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Ab initio calculations of transition amplitudes and hyperfine A and B constants of Ga III
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In this paper, the E1, E2, and M1 transition amplitudes are calculated along with the hyperfine A and B

constants of doubly ionized gallium using the relativistic coupled-cluster approach. Electron correlations and the
Gaunt interactions are considered to all orders using the coupled-cluster theory in a relativistic framework and their
contributions are discussed explicitly in the calculations of all these amplitudes. Some interesting features of the
correlation effects on the Gaunt interactions are noticed in the calculations of the hyperfine constants. The lifetimes
of some low-lying states are also calculated using the transition amplitudes obtained by the present theory and the
experimental transition energies. The calculated E1 transition amplitudes and lifetimes are in good agreement
with the results obtained by the other theories and experiment. The hyperfine splitting of the ground states of 71Ga
III and 69Ga III are found to be about 35 and 27.5 GHz, respectively, which shows the importance of these isotopes
for the possible use of microwave frequency standards. The calculated hyperfine constants are associated with
linewidth estimations of some transition lines in the visible and ultraviolet regions of electromagnetic spectrum.
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I. INTRODUCTION

Like the trapping of singly ionized atoms, the trapping of
multiply ionized atoms is the subject of recent research interest
in physics due to their competence as candidates of fundamen-
tal constants and due to their use for frequency standards in the
microwave region. Trapped Yb III has been proposed already
as a good candidate to use for a most sensitive test of time
variation of the fine-structure constant [1,2]. Similarly, trapped
229Th IV has been considered to have the potential to be used
as a nuclear clock [1,3]. So it is natural to investigate some
other multiply ionized atoms to propose them in this category
for their use in such applications. Our investigation on the
ground-state hyperfine splitting of the two stable isotopes of
doubly ionized gallium is important from this point of view.

Improvement of high-resolution spectrographs in space
telescopes demands accurate data to explore abundances of
different atomic species in different astronomical systems.
Recently, evidence of the presence of Ga III has been reported
in the ultraviolet spectra of the subdwarf B (sdB) stars,
subdwarf OB (sdOB) stars, magnetic Si stars, He-weak stars,
hot HgMn stars, and several other astronomical systems [4–7].
However, very few theoretical calculations associated with the
allowed transition, i.e., E1 transition, lines of this element are
available in the literature [8–11]. This ion is also important as
an impurity concentration indicator in hot plasmas [8]. So the
different forbidden transition, i.e., E2 and M1 transition, lines
of this ion may play a crucial role in the plasma modeling.
The hyperfine-structure calculations of this ion are most likely
associated with the difference of Ga abundance estimations
in between the visible and ultraviolet spectra of the HgMn
stars [6]. This particular phenomena was named “The Gallium
Problem” by Dworetsky et al. [6]. The hyperfine calculations
are also very important to determine the isotopic abundances
in the different astronomical systems.

In the last three decades, in a number of approaches,
theoretical calculations have been carried out to determine
the oscillator strengths (f ) of E1 transitions between very few
low-lying states of Ga III as a member of the Cu isoelectronic

sequence [8,9,11]. Curtis and Theodosiou [8] calculated the
lifetimes of a few low-lying states and the f values between
them using the Coulomb approximated Hartree-Slater core
potential approach. Migdalek and Baylis [9] studied the core
polarization effects by including it in a relativistic Hartree-
Fock method as well as in a relativistic semiempirical model
potential approach to calculate the f values. The quantum
defect theory was used by Owono Owono et al. [11] to produce
the transition matrix elements of the electric dipole operator in
the calculations of the corresponding strengths. Relativistic
third-order many-body perturbation theory was applied by
Chou and Johnson [10] to find the E1 transition amplitudes of
the principal transitions of this element. The lifetimes of a few
low-lying states of this element were measured experimentally
by the beam-foil technique using a field-emission ion source
[12]. However, from a theoretical point of view, there are
no detailed discussions on the trends of the correlation and
relativistic effects in these calculations. Moreover, atomic data
for the forbidden transition lines of this element are not present
in the literature to the best of our knowledge.

Here, we have performed ab initio calculations of transition
amplitudes of the E1, E2, and M1 transitions between a
few low-lying states of Ga III using nonlinear coupled-cluster
theory with single, double, and partial triple excitations in a
relativistic framework. Both the hyperfine A and B constants
are determined for a few states of this ion with mass number
71 and 69, which are the only two stable isotopes of Ga [13].
The lifetimes of a few low-lying states are calculated using
these transition amplitudes and are compared with the other
theoretical and experimental results. As an improvement of the
atomic Hamiltonian, the Gaunt interaction [14], which is the
unretarded part of the Breit interaction, has been implemented
self-consistently [15]. The retardation part of the Breit inter-
action contributes little compared to the Gaunt part and hence
is neglected in our calculations [16]. The results are presented
at the Dirac-Fock and coupled-cluster levels of calculations
along with the correlation and Gaunt contributions. The trends
of the correlation effects on the Gaunt contributions in the cal-
culations of the hyperfine constants are analyzed graphically.
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II. THEORY

According to the coupled-cluster (CC) theory, a single
valence atomic state wave function |�v〉 associated with
a valence electron in the vth orbital can be expressed in
terms of the closed-shell cluster operator T , the open-shell
cluster operator Sv , and the corresponding reference state wave
function |�v〉 as follows [17–20]:

|�v〉 = eT {1 + Sv}|�v〉. (2.1)

The reference state |�v〉 is generated at the Dirac-Fock (DF)
level for V N−1 potential, where N is the total number of
electrons of the atomic system [15,21]. The energy eigenvalue
equation of this atomic system is given by

H |�v〉 = E|�v〉, (2.2)

where H is the atomic Hamiltonian which can be written
including the Gaunt interaction with the Coulomb interaction
as [15]

H =
N∑

i=1

[
c−→αi · −→pi + (βi − 1)c2 + Vnuc(ri)

+
N∑

j>i

(
1

rij

−
−→αi · −→αj

rij

)]
. (2.3)

Solutions of these energy eigenvalue equations correspond-
ing to two different valence orbitals can be applied to generate
the general matrix element of an operator Ô. This general
matrix element can be written by using the CC theory as

Of i = 〈�f |Ô|�i〉√〈�f |�f 〉〈�i |�i〉
= 〈�f |{1 + S

†
f }eT †

ÔeT {1 + Si}|�i〉√
〈�f |{1 + S

†
f }eT †

eT {1 + Sf }|�f 〉〈�i |{1 + S
†
i }eT †

eT {1 + Si}|�i〉
(2.4)

To evaluate this general matrix element, one needs the knowledge of single particle reduced matrix elements of the corresponding
operator [18]. For the E1 (in length gauge), E2 (in length gauge), and M1 transition operators, these are as follows [22,23]:

〈κi ||e1||κj 〉 = 3

k
〈κi ||C(1)||κj 〉

∫ ∞

0
dr

(
j1(kr)[Pi(r)Pj (r) + Qi(r)Qj (r)]

+ j2(kr)

{
κi − κj

2
[Pi(r)Qj (r) + Qi(r)Pj (r)] + [Pi(r)Qj (r) − Qi(r)Pj (r)]

})
, (2.5)

〈κi ||e2||κj 〉 = 15

k2
〈κi ||C(2)||κj 〉

∫ ∞

0
dr

(
j2(kr)[Pi(r)Pj (r) + Qi(r)Qj (r)]

+ j3(kr)

{
κi − κj

3
[Pi(r)Qj (r) + Qi(r)Pj (r)] + [Pi(r)Qj (r) − Qi(r)Pj (r)]

})
, (2.6)

and

〈κi ||m1||κj 〉 = 6

αk
〈−κi ||C(1)||κj 〉

∫ ∞

0
dr

{
κi + κj

2
j1(kr)[Pi(r)Qj (r) + Qi(r)Pj (r)]

}
. (2.7)

Here, k = ωα, where ω = εi − εj is the excitation energy and
α is the fine-structure constant. jl(kr) is the spherical Bessel
function of order l. Pi (r)

r
and Qi (r)

r
are the large and small

components, respectively, of the radial part of the DF wave
function.

The hyperfine energy of an atomic system in the presence
of the magnetic dipole and electric quadrupole moments of the
nucleus is written as [18,24]

Hhfs = AK

2
+ 1

2

3K(K + 1) − 4J (J + 1)I (I + 1)

2I (2I − 1)2J (2J − 1)
B.

(2.8)

Here, K = F (F + 1) − I (I + 1) − J (J + 1), and A and B

are the two constants associated with the magnetic dipole
and electric quadrupole moments of the nucleus, respectively.
Mathematically, these two constants are written as [15,24]

A = μNgI

〈J ||T(1)||J 〉√
J (J + 1)(2J + 1)

(2.9)

and

B = 2eQ

√
2J (2J − 1)

(2J + 1)(2J + 2)(2J + 3)
〈J ||T(2)||J 〉, (2.10)

where μN is the nuclear magneton, gI is the g factor, and Q

is the quadrupole moment of the nucleus. The operators T(1)

and T(2) are given explicitly in Ref. [24]. Here, we present the
single particle reduced matrix elements of these operators as
follows [24]:

〈κi ||t (1)||κj 〉 = −〈−κi ||C(1)||κj 〉(κi + κj )
∫ ∞

0
dr

1

r2

×{Pi(r)Qj (r) + Qi(r)Pj (r)} (2.11)

and

〈κi ||t (2)||κj 〉 = −〈κi ||C(2)||κj 〉
∫ ∞

0
dr

1

r3

×{Pi(r)Pj (r) + Qi(r)Qj (r)}. (2.12)

The reduced matrix element 〈κi ||C(k)||κj 〉 is given in Ref. [24].
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III. RESULTS AND DISCUSSIONS

The quality of the correlated wave functions generated by
the relativistic coupled-cluster (RCC) method is based on the
quality of the DF orbital wave functions. The DF orbitals of
triply ionized Ga are generated from the universal Gaussian-
type orbital (GTO) basis functions with α0 = 0.006 60 and
β = 2.80 for the Dirac-Coulomb Hamiltonian [21,25,26]. The
DF solutions of bound orbital energies and matrix elements
of the different radial operators obtained from the GRASP92

code are taken as standards to fit these universal parameters
[27]. The nuclei are considered to have a Fermi-type charge
distribution function [21]. The number of GTO basis functions
for s, p, d, f , and g symmetries are considered as 33, 28,
21, 18, and 15, respectively, at the DF level of calculations.
At the CC level, according to the convergence of the core
correlation energy, the numbers of active orbitals for the
abovementioned symmetries are taken as 12, 11, 10, 9, and
8, respectively [25]. The good quality of the correlated wave
functions is verified by the agreement (average deviation of
3.7%) between the reduced matrix elements of the electric
dipole operator in length and velocity gauge forms. The Gaunt
interaction is included at both the DF and CC levels keeping
all the abovementioned parameters unaltered. In the following
discussions, the correlation contribution (	corr) is defined
by the difference between the CC and DF results for the

Dirac-Coulomb Hamiltonian, whereas the Gaunt contribution
(	Gaunt) is defined by the difference between the CC results
for the Dirac-Coulomb-Gaunt Hamiltonian and the Dirac-
Coulomb Hamiltonian [15].

In Table I, the calculated length gauge values of the E1
transition amplitudes are presented with the correlation and
Gaunt contributions. The wavelengths are quoted using the
excitation energies of the National Institute of Standards and
Technology (NIST) [28]. As seen from Table I, these transi-
tions fall in the ultraviolet, visible, and near infrared regions of
the electromagnetic spectrum. The transition amplitudes of the
resonance transitions, i.e., 4s 2S1/2 → 4p 2P1/2,3/2 transitions,
are found to be about 11% correlated, which leads to about
22% correlation contributions to the corresponding oscillator
strengths [26]. However, the Gaunt effects are much less signif-
icant compared to the correlations not only for these transitions
but also for all the other transitions as presented in Table I.
The strengths of the 4s 2S1/2 → 5p 2P1/2,3/2 transitions are
relatively weak, but are strongly correlated as can be seen from
this table. The other E1 transition amplitudes having more than
10% correlation contributions are the 4p 2P1/2 → 5d 2D3/2 and
4p 2P3/2 → 5d 2D3/2,5/2 transitions (about 12.5%). The Gaunt
contributions to all the E1 transitions, except the 4s 2S1/2 →
5p 2P3/2 (about 0.56%) and 4p 2P3/2 → 5d 2D3/2 (about
0.12%) transitions, belong to the figures of less than 0.1%.

TABLE I. Calculated E1 transition amplitudes with the correlation and Gaunt contributions (in a.u.). The wavelengths λ are presented in Å.

Transition λ DF 	corr 	Gaunt Total

4s 2S1/2 → 4p 2P1/2 1534.46 1.8605 −0.2016 0.0005 1.6594
→ 4p 2P3/2 1495.04 2.6332 −0.2832 0.0007 2.3507
→ 5p 2P1/2 622.02 0.0464 0.0611 −0.0001 0.1074
→ 5p 2P3/2 619.95 0.0375 0.0871 −0.0007 0.1239

4p 2P1/2 → 5s 2S1/2 1323.15 1.1557 −0.0253 0.0003 1.1307
→ 4d 2D3/2 1267.15 3.0410 −0.2328 0.0009 2.8091
→ 6s 2S1/2 817.01 0.3327 −0.0015 0.0001 0.3313
→ 5d 2D3/2 806.33 0.6503 −0.0812 −0.0003 0.5688

4p 2P3/2 → 5s 2S1/2 1353.93 1.6873 −0.0367 0.0014 1.6520
→ 4d 2D3/2 1295.36 1.3782 −0.1036 0.0007 1.2753
→ 4d 2D5/2 1293.45 4.1303 −0.3106 0.0023 3.8220
→ 6s 2S1/2 828.65 0.4782 −0.0029 0.0003 0.4756
→ 5d 2D3/2 817.66 0.2848 −0.0359 −0.0003 0.2486
→ 5d 2D5/2 817.24 0.8601 −0.1076 −0.0006 0.7519

5s 2S1/2 → 5p 2P1/2 4995.32 3.9667 −0.1128 0.0005 3.8544
→ 5p 2P3/2 4864.39 5.5958 −0.1584 0.0004 5.4378

4d 2D3/2 → 5p 2P1/2 5995.53 3.7411 −0.0474 −0.0007 3.6930
→ 5p 2P3/2 5807.90 1.6570 −0.0207 −0.0006 1.6357
→ 4f 2F5/2 2418.61 6.2247 −0.2301 −0.0001 5.9945

4d 2D5/2 → 5p 2P3/2 5846.54 4.9909 −0.0625 −0.0017 4.9267
→ 4f 2F5/2 2425.28 1.6677 −0.0615 0.0001 1.6063
→ 4f 2F7/2 2424.90 7.4586 −0.2754 0.0001 7.1833

5p 2P1/2 → 6s 2S1/2 3731.21 2.5658 −0.0552 0.0002 2.5108
→ 5d 2D3/2 3518.38 5.4298 −0.1566 0.0015 5.2747

5p 2P3/2 → 6s 2S1/2 3807.77 3.7279 −0.0781 0.0027 3.6525
→ 5d 2D3/2 3586.37 2.4679 −0.0700 0.0016 2.3995
→ 5d 2D5/2 3578.30 7.3860 −0.2102 0.0047 7.1805

4f 2F5/2 → 5d 2D3/2 26 630.24 7.5026 0.0093 0.0000 7.5119
→ 5d 2D5/2 26 191.72 2.0016 0.0025 0.0000 2.0041

4f 2F7/2 → 5d 2D5/2 26 236.39 8.9505 0.0009 −0.0001 8.9513
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TABLE II. Comparisons of E1 transition amplitudes obtained by
the present theory and other methods (in a.u.).

Transition Present a b c d

4s 2S1/2 → 4p 2P1/2 1.6594 1.6251 1.6425 1.6263 1.7240
4s 2S1/2 → 4p 2P3/2 2.3507 2.2366 2.3267 2.3042 2.3254
4p 2P1/2 → 4d 2D3/2 2.8091 2.7550
4p 2P3/2 → 4d 2D3/2 1.2753 1.2505
4p 2P3/2 → 4d 2D5/2 3.8220 3.7487

aReference [11]. Relativistic supersymmetry inspired quantum defect
theory.
bReference [10]. Relativistic many-body perturbation theory.
cReference [8]. Coulomb approximation technique with a Hartree-
Slater core.
dReference [12]. Experimental results.

The E1 transition amplitudes computed by the CC theory
are compared with the other theoretical calculations and
experimental measurements in Table II. These theoretical
calculations are based on the quantum defect theory (QDT),
the relativistic many-body perturbation theory (MBPT), and
the use of a Coulomb-approximated Hartree-Slater core
(CAHS) [8,10,11]. Owono Owono et al. [11] calculated the
oscillator strengths of E1 transitions using the relativistic
supersymmetry inspired QDT where they treated the electric

dipole operator as a simple radial operator r and as different
radial functions proposed by Migdalek [29], Migdalek and
Baylis [9], Hameed et al. [30], and Weisheit [31]. However,
all these dipole operator forms produced the same results for
Ga III. The E1 transition amplitudes are calculated from these
oscillator strengths and the transition energies as proposed
by Owono Owono et al. [11]. Similarly, the calculated
oscillator strengths and compiled transition energies by Curtis
and Theodosiou are used to calculate the amplitudes [8].
Only, direct reporting of the amplitudes are available by the
third-order MBPT calculations of Chou and Johnson [10].
The experimental results are extracted from the corresponding
lifetime measurements and the use of excitation energies of the
NIST [12,28]. In Table II, one can find excellent agreement
between the present CC results and the MBPT calculations.
The present results also agree well with the theoretical values
obtained by the QDT and CAHS methods as well as with the
experimental measurements.

The length gauge values of the E2 transition amplitudes
are presented in Table III with the correlation and Gaunt
contributions. The wavelengths from the ultraviolet to mid-
infrared regions are reported for these transition lines in the
same table [28]. There are few cases in the E1 transitions where
correlations contribute more than 10% to the amplitudes,
whereas not a single such case is found to take place in
the E2 transitions. The correlation contributions to these

TABLE III. Calculated E2 transition amplitudes with the correlation and Gaunt contributions (in a.u.). The wavelengths λ are presented in Å.

Transition λ DF 	corr 	Gaunt Total

4s 2S1/2 → 4d 2D3/2 694.03 5.5825 −0.3512 0.0023 5.2336
→ 4d 2D5/2 693.48 6.8298 −0.4329 0.0031 6.4000
→ 5d 2D3/2 528.57 1.2003 −0.0865 −0.0001 1.1137
→ 5d 2D5/2 528.40 1.4789 −0.1099 0.0001 1.3691

4p 2P1/2 → 4p 2P3/2 58 199.43 6.8912 −0.3965 0.0038 6.4985
→ 5p 2P3/2 1040.20 4.5333 −0.2501 −0.0001 4.2831
→ 4f 2F5/2 831.51 8.6177 −0.5811 0.0044 8.0410

4p 2P3/2 → 5p 2P1/2 1065.21 4.8060 −0.2530 0.0053 4.5583
→ 5p 2P3/2 1059.13 4.7088 −0.2512 0.0032 4.4608
→ 4f 2F5/2 843.56 4.7217 −0.3115 0.0046 4.4148
→ 4f 2F7/2 843.51 11.5670 −0.7582 0.0113 10.8201

5s 2S1/2 → 4d 2D3/2 29 943.53 17.3600 −0.6011 0.0002 16.7591
→ 4d 2D5/2 28 956.63 21.3255 −0.7368 0.0009 20.5896
→ 5d 2D3/2 2064.37 19.7824 −0.7474 0.0096 19.0446
→ 5d 2D5/2 2061.70 24.1585 −0.9164 0.0109 23.2530

4d 2D3/2 → 4d 2D5/2 10.3382 −0.4274 0.0001 9.9109
→ 6s 2S1/2 2299.90 6.1806 −0.1706 −0.0032 6.0068
→ 5d 2D3/2 2217.23 10.3299 −0.2543 −0.0002 10.0754
→ 5d 2D5/2 2214.15 6.7312 −0.1662 −0.0005 6.5645

4d 2D5/2 → 6s 2S1/2 2305.94 7.6397 −0.2098 −0.0033 7.4266
→ 5d 2D3/2 2222.84 6.8091 −0.1669 0.0004 6.6426
→ 5d 2D5/2 2219.74 13.5555 −0.3337 0.0001 13.2219

5p 2P1/2 → 5p 2P3/2 31.3367 −1.0879 0.0102 30.2590
→ 4f 2F5/2 4053.99 39.3351 −1.0852 0.0038 38.2537

5p 2P3/2 → 4f 2F5/2 4144.53 21.1690 −0.5755 0.0058 20.5993
→ 4f 2F7/2 4143.41 51.8503 −1.4389 0.0144 50.4258

4f 2F5/2 → 4f 2F7/2 19.0191 −0.3333 −0.0001 18.6857
6s 2S1/2 → 5d 2D3/2 61 682.32 63.6698 −1.5648 0.0000 62.1050

→ 5d 2D5/2 59 379.60 78.1477 −1.9222 0.0025 76.2280
5d 2D3/2 → 5d 2D5/2 41.2077 −1.3390 0.0002 39.8689
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TABLE IV. Calculated M1 transition amplitudes with the correlation and Gaunt contributions (in a.u.). The
wavelengths λ are presented in Å.

Transition λ DF 	corr 	Gaunt Total

4p 2P1/2 → 4p 2P3/2 58 199.43 1.1545 0.0002 0.0000 1.1547
→ 5p 2P3/2 1040.20 0.0113 0.0005 0.0002 0.0120

4p 2P3/2 → 5p 2P1/2 1065.21 0.0116 0.0003 0.0003 0.0122
4d 2D3/2 → 4d 2D5/2 1.5491 0.0003 0.0000 1.5494

→ 5d 2D5/2 2214.15 0.0032 0.0014 0.0000 0.0046
4d 2D5/2 → 5d 2D3/2 2222.84 0.0033 −0.0012 0.0000 0.0021
5p 2P1/2 → 5p 2P3/2 1.1545 0.0000 0.0000 1.1545
4f 2F5/2 → 4f 2F7/2 1.8516 0.0000 0.0000 1.8516
5d 2D3/2 → 5d 2D5/2 1.5492 0.0001 0.0000 1.5493

amplitudes vary between 1.5% and 7.5% leading to about
3% to 15% variations in the transition probabilities from
the corresponding DF values [26]. Here also, the Gaunt
contributions are found to be less than 0.1%, except for
the 4p 2P3/2 → 4f 2F5/2,7/2 (about 0.104%) and 4p 2P3/2 →
5p 2P1/2 (about 0.116%) transitions.

The M1 transition amplitudes are presented in Table IV
along with the correlation and Gaunt contributions. The
transitions between the fine structure states have significant
amplitudes with respect to the amplitudes of other transitions.
The Gaunt contributions to all these fine structure transitions
are seen to be zero. However, the correlation contributions
to a few of these fine structure transitions are nonzero, but
have very small values, as can be seen from Table IV.
Therefore, the DF results of the M1 transitions between the
fine structure states can provide excellent approximations of
the totals. Some of the 4d 2D3/2,5/2 → 5d 2D3/2,5/2 transitions
having relatively very small magnitudes are seen to have
high percentage correlations. The Gaunt effects are found to
have some nonzero values in the 4p 2P1/2,3/2 → 5p 2P1/2,3/2

transitions as presented in Table IV.
Table V presents the lifetimes calculated by the CC

approach and their comparisons with the other theoretical
calculations and experimental measurements. The lifetime of
the 5s 2S1/2 state is calculated for the first time. Here, these
calculations are performed using the transition amplitudes
obtained by the CC theory and the experimental transition
energies of the NIST [28]. One can find excellent agreement
between the present calculations and the theoretical results

TABLE V. Lifetimes of a few low-lying states and their compar-
isons with the other results (in 10−9 s).

Other

State Present a b

4p 2P1/2 1.29 1.35 1.20 ± 0.20
4p 2P3/2 1.19 1.24 1.22 ± 0.10
5s 2S1/2 0.60 0.56 ± 0.04
4d 2D3/2 0.43 0.44 0.35 ± 0.15
4d 2D5/2 0.44 0.46 0.42 ± 0.08

aReference [8]. Coulomb approximation technique with a Hartree-
Slater core.
bReference [12]. Experimental measurement.

obtained by the Coulomb-approximated Hartree-Slater core
potential method [8]. Except for the 4d 2D3/2 state, our
calculations agree well with the beam-foil measurements with
an average discrepancy of 5.5% [12]. In the case of the 4d 2D3/2

state, the experimental uncertainty is considerably large and
both the theoretical results differ by about 25% from the
experimental result.

The hyperfine A and B constants of Ga III with mass number
71 are presented in Tables VI and VII, respectively, and those
with mass number 69 are presented in Tables VIII and IX,
respectively. Both of these types of constants are presented
within an approximate theoretical uncertainty of around
±1.5% [32]. To calculate these constants, the corresponding
correlations and Gaunt contributions along with the DF results
are also presented in the same tables. For the isotope 71Ga, the
nuclear spin, magnetic dipole moment, and electric quadrupole
moment are considered as 3/2, 2.5623 μN , and 0.106 barns,
respectively, whereas the same parameters for 69Ga are taken
as 3/2, 2.0166 μN , and 0.168 barns, respectively [13]. The
ground-state, i.e., the 4s 2S1/2 state, hyperfine splitting values
of 71Ga III and 69Ga III are calculated to be 34.95 and
27.51 GHz, respectively, which fall in the microwave region of
the electromagnetic spectrum. In terms of length scale, these
splitting values are associated with 0.86- and 1.09-cm lines
which may be considered as useful parameters to find the
isotopic abundances of 71Ga III and 69Ga III, respectively, in
different astronomical systems. One can easily compute the
hyperfine splitting values of the different excited states from
Eq. (2.8) by employing our calculated hyperfine constants.
These splitting values can provide linewidth estimations of a

TABLE VI. Hyperfine A constants of 71Ga III with the correlation
and Gaunt contributions (in MHz).

State DF 	corr 	Gaunt Total

4s 2S1/2 14 370.76 3093.24 10.50 17 474.50
4p 2P1/2 2674.06 618.52 1.17 3293.75
4p 2P3/2 489.41 119.45 0.32 609.18
4d 2D3/2 90.40 40.73 0.31 131.44
4d 2D5/2 38.68 18.23 0.12 57.03
5s 2S1/2 3925.37 634.30 3.44 4563.11
5p 2P1/2 875.59 158.32 0.59 1034.50
5p 2P3/2 161.54 33.86 0.15 195.55
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TABLE VII. Hyperfine B constants of 71Ga III with the correlation
and Gaunt contributions (in MHz).

State DF 	corr 	Gaunt Total

4p 2P3/2 56.864 20.130 −0.223 76.771
4d 2D3/2 3.489 3.845 −0.008 7.326
4d 2D5/2 4.936 5.424 −0.012 10.348
5p 2P3/2 18.770 5.158 −0.062 23.866

few transition lines in the visible and ultraviolet regions due to
the hyperfine effects, which may be useful for obtaining a more
accurate picture of abundance estimations in astrophysical
systems like the HgMn stars [6].

As seen in Tables VI–IX, the hyperfine constants are
highly correlated, but are affected comparatively little by the
Gaunt interactions. The hyperfine A constants of the 4s 2S1/2,
5s 2S1/2, 4p 2P1/2,3/2, and 5p 2P1/2,3/2 states are about 16%–
24% correlated, whereas those of the 4d 2D3/2,5/2 states are
about 45%–47% correlated. In the case of the B constants also,
relatively strong correlations occur for the 4d 2D3/2,5/2 states
(about 110%) with respect to the 4p 2P3/2 and 5p 2P3/2 states
(about 27%–35%). Due to such very high correlations, the
hyperfine B constants of the 4d 2D3/2,5/2 states at the CC levels
become more than two times the corresponding DF values.
For the 4s 2S1/2, 5s 2S1/2, 4p 2P1/2,3/2, and 5p 2P1/2,3/2 states,
the Gaunt contributions to the A constants are less than 0.1%,
but for the 4d 2D3/2,5/2 states, these are about 0.21%–0.24%.
Contrary to the A constants, the Gaunt contributions to the B

constants of the 4d 2D3/2,5/2 states (about 0.11%) are found
to be less compared to those of the 4p 2P3/2 and 5p 2P3/2

states (about 0.26%–0.29%). Moreover, these contributions
arise with opposite signs between both these types of constants
for all the concerned states.

An interesting consequence of the self-consistent treat-
ments of the Gaunt interaction at the DF and CC lev-
els of the hyperfine A and B constants can be ob-
served in Fig. 1. Here, percentage change of the Gaunt
contribution due to the correlation effect is defined
by {[(	Gaunt) − (	Gaunt)DF]/[|(	Gaunt)DF|]} × 100%, where
(	Gaunt)DF is the Gaunt contribution at the DF level [15]. This
plot shows dramatic changes in the Gaunt contributions due
to the correlation effects in the A constants of all the states.
Especially in the A constants of the 4d 2D3/2,5/2 states, these
changes are about 575%–650%. However, in the B constants,
these changes are about 30%–35% for the 4p 2P3/2 and 5p 2P3/2

TABLE VIII. Hyperfine A constants of 69Ga III with the correla-
tion and Gaunt contributions (in MHz).

State DF 	corr 	Gaunt Total

4s 2S1/2 11 310.76 2434.59 8.26 13 753.61
4p 2P1/2 2104.56 486.79 0.93 2592.28
4p 2P3/2 385.18 94.01 0.25 479.44
4d 2D3/2 71.15 32.05 0.25 103.45
4d 2D5/2 30.44 14.35 0.10 44.89
5s 2S1/2 3089.53 499.24 2.71 3591.48
5p 2P1/2 689.12 124.60 0.46 814.18
5p 2P3/2 127.13 26.66 0.12 153.91

TABLE IX. Hyperfine B constants of 69Ga III with the correlation
and Gaunt contributions (in MHz).

State DF 	corr 	Gaunt Total

4p 2P3/2 90.125 31.905 −0.354 121.676
4d 2D3/2 5.530 6.093 −0.013 11.610
4d 2D5/2 7.823 8.596 −0.019 16.400
5p 2P3/2 29.749 8.174 −0.098 37.825

states, but are about 150%–225% for the 4d 2D3/2,5/2 states.
In this figure, one can also see opposite trends of this feature
between these two types of constants. It has been observed
that the Gaunt contributions are negative for both these types
of constants at the DF levels of all the states. But due to the
correlation effects, these contributions are seen to move from
negative to positive values for the A constants and become
negative to more negative for the B constants.

IV. CONCLUSION

The E1, E2, and M1 transition amplitudes of Ga III

have been calculated employing a highly correlated method
with a relativistic correction. The lifetimes of some low-
lying states have been estimated from these calculations.
The contributions from the electron correlations and Gaunt
interactions to these transition amplitudes have been discussed
in detail. Investigation of the ground-state hyperfine splitting
of both the isotopes considered here predicts their possible
use as frequency standards at a fraction of a nanosecond. The
calculated hyperfine constants for some low-lying states of
these isotopes may be considered as important parameters for
abundance analysis in some visible and ultraviolet lines from
different astronomical objects. The correlation effects on the
Gaunt contributions to the hyperfine A and B constants have
been found to have opposite trends. We hope, our spectroscopic
study may in the future help the astrophysicists regarding the
issue of the Gallium Problem in HgMn stars.

FIG. 1. Percentage changes of the Gaunt contributions due to the
correlation effects in the hyperfine A (HypA) and B (HypB) constants
of 4s 2S1/2 (4s1), 5s 2S1/2 (5s1), 4p 2P1/2 (4p1), 5p 2P1/2 (5p1), 4p 2P3/2

(4p3), 5p 2P3/2 (5p3), 4d 2D3/2 (4d3), and 4d 2D5/2 (4d5) states.
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