s ∼ 4, while
for the 2p and 3p states the corresponding critical radii
are R2p ∼ 3.3 and R3p ∼ 8.8. The apparent GOS amplitude
reduction observed in Figs. 5–7 for confinement radii close
to these values points to an important critical property of
the GOS—hence on the energy absorption function—imposed
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FIG. 6. (Color online) Same as in Fig. 5 for the 1s → 2p tran-
sition. The circle symbols are obtained from the analytic expression
[Eq. (13)] for the free-atom case.
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FIG. 7. (Color online) Same as in Fig. 5 for the 1s → 3p tran-
sition. The circle symbols are obtained from the analytic expression
[Eq. (14)] for the free-atom case.

by the confining conditions. Close inspection of the excited-
state wave-function behavior for the aforementioned critical
confinement radii indicates a rapid reduction in amplitude as
the critical confinement radius is approached. This behavior
produces a reduced value in the transition matrix elements
implied by Eq. (7) thus reducing the transition probability.

The consequences of this behavior on the DOS (q → 0)
may be gathered from Figs. 6 and 7 for the 1s → 2p, 3p

transitions, where a rapid increase in the DOS amplitude
is observed for diminishing radius up to a value close to
its critical value. At this point an important reduction takes
place, ultimately disappearing for smaller confinement radii
for which the excited state is no longer bound (see Figs. 3 and
4). Concerning pressure effects on observed optical transitions
for the hydrogen atom, one would expect a blueshift as pressure
increases with growing line brightness up to a pressure value
where the line intensity diminishes until reaching a pressure
for which the line disappears.

For numerical reference, Table II displays the GOS values
calculated here for the 1s → 2s, 2p, 3s, and 3p transitions for
V0 = 0 in terms of the momentum transfer q and for a selected
set of confinement radii R0 = 5, 7, and 10. In each case, the
corresponding optical threshold (DOS) value (q → 0) is also
shown complementary to Table I.

D. Dependence on the environment

Thus far, we have studied the GOS and the DOS behavior
as a function of cavity size for a fixed confining barrier height.
Since different barrier height values (V0) should represent
different host media, clearly, the combined effect of cavity
size and environment will ultimately define the behavior of
these quantities. In this subsection we shall focus on exploring
the influence of the height of the confining potential on the
GOS distribution, keeping a fixed cavity size.
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TABLE II. Generalized oscillator strength for the 1s →(2s, 2p, 3s, 3p) states of a confined hydrogen atom for a barrier height V0 = 0 and
different confinement radii R0.

V0 = 0

R0 = 5 R0 = 7 R0 = 10

q (a.u.) F2s F2p F2s F2p F2s F3s F2p F3p

0.0 0.000000 0.645413 0.000000 0.526664 0.000000 0.000000 0.440749 0.172295
0.2 0.009697 0.595015 0.008899 0.478472 0.007287 0.001740 0.397154 0.168035
0.4 0.030736 0.468084 0.027179 0.361148 0.021605 0.006364 0.293435 0.151411
0.6 0.047608 0.317779 0.039752 0.230824 0.030375 0.011517 0.182622 0.119613
0.8 0.051555 0.189407 0.040135 0.128634 0.029495 0.014074 0.099411 0.080782
1.0 0.044342 0.101305 0.032122 0.064779 0.022894 0.013061 0.049266 0.047264
1.2 0.032480 0.049890 0.022103 0.030583 0.015439 0.009989 0.023035 0.024824
1.4 0.021267 0.023282 0.013837 0.013970 0.009548 0.006715 0.010455 0.012170
1.6 0.012932 0.010599 0.008201 0.006315 0.005615 0.004166 0.004704 0.005752
1.8 0.007537 0.004827 0.004724 0.002866 0.003217 0.002468 0.002128 0.002684
2.0 0.004315 0.002235 0.002689 0.001319 0.001825 0.001429 0.000978 0.001256

We show in Fig. 8 the GOS q dependence for a cavity radius
of R0 = 10 for a set of potential barrier heights V0. Even for
this large cavity radius, a sensible shift in the GOS (and the
DOS) amplitude is observed as the barrier height increases.
For this cavity radius and the lowest barrier potential (V0 = 0)
the estimated pressure corresponds to ∼10 Torr (or 0.01 atm)
and yet the optical threshold DOS values between the free and
confined case differ by about 5%. This difference increases as
the confinement radius decreases (increment in pressure).

Varying the confinement barrier height (different host
media) has a secondary effect on the GOS behavior, as
compared with changes in cavity size. This may be verified
by comparing the corresponding GOS amplitudes in Fig. 9
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FIG. 8. (Color online) The generalized oscillator strength for the
1s → 2p transition dependence on momentum transfer q for atomic
hydrogen confined in a spherical cavity with radius R0 = 10 and
different potential barrier heights V0. Circle symbols correspond to
the free-atom case as in Fig. 6.

(R0 = 5) and Fig. 8 (R0 = 10). Hence, compression plays a
dominant role over the type of host medium.

E. Bethe sum rule

Finally, to asses the completeness of the numerical results
reported so far, in Table III we show the values of the Bethe
sum rule (BSR) [Eq. (8)] for a set of potential barrier heights
and two values of the confinement radius R0 = 5 and 10 as
a function of the momentum transfer q. First, we note that
the higher the potential barrier, the closer to unity is the BSR.
As the momentum transfer increases, the BSR deteriorates,
resulting from higher angular momentum contributions. As
Inokuti [1] has shown, the maximum of the GOS occurs when
q2

max ∼ 2(En − E0), thus the larger the momentum transfer,
the larger the number of n and l states is required to fulfill the
BSR.
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FIG. 9. (Color online) Same as in Fig. 8 for a confinement radius
R0 = 5.
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TABLE III. Bethe sum rule as a function of the momentum transfer q for two confinement radii R0 and various barrier heights V0.

V0 = 0 V0 = 2 V0 = 10 V0 = ∞
q (a.u.) R0 = 5 R0 = 10 R0 = 5 R0 = 10 R0 = 5 R0 = 10 R0 = 5 R0 = 10

0.0 0.999921 0.999923 0.999918 0.999923 0.999916 0.999923 0.999993 0.999988
0.1 0.999921 0.999923 0.999918 0.999923 0.999916 0.999923 0.999993 0.999988
0.2 0.999921 0.999922 0.999917 0.999922 0.999915 0.999922 0.999992 0.999988
0.5 0.999917 0.999918 0.999913 0.999918 0.999911 0.999918 0.999992 0.999987
1.0 0.999904 0.999905 0.999900 0.999905 0.999899 0.999905 0.999991 0.999986
2.0 0.999851 0.999851 0.999849 0.999851 0.999847 0.999851 0.999987 0.999978
4.0 0.999638 0.999635 0.999642 0.999635 0.999643 0.999636 0.999970 0.999946
6.0 0.999283 0.999277 0.999297 0.999277 0.999302 0.999277 0.999942 0.999892
8.0 0.998788 0.998776 0.998815 0.998777 0.998825 0.998777 0.999903 0.999817
10.0 0.998153 0.998134 0.998196 0.998134 0.998214 0.998134 0.999853 0.999721
20.0 0.992345 0.991867 0.993046 0.991869 0.993176 0.991871 0.999433 0.997936
30.0 0.969342 0.967588 0.973355 0.967592 0.975049 0.967594 0.990328 0.980706

IV. CONCLUSIONS

The role of spatial confinement on the atomic excitation
function (GOS) and dipole (DOS) optical transitions for the
hydrogen atom has been studied by considering the atom
enclosed by a soft spherical cavity characterized by a radius R0

and an external step potential barrier of height V0 representing
the confining capacity of the host medium for the atomic
electron. The associated stationary Schrödinger problem was
accurately solved using a finite-differences approach whereby
the energy spectrum for bound and a commensurable num-
ber of continuum states (pseudocontinuum) were obtained,
allowing for proper evaluation of GOS and DOS with close
fulfillment of the corresponding Bethe and TRK sum rules for
various confinement conditions.

It was found here that, as a consequence of confinement,
the number of bound states for a particular barrier height is
reduced as the confinement radius decreases, thus modifying
the DOS and GOS intensities. In this connection, the GOS and
DOS intensities monotonically increase as the confinement
radius R0 decreases up to a fading point for R0 close to its
critical value where the transition state is no longer bound. We
believe this critical condition would represent the necessary
pressure to stop observing a given transition line in optical

spectroscopy experiments. That is, the line would intensify as
the pressure increases and then would fade until reaching the
critical pressure for that line to disappear. Finally, the results of
this work point to a predominance of cavity size (compression)
effects over barrier height (host medium) on the GOS and the
DOS behavior.

We believe that the approach here proposed may be an
interesting alternative for studies where confinement effects
on the atomic excitation function need to be accounted for,
such as the study of inelastic energy loss processes arising
from swift bare ions impinging on matter under high pressures,
photoabsorption, and photoionization cross sections of caged-
in atoms as well as optical properties of hydrogenic impurities
trapped in spherical quantum dots.
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