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We critically analyze the commonly maintained statement that entanglement is necessary to beat the shot-noise
limit or standard quantum limit (SQL) in the sensitivity with which certain parameters can be measured in
interferometric experiments. We consider in detail three different physical realizations of a beam splitter and
a Mach-Zehnder interferometer using photons, massive bosons, and distinguishable spins or qubits. We study
several input states and the corresponding definitions of entanglement. We show that mode entanglement is not
required for photons or massive bosons for beating the SQL. In particular, with a fluctuating number of two-mode
bosons, the shot-noise limit can be beaten by nonentangled bosonic states with all bosons in one mode. As a
consequence, the trivially present entanglement due to symmetrization that appears when writing bosonic states
in terms of individual particles is a useful resource for precision measurements.
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I. INTRODUCTION

Suppose a parameter-dependent probability distribution
μθ (ξ ) arises from the description of a classical system
consisting of N independent parties. No matter what estimator
one uses for estimating the parameter θ from measured values
ξi drawn from the probability distribution, a universal lower
bound to the best mean-square error in the determination of
θ is given by the inverse of the classical Fisher information
F [μ,θ ]: this at best behaves as 1/N , a scaling known as the
shot-noise limit or standard quantum limit [1,2] (SQL), as a
simple consequence of the central limit theorem.

The field of quantum metrology concerns the use of
quantum mechanical features to improve on the above classical
limitation [3,4]. In particular, by using systems consisting of N

subsystems prepared in entangled states, the shot-noise limit
can be beaten [5]. The squared sensitivity of the determination
of a parameter θ has been proved to be bounded from below by
the inverse of a quantity known as quantum Fisher information
[6,7]. The quantum Fisher information can scale as fast as
N2 if the state ρθ of the system represents certain specific
N -partite entangled states, a scaling known as the Heisenberg
limit. Based on this, in the literature one often finds stated that,
albeit not sufficient, entanglement is necessary for overcoming
the shot-noise limit (see [8] for a recent review).

However, in experimental contexts where identical particles
are used for metrological purposes, as for instance ultracold
atoms trapped in double-well potentials which can be effec-
tively described as two-mode bosons [9,10], the very notion
of entanglement has to be generalized with respect to the case
when the constituent parties, say qubits, are distinguishable.
Indeed, in this latter case, there is a natural tensor product
structure related to the particle aspect of first quantization. For
instance, for two qubits, the Hilbert space is C2 ⊗ C2 and the
algebra of observables is M2 ⊗ M2, where M2 is the algebra
of 2 × 2 matrices for the first and second qubit, respectively.
Instead, in the case of identical particles, such a structure is
no more available: the fermionic sector of the Hilbert space is
one dimensional, while the bosonic one is C3. A way out is to

address entanglement always in relation to a given algebraic
context specified by a suitable mode description typical of the
second quantization formalism [11,12].

In the following, after recalling the basics of quantum
parameter estimation theory and entanglement of indistin-
guishable particles, we compare three different physical
realizations of a beam splitter (BS) and a Mach-Zehnder
(MZ) interferometer based on (1) distinguishable spins or
qubits, (2) photons, and (3) massive bosons, with respect to
the presence or absence of entanglement of equivalent states.
We show that the naturally occurring entanglement of massive
bosons due to symmetrization is sufficient for beating the SQL.
In terms of mode entanglement, such states can be separable,
as demonstrated with an N -boson two-mode Fock state. In
the case when the number of identical bosons is not fixed, the
SQL can be beaten by nonentangled states with all bosons in
one mode, without the need of partially populating the other
mode. Due to the particle-number superselection rule, the
exact formal equivalence of different physical realizations of
the MZ breaks down in this case. We also identify the optimal
one-mode and two-mode pure states in the sense of maximum
quantum Fisher information for a given maximum number
of bosons and show that for two modes in the absence of
decoherence, these are maximally entangled (NOON) states.

II. QUANTUM METROLOGY WITH
INDISTINGUISHABLE PARTICLES

A. Basic quantum parameter estimation theory

Consider a (possibly mixed) quantum state ρθ that depends
on the parameter θ whose value we want to find out as
precisely as possible. N repeated generalized measurements
with positive operator-valued measure (POVM) elements
[non-negative Hermitian operators E(ξ ),

∫
dξE(ξ ) = 1] in the

identically prepared state ρθ lead to N measurement outcomes
ξi (i = 1, . . . ,N ), distributed according to μθ (ξ ) = trρθE(ξ ).
One estimates the value of θ based on these N outcomes ξi with
an estimator function θest(ξ1, . . . ,ξN ). The squared sensitivity
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with which θ can be estimated from the data is defined as
〈(δθ )2〉, where

δθ = θest∣∣ d〈θest〉
dθ

∣∣ − θ, (1)

and the average 〈·〉 is over μθ (ξ ), 〈θest(ξ1, . . . ,ξN )〉 =∫
(
∏N

i=1 μθ (ξi)dξi)θest(ξ1, . . . ,ξN ).
For an unbiased estimator (〈θest〉 = θ locally at the value

of θ we are interested in, which we take without restriction of
generality as θ = 0 in the following), a universal lower bound
of 〈(δθ )2〉 is provided by the inverse of the quantum Fisher
information F [ρ],

〈(δθ )2〉 � 1

F [ρ]
, (2)

where F [ρ] = Tr(ρ L2) and

∂θρθ |θ=0 = 1
2 (ρL + Lρ) (3)

defines the symmetric logarithmic derivative L of the quantum
state. This so-called quantum Cramér-Rao bound [6,7] limits
the best sensitivity achievable for a given parameter-dependent
state ρθ , regardless of the choice of measurements and the
data analysis, as it is optimized over all POVM measurements,
in addition to the optimization over all possible estimators
used for the derivation of the classical Cramér-Rao bound [1].
According to Fisher’s theorem, the bound can be saturated in
the limit of N → ∞ [13]. Beating the shot-noise limit that is
making

〈(δθ )2〉 < 1/N (4)

necessarily requires F [ρ] > N . Note that instead of mea-
suring the same system N times with an identical initial
preparation for each measurement, one can equivalently
measure once a composite system consisting of N identical
subsystems in an initial product state.

The quantum Fisher information can be written as
F [ρθ ] = 4d2

Bures(ρθ ,ρθ+dθ ) in terms of the Bures distance
dBures(ρ,σ ) = √

2[1 − f (ρ,σ )], where the fidelity f (ρ,σ ) =
tr[(ρ1/2σρ1/2)1/2] [7,14]. For pure states ρ = |ψ〉〈ψ |, σ =
|φ〉〈φ|, the fidelity f reduces to the overlap f (ρ,σ ) = |〈ψ |φ〉|.
Therefore, one has the intuitive and information-theoretically
plausible interpretation that the distinguishability of two
neighboring states whose parameters θ and θ + dθ differ by
an infinitesimal amount determines the best sensitivity with
which θ can be obtained through measurement of whatever
observables.

If ρ = ρθ=0 is pure, then ρ = |ψ〉〈ψ | and ρdθ is created
from ρ through a unitary rotation with self-adjoint generator
J = J † from ρ,

ρ �→ ρdθ = e−idθJ ρeidθJ , (5)

and one shows that

F [ψ] = 4
2
ψJ = 4[〈ψ |J 2|ψ〉 − (〈ψ |J |ψ〉)2] ≡ F [ψ,J ],

(6)

where in the last step and from now on we make the dependence
on the generator J explicit [7]. For a fully separable pure state
|ψ〉 of N distinguishable subsystems and a generator J that
is a sum of operators of the individual subsystems, it turns

out that 
2
� J � N/4 [7]. It follows that in such a situation,

entanglement is necessary to achieve sensitivities beyond the
shot-noise limit, otherwise

〈(δθ )2〉 � 1

F [ψ,J ]
� 1

N
. (7)

Several ways are known by now of how this limitation can
be surpassed. One of them is to have N distinguishable
subsystems interact with a single N + 1st system (a “quantum
bus”) and read out the latter [15,16]. This method has the
advantage that the system needs to accommodate only N

interaction terms, as opposed to “nonlinear schemes” that
employ k-body interactions [17–24]) and require that N

particles all interact with each other. The scaling with N of the
“quantum bus scheme” is stable under local decoherence, and
even decoherence itself can be used as a signal, if the N + 1st
system is an environment.

In the following, we explore a third option, namely, the
use of indistinguishable particles. Before addressing this
possibility, it is necessary to stress that for identical particles,
the notion of separability (entanglement) cannot be given
independently of the modes that are selected for the description
of the system.

B. Separability and entanglement for identical particles

Identical bosons are best addressed within the second
quantization formalism by means of the Fock representation:
we shall denote by |vac〉 the vacuum state and by ai , a

†
i the

annihilation and creation operators relative to an orthonormal
basis {|i〉}i∈I in the single-particle Hilbert space. They satisfy
the commutation relations [ai, a

†
j ] = δij , [ai, aj ] = [a†

i , a
†
j ] =

0; furthermore, states |n1,n2, . . . ,nk〉 with ni bosons in the
single-particle states |i〉, i = 1,2, . . . ,k, are generated by
acting on the vacuum as follows:

|n1,n2, . . . ,nk〉 =
∏k

i=1(a†
i )ni√∏k

i=1 ni!
|vac〉. (8)

In the following, we shall be dealing with identical bosons that
can be found in two modes identified by pairs of creation and
annihilation operators a,a† and b,b†, respectively, satisfying
the canonical commutation relations [a,a†] = [b,b†] = 1,
while the remaining ones all vanish. We shall consider the
Fock representation based on a vacuum state |vac〉 so that the
states

|na,nb〉 = (a†)na (b†)nb

√
na!nb!

|vac〉, na,b ∈ N, (9)

constitute the orthonormal basis of eigenstates of the Fock
number operator a†a + b†b, with na bosons in one mode and
nb bosons in the other one.

In the second quantization formalism, there is no predefined
algebraic tensor product structure as for distinguishable parti-
cles. In the latter case, one starts out with the tensor product
of the algebras of operators acting on the Hilbert spaces of
the single particles: for instance, in the case of one qubit, the
operator algebra is the 2 × 2 complex matrix algebra M2 and,
in the case of two distinguishable qubits, it is the 4 × 4 matrix
algebra M2 ⊗ M2.
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In the absence of a definite tensor product structure, an
alternative approach to locality (of observables) and separa-
bility (of states) must be developed [11,12]: observe that the
main property of local observables A ⊗ 1 and 1 ⊗ B for a
bipartite system consisting of distinguishable particles is that
they commute.

We shall replace the tensor product structure by pairs of
commuting subalgebras (A,B) generated by {a,a†} and {b,b†},
respectively, and define

(i) (A,B) local all operators of the form AB with A ∈ A
and B ∈ B; and

(ii) (A,B) separable all N -boson density matrices ρ such
that the associated mean values of local operators split into
convex combinations of products of mean values with respect
to other N -boson density matrices [see (11) and (29) for
concrete examples], namely, if

Tr(ρ AB) =
∑

i

λi Tr
(
ρ

(1)
i A

)
Tr

(
ρ

(2)
i B

)
, λi � 0,

∑
λi = 1, (10)

for all A ∈ A and B ∈ B.
Remark 1. The above algebraic formulation of locality and

separability is fully general and neither restricted to finitely
many bosons with finite dimensional single-particle Hilbert
space nor to states described by density matrices. Indeed, in
quantum statistical systems with infinitely many degrees of
freedom, as in quantum field theory, states on the algebra of
operators are generic linear, positive functionals X �→ ω(X)
associating to an observable X its mean value ω(X). These
functionals need not be representable as ω(X) = Tr(ρX) by
means of a density matrix ρ [25].

The simplest examples of (A,B) separable states are
the Fock states in (9); indeed, expectations of (A,B) local
observables AB, A ∈ A, and B ∈ B factorize,

〈na,nb|AB|na,nb〉 = 〈na,nb|A|na,nb〉 〈na,nb|B|na,nb〉,
(11)

and show no correlations among these commuting observables.
For N indistinguishable two-mode bosons, the Hilbert

space is CN+1, and the Fock number states |k,N − k〉, 0 �
k � N , form an orthonormal basis with respect to which a
generic state is represented by a density matrix,

ρ =
N∑

k,�=0

ρk� |k,N − k〉〈�,N − �|. (12)

It turns out [11] that any such density matrix is (A,B) separable
if and only if

ρ =
N∑

k=0

ρkk |k,N − k〉〈k,N − k|; (13)

namely, if and only if it is diagonal in the (A,B) Fock number
states.

The definition of separable states for N bosons given above
is a direct extension of the standard one for distinguishable
particles. What should be remarked is that while in the case
of distinguishable particles the tensor product structure is
somewhat taken for granted and one need not specify that
locality and separability always refer to it, it is not so in the

case of identical bosons: in such a case, it must always be
specified with respect to which pair (A,B) a state is separable.
Indeed, it is easy to see that Bogoliubov transformations,
such as those implemented by beam splitters in quantum
optics or in cold-atom interferometry, transform the mode
operators {a,a†}, {b,b†} into new mode operators {c,c†}, {d,d†}
such that the (A,B) separable state in (9) turns out not to
be separable with respect to the new pair of commuting
subalgebras generated by {c,c†} and {d,d†}. Consider, for
instance, the transformation

a = c + d√
2

, b = c − d√
2

, (14)

associated with the action of a 50/50 beam splitter: the (A,B)
separable state |na,nb〉 becomes

|na,nb〉 = 2−(na+nb)/2

√
na!nb!

na∑
q=0

nb∑
p=0

(−1)nb−q

(
na

p

)(
nb

q

)

× (c†)p+q(d†)na+nb−p−q |vac〉.
This vector state is a superposition of eigenstates of c†c and
d†d and thus it turns out to be (A,B) separable, but (C,D)
entangled. Notice also that the Bogoliubov transformation is
generated by a unitary operator which is not (A,B) local since
its generator is of the form −i(αa†b − α∗ab†) [see (17) below].

Other definitions of entanglement for indistinguishable
particles have been discussed in the literature, e.g., in the
context of “generalized entanglement” (see [26–28] and
references therein).

III. PARAMETER ESTIMATION
WITH A SINGLE BEAM SPLITTER

A major part of the literature on quantum parameter
estimation deals with the estimation of a phase shift in one
arm of a Mach-Zehnder interferometer. We will consider that
situation in the next section, but for the sake of clarity, we
first focus on an even simpler example: the estimation of
the transparency of a single beam splitter. Different physical
realizations of a beam splitter are possible, with corresponding
different interpretations as to the presence or absence of
entanglement for a given input state, which we discuss now.

A. Different physical realizations of a beam splitter

The most obvious realization of a beam splitter is found in
quantum optics, where the BS creates a coupling between two
different modes a and b of the light field (represented typically
by two orthogonal directions under which light can fall onto the
BS). More precisely, the BS generates a Bogoliubov rotation
of the two modes a and b,

UBS(α)aUBS(−α) = a cos(|α|) − beiθ sin(|α|), (15)

UBS(α)bUBS(−α) = b cos(|α|) − aeiθ sin(|α|), (16)

with α = |α| exp(iθ ) as a complex parameter characteristic of
the BS, via the unitary operator

UBS(α) = eαa†b−α∗ab† . (17)

Each of the two orthonormal mode functions is a solution of
the classical Maxwell equations with appropriate boundary
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conditions, such as plane waves with a given wave vector
and polarization in the case of vacuum and periodic boundary
conditions. Each mode corresponds to a harmonic oscillator
due to the fact that the energy of the electromagnetic field
is quadratic in both the electric and magnetic fields. A state
(a†

i )n|vac〉 means the ith oscillator being excited in the nth one
of its excited states, i.e., it corresponds to n photons in mode
i (see, e.g., [29] or any other textbook on quantum optics).
When talking about the need of entanglement for surpassing
the SQL, entanglement means most naturally the entanglement
of these two harmonic oscillators.

The interaction of the two modes represented by the BS can
lead to entanglement when acting on a product state. This is
most easily seen from a simple one-photon example: the state
|1〉|0〉 (with one photon in mode a and no photon in mode
b) is mapped by a 50:50 BS with |α| = π/4, θ = π onto the
state (|10〉 + |01〉)/√2, which is clearly entangled. Another
simple physical example that shows that a simple BS can create
entanglement is the input state |1,1〉, with one photon in each
of the two input modes, which after the BS becomes (|2,0〉 +
|0,2〉)/√2, i.e., due to the bosonic nature of the photons, a
bunching of the two photons occurs (Hong-Ou-Mandel effect).
Interestingly, however, a product state of two coherent states
in the two modes remains a product state (see [30], p. 354).

Entanglement that is purely due to the (anti)symmetrization
required by the indistinguishability of the particles involved
has traditionally been considered as trivial and useless. In
particular, it does not allow demonstrating the violation of
a Bell inequality, since for doing so one needs local unitary
operations. These would map state |0〉 in a superposition of
|0〉 and |1〉, which is, however, impossible due to the particle-
number conservation superselection rule (In the context of
mesoscopic systems [31,32], one finds the term “fluffy bunny
entanglement”). Recently, particle-number nonconserving su-
perpositions have attracted renewed interest in the context of
cold atoms. It was suggested that when the two modes are
coupled to a third one containing a Bose-Einstein condensate
that forms a “coherent” reservoir, such superpositions might
become possible and might have applications for quantum
communication [33,34]. Below we will argue that this kind of
“naturally occurring” entanglement is very useful for precision
measurements.

As pointed out, e.g., in Ref. [35], the mathematically exact
same operation of a BS can also be achieved in multispin-1/2
systems or multiqubit systems. Formally, this goes back to
the Schwinger representation that associates to the two-mode
bosons the angular-momentum-like operators [36]

Jx = a†b + ab†

2
, Jy = a†b − ab†

2i
, Jz = a†a − b†b

2
.

(18)

One checks that with these definitions, the usual commuta-
tion relations between angular-momentum components are
reproduced (with h̄ = 1), i.e., [Jx,Jy] = iJz, etc. Focusing
momentarily on purely imaginary parameters α = i|α|, we
see that Eq. (17) can be reexpressed as

UBS(|α|) = ei2|α|Jx . (19)

Jx in turn can be obtained in the case of N distinguishable
spins or qubits as the sum of the x components of the individ-
ual (pseudo)angular momenta j (i)

x = σ (i)
x /2, Jx = ∑N

i=1 j (i)
x ,

where σ (i)
x is a Pauli spin operator. The very use of a label

i signals the spins as distinguishable. Therefore, the unitary
operator UBS(|α|) on C2N

is a local transformation as it
splits into the tensor product of individual unitary operators,
UBS(|α|) = ⊗N

i=1 e2i|α| j (i)
x . For this incorporation of the BS,

it is thus clear that in order to outperform the SQL, one
needs to operate with the BS on an entangled initial state.
Physically, the local unitaries can be obtained, for example,
by microwave pulses in electron spin resonance experiments.
However, since a spin-1/2 is equivalent to a qubit, it can
also be interpreted in purely information-theoretical terms.
Thus, we may describe a BS in terms of qubits, such that a
single qubit encodes the information whether a particle that
passes the BS is in mode a or mode b (states |0〉 or |1〉,
respectively, in qubit parlance, or |↑〉 or |↓〉 for spins-1/2).
This realization of the BS allows for the most transparent
assessment of the effect of indistinguishability, as one may
evaluate the Fisher information separately for N -particle states
that are symmetrized (as is relevant for identical bosons) or not
(as is possible for distinguishable spins).

A third physical realization of the BS is obtained in
the context of ultracold trapped atoms, due to the formal
equivalence of the creation and annihilation operators for
bosons in second quantization formalism with the raising and
lowering operators of harmonic oscillators in first quantization,
such that (a†

i )n|vac〉 means that n identical bosons are created
in the ith single-particle state, where i now labels different
single-particle orthonormal basis vectors, i.e., two orthonormal
solutions of the single-particle Schrödinger equation. In
the Bose-Hubbard approximation, instances of single atom
orthonormal bases for ultracold atoms trapped in a double-well
potential are states corresponding to an atom being localized in
either one or the other of the two wells, or the first two energy
eigenstates of the single-particle Hamiltonian. Within the
context of indistinguishable particles, U (|α|) is (A,B) nonlocal
as it cannot be split into the product of some A ∈ A and B ∈ B.

B. Fock states in the three different settings

In order to illustrate the physical consequences of the indis-
tinguishability of particles on the sensitivity of measurements,
we consider as the input state of the BS an (A,B) separable
number Fock state as in (9), with k bosons in mode a and
N − k bosons in mode b,

|k,N − k〉 = (a†)k(b†)N−k

√
k!(N − k)!

|vac〉. (20)

We call a state with k = N or k = 0 a one-mode state,
as all bosons are in the first or second mode, respectively.
It is straightforward to calculate the Fisher information
corresponding to the action U (|α|) of the BS in state (20),

F [|k,N − k〉,2Jx] = 16 
2
|k,N−k〉Jx

= 16〈k,N − k|J 2
x |k,N − k〉

= 4[N (2k + 1) − 2k2], (21)

which exceeds 4N for all k �= 0 and k �= N .
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Therefore, except when all identical bosons are in one mode
and none in the other, despite the (A,B) separability of the Fock
state, one can beat the shot-noise limit.

Remark 2. The additional factor 4 arises from the fact that
α is multiplied with a factor 2 in the exponent of UBS(α), such
that the more natural angle to be considered would in fact be
2α (with a SQL of F [|k,N − k〉,Jx] = N ).

In the just-studied case, it is the (A,B) nonlocality of
the rotation UBS(α) in (19) generated by Jx that allows
beating the SQL. Indeed, if the state ρ in F [ρ,J ] is (A,B)
separable and subjected to an (A,B) local continuous unitary
transformation U (θ ) = exp(iθJ ), then the Fisher information
identically vanishes. This can be seen as follows: we know
from (13) that (A,B) separable states are diagonal in the (A,B)
Fock number state basis. Thus, the convexity of the Fisher
information [37,38] gives

F [ρsep,J ] �
N∑

k=0

ρkk F [|k,N − k〉,J ],

for all (A,B) separable two-mode boson states. Furthermore,
the locality assumption on U (θ ) implies that its generator J

must be of the form J = A(a,a†) + B(b,b†), where A and
B are (Hermitian) functions of (a,a†) and (b,b†). Indeed,
by the locality assumption U (θ ) = Ua(θ )Ub(θ ), where Ua(θ ),
Ub(θ ) involve operators a,a† and b,b† only; then by differ-
entiating, U (θ ) at θ = 0 one gets J = A(a,a†) + B(b,b†),
since U (0) = Ua(0) = Ub(0) = 1. Furthermore, the assumed
fixed boson number N in the context considered forces U (θ )
to preserve the total boson number N̂ = a†a + b†b = N .
Consequently,

[Ua(θ ),a†a] = [Ua(θ ),N − b†b] = 0,

and analogously [Ub(θ ),b†b] = 0. Therefore, the eigenvec-
tors of Ua(θ ) and A(a,a†) are the eigenvectors |k〉 =
(a†)k|vac〉/√k! of a†a; similarly, the eigenvectors of
b†b, |N − k〉 = (b†)N−k|vac〉/√(N − k)! are eigenvectors
of Ub(θ ) and B(b,b†). Therefore, the mean-square errors

2

|k〉A(a,a†) = 
2
|N−k〉B(b,b†) = 0. Finally, from (6) and

[A(a,a†),B(b,b†)] = 0, it follows that

F [|k,N − k〉,J ] = 4
[

2

|k〉A(a†a) + 
2
|N−k〉B(b†b)

] = 0.

The fact that no information can be extracted in such a
case is due to the absence of phase relations between the
two modes either embodied by the state or induced by the
rotation.

When considering a BS from the point of view of dis-
tinguishable particles, a separable state of N qubits, which
matches the Fock state (20) in terms of the expectation values
of Jx,Jy , and Jz, and in terms of the interpretation of k particles
in mode a and N − k particles in mode b, is

|ϕ〉 = |0〉1 . . . |0〉k|1〉k+1 . . . |1〉N . (22)

Clearly, 〈Jx〉 = 0, and 〈J 2
x 〉 = 1

4 〈(∑N
i=1 1(i) + ∑

i �=j σ (i)
x σ

(j )
x )〉

= N/4. Thus, F [|ϕ〉,2Jx] = 4N , and the SQL can therefore
not be beaten with this state, as expected. The lack of

interaction between the particles in a BS process implies that
before undergoing an interferometric protocol, the initial state
should be first made entangled by some suitable procedure,
for instance by spin squeezing as suggested by Wineland
[9,10,39].

Of course, the same state and the same unitary transfor-
mation should yield the same Fisher information, irrespective
of how they are realized physically. Clearly, however, |ϕ〉 �=
|k,N − k〉, as |ϕ〉 is not symmetrized, contrary to |k,N − k〉.
It is instructive to check that a symmetrization of |ϕ〉 does lead
back to the exact same result as (21). To show this, consider
the symmetrized state

|ϕs〉≡
∑
P∈SN

|0〉P (1) . . . |0〉P (k)|1〉P (k+1) . . . |1〉P (N)/N , (23)

where the sum is over all permutations of the N qubits,
and N = √

N !k!(N − k)! is the normalization constant. To
obtain the latter, observe that out of the N ! permutations
only ( N

k ) lead to distinct states, which are all orthogonal and
appear each k!(N − k)! times. We still have 〈ϕs |Jx |ϕs〉 = 0. As
for J 2

x = (1/4)(
∑N

i=1 1(i) + ∑N
i �=j σ (i)

x σ
(j )
x ), the last term only

contributes if the number of qubits in the state |0〉 (or |1〉) does
not change, i.e., if σ (i)

x and σ
(j )
x act in different subgroups (e.g.,

σ (i)
x on a qubit in state |0〉 and σ (i)

x on a qubit in state |1〉, or vice
versa). If this is enforced, the constraint i �= j is automatically
fulfilled. There are thus k(N − k) + (N − k)k = 2k(N − k)
contributions for each component in (23). The first sum over
SN gives a factor N !, and from the second sum over SN

there are (N − k)!k! terms that give the same component.
Altogether, we therefore have

F [|ϕs〉,Jx] = 4
2
|ϕs 〉Jx = 4

[
N + 2k(N − k)

1

N !k!(N − k)!

×N !(N − k)!k!

]
(24a)

= 4[N (2k + 1) − 2k2], (24b)

i.e., exactly the same result as for the identical bosons,
given by Eq. (21). This demonstrates most clearly that the
“naturally occurring” entanglement due to the symmetrization
for identical bosons is a free resource that does allow
the improvement of sensitivity over the SQL. Contrary to
distinguishable spins or qubits, no additional entanglement
creation (e.g., by squeezing) is required at the input ports of
the BS. Thus, while the puffy bunny entanglement might be
useless for demonstrating a violation of Bell inequalities as
explained above, it is useful for precision measurements.

IV. PHASE ESTIMATION WITH A MACH-ZEHNDER
INTERFEROMETER

Let us now consider a Mach-Zehnder (MZ) interferometer
consisting of two equal beam splitters and a phase shifter.

After the first BS, a unitary rotation by an angle φ is
generated by the number operator a† a, which implements a
phase shift in the a mode, whereas the b mode experiences no
phase shift. A second BS recombines the beams by means of
UBS(−α).
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The total effect on an incoming state ρ is described by the
unitary operator

UMZ(α,φ) = UBS(−α)eiφa†a UBS(α) = eiφJα ,

Jα =
[

cos2(|α|)a†a + sin2(|α|)b†b

+ sin(2|α|)
2

(eiθa†b + e−iθ ab†)

]
, (25a)

= N̂

2
+ cos(2|α|)Jz + sin(2|α|)[cos(θ )Jx

− sin(θ )Jy], (25b)

where we have introduced the operator N̂ = a†a + b†b for the
total number of particles in both modes. One easily checks
that it commutes with Jx , Jy , and Jz introduced in (18).
Equation (25b) shows that a MZ acts in a very similar fashion
as a single BS, but with a rotation generated in a different
basis that depends on the individual BSs, and with a rotation
angle given by the phase shift (without the factor 2, however,
compared to a single BS).

The discussion of the necessity of entanglement is here
slightly more subtle, as there is the additional freedom
of considering states at different stages of the propagation
through the MZ. In Ref. [5], a classification of different
scenarios concerning the preparation of an entanglement at
the input and detection using possible joint measurements
projecting onto entangled states was proposed. It was found
that the existence of entanglement is decisive at the stage where
the parameter to be measured is imprinted onto the state, i.e.,
for the MZ after the first BS. In the following, we discuss
different input states for the MZ and calculate the resulting
best sensitivity, examining at the same time the presence of
entanglement of the input state and of the state after the first BS
for the three different physical situations described in Sec. III.

A. Two-mode Fock state

If the input state to the MZ is a two-mode Fock state |k,N −
k〉 with k bosons in the first mode and N − k in the second
one, then the Fisher information (6) can be computed to be

F [|k,N − k〉,Jα] = sin2(2|α|)[2k(N − k) + N ]. (26)

For fixed |α|, the SQL can be beaten (i.e., F [|k,N − k〉,
Jα] > N) if and only if N > 2 cot2(2|α|) and

N

2

[
1 −

√
1 − 2

N
cot2(2|α|)

]

< k <
N

2

[
1 +

√
1 − 2

N
cot2(2|α|)

]
.

Remark 3. The upper and lower bounds on the number of
bosons in the left well, k, make apparent the symmetry between
exchanging the boson content of the two wells already present
in (26). Also, if the phase shift by φ in (25a) is operated by
b†b instead of by a†a, then the generator associated with MZ
reads

Jα = N̂

2
− cos(2|α|)Jz − sin(2|α|)[cos(θ )Jx − sin(θ )Jy],

and leads to the same conclusions.

The entanglement properties of the two-mode Fock state
and the state after the first BS are, of course, as discussed
in Sec. III: the input state is (A,B) separable, but becomes
(A,B) entangled after the first BS for generic BS parameters.
If realized in terms of individual qubits (without symmetriza-
tion), the corresponding input state (22) as well as the state
after the BS are separable, but symmetrization makes the
state entangled. In terms of two optical modes in the case
of photons, the input state is separable, but the first BS
generically entangles it (unless its transparency equals 0
or 1). But the two-mode entanglement cannot explain the
improvement of the sensitivity over the SQL: The proof of
the necessity of entanglement for beating the SQL is based
on N distinguishable particles, using notably a sum of local
Hamiltonians, H = ∑

i hi , where hi acts on particle number i.
For two modes, one has N = 2 and cannot make any statement
about scaling with N . Therefore, this reasoning can only be
applied to the realization of the MZ with N distinguishable
spins or qubits. For the case of separable qubits at the input of
the MZ, it is clear, however, that the SQL cannot be beaten, as
the state remains separable after the first BS. The theorem in
Ref. [5] applies, thus requiring an entangled multispin input
state. It is known that a permutationally symmetric multispin
state is pairwise entangled if it is spin squeezed [40]. This
is no longer true if permutational symmetry is relaxed, but
spin squeezing always implies entanglement (see Sec. 8.1 of
Ref. [41] and references therein, and [42]).

The symmetrized state of N qubits that corresponds to
|k,N − k〉 is completely equivalent to the latter, is entangled
both before and after the first BS, and allows one to beat the
SQL. However, its physical creation in terms of distinguishable
spins (or qubits) requires substantial resources for creating
it (see, e.g., [9,42–44]). As for photons, even a single-mode
Fock state is hard to generate (see, e.g., [45] for the creation
of microwave Fock states by quantum feedback in a single-
mode ultra-high-finesse cavity), as decoherence rapidly tends
to mix it with states with different photon numbers. For
massive bosons, one might think that a Fock state is the
most natural state, as the particle number is fixed, even
if it is not precisely known. However, since experiments
have to be repeated to collect sufficient statistics, fluctuating
numbers of bosons between different runs effectively create
mixtures of Fock states. In practice, the best experimental
approximation to a Fock state are number squeezed states,
with so far a few dB of squeezing demonstrated experimen-
tally [9,10,44]. It remains to be seen to what extent novel
measurement techniques such as the quantum gas microscope
[46] will enable precise knowledge of boson numbers and
thus the preparation of Fock states with a large number of
atoms.

B. One-mode states

Suppose a system of identical bosons is prepared as input
to the interferometer in a state of the form

|�〉 =
∑

k

ck|k,0〉, |k,0〉 = (a†)k√
k!

|vac〉, (27)

with all bosons in mode a, that is, a† a|k,0〉 = k |k,0〉,
b† b|k,0〉 = 0. We shall only demand that the mean boson
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number

N = 〈�| (a†a + b†b)|�〉 =
∑

k

pkk (28)

be finite, where pk = |ck|2,
∑

k pk = 1.
Observe that such states are (A,B) separable according to

the definition of mode or algebraic separability embodied by
equality (11). Indeed, on products of the form (a†)paq(b†)rbs

and thus on all polynomials in the mode operators, such states
factorize as follows:

〈�|(a†)paq(b†)rbs |�〉
=

∑
k,�

c∗
kc�〈vac|ak(a†)paq(a†)�(b†)rbs |vac〉

= 〈�|(a†)paq |�〉〈�|(b†)rbs |�〉. (29)

Using (6), the quantum Fisher information corresponding to
such a state and the generator Jα in (25a) is readily computed:

F [�,Jα] = 4

{
cos4 |α|

[ ∑
k

pkk
2 −

(∑
k

pkk

)2 ]

+ cos2 |α| sin2 |α|
∑

k

pkk

}
. (30)

The term in parentheses in the first line is the mean-square
error of a stochastic variable X taking values on the natural
numbers X ∈ N distributed according to the probabilities
p(X = k) = pk . The variance is always non-negative; thereby,
choosing α = π/4 yields F [�,N̂/2 + Jx] � N . This already
indicates the possibility of beating the shot-noise limit, that
is, the bound (4) with the mean photon number N in the
place of N .

Indeed, consider a balanced BS (α = π/4) so that Eq. (25a)
gives

J ≡ Jπ/4 = (a†a + b†b + a†b + ab†)/2 = N̂

2
+ Jx, (31)

and choose an input state with a finite fixed maximum number
K of bosons,

|�〉 =
K∑

k=0

ck|k,0〉. (32)

By isolating in (30) the term k = K and using KpK = N −∑K−1
k=1 pkk, one gets

F [�,N̂/2 + Jx] = N (1 + K − N ) +
K−1∑
k=1

pkk(k − K).

Each term in the last sum is negative. The quantum Fisher in-
formation is thus optimized by choosing pk = 0 for all k �= 0,

K , which in turn implies pK = N/K and

|�〉 =
√

1 − N

K
|00〉 + eiχ

√
N

K
|K,0〉. (33)

Then,

F [�,N̂/2 + Jx] = N (K − N + 1). (34)

Since the Fisher information is larger than the mean particle
number, it thus follows that the shot-noise limit can be
beaten by choosing a suitable N . A similar conclusion has
been reached in Ref. [47], where, differently from here,
the authors considered a superposition of the vacuum state
with a squeezed state acted upon by a rotation generated by
the number operator. Earlier work on optimizing states for
minimal phase uncertainty, notably in the context of squeezed
states, can be found in Refs. [48–52]. Most of this earlier
work used the notion of an approximate phase operator. In
Ref. [53], it was shown how the optimal sensitivity of a
Mach-Zehnder interferometer fed with multimode Gaussian
states can be reached without entanglement by appropriate
mode engineering.

One might wonder about the importance of the scaling
with the average boson number N instead of N . Of course,
N is only well defined for a Fock state, whereas for all other
states, one has to live with fluctuating N . For laser light in a
coherent state with N � 1 or even the most squeezed states
currently available [54,55], the fluctuations of N still satisfy
σ (N )/N � 1, and the average photon number is therefore
representative of the photon number in any realization. A state
of the form (33) with N � K/2 maximizes the photon-number
fluctuations, however, and obviously the average value of N is
never realized (only N = 0 or N = K are). Nevertheless, the
scaling with N is highly relevant practically, as it corresponds
to the mean energy in the state, which is indeed what makes
producing the state costly. In Ref. [48], a state was proposed
that leads to a very sharp maximum in the distribution of
measured rotation angles, suggesting even exponential scaling
of the phase uncertainty with N .

From a physical perspective, it makes sense that the
optimal state leads to maximum uncertainty in N , as, for
a Heisenberg-uncertainty limited state, this corresponds to
minimal uncertainty in θ . Since there is no entirely satisfac-
tory definition of a phase operator, “Heisenberg-uncertainty
limited” means here a state that saturates the Cramér-Rao
bound. Indeed, inequality (2) has been understood from the
beginning as a generalization of Heisenberg’s uncertainty rela-
tion [7]. Equation (6) shows that the relevant “complementary
observable” is the generator J of Eq. (5). Furthermore, for
the one-mode states considered here, the fluctuations of J

are given by the fluctuations of N . Therefore, the optimal
one-mode state must be indeed the state that maximizes
the photon-number fluctuations in that mode. The single
mode “ON” state (|0〉 + |N〉)/√N was also identified as the
optimal state for obtaining the best possible sensitivity of mass
measurements with nanomechanical harmonic oscillators [56].
It has a Wigner function with N lobes in the azimuthal
direction. A practical issue that might arise when using an
ON state in an interferometer might be the lack of an intrinsic
phase reference, which in the case of a NOON state is
conveniently supplied by the second part, the “NO” state. This
is particularly challenging at optical frequencies, whereas at
lower frequencies stable references are available.

Let us now discuss again the possible realization of a state
of the form (33). In the case of ultracold trapped atoms, the
additional constraint of number superselection rules seems
to exclude the possibility of superposing the vacuum state
|00〉 with |K,0〉; however, it was argued that the use of BEC
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reference states coupled to the system of interest offers a way
of making the entanglement of modes a concrete available
resource [33,34,57–59].

With photons, coherent superpositions of Fock states have
been produced for small numbers of photons; for recent circuit
QED experiments, see, e.g., [60]. Nevertheless, decoherence
becomes more and more rapid with increasing photon num-
bers, and since photons are cheap, it is unlikely that a state
of the form (33) will ever be competitive with a simple
coherent state where the photon number can be increased to
almost arbitrary levels by just increasing laser power—unless
particular constraints for very low-intensity light come into
play, e.g., for living biological samples that one may want
to study almost in the dark [61]. In terms of spins or qubits,
since (33) is a superposition of states with different particle
numbers, the particle-number conservation superselection rule
again precludes the creation of the state. A fully symmetrized
state of K spins does not help either, since then j = K/2 is
fixed by the maximum possible Jz value.

Moreover, whereas we have seen that for a single BS one
can easily create a spin state that exactly reproduces the Fisher
information for a symmetric state of two-mode bosons, there
is no obvious way of doing so for the MZ, as the term N̂ in Jα

does not arise in a physical realization of the MZ consisting of
single-particle gates acting on spins or qubits. For a state with a
fixed number of bosons, this does not matter, as N̂ simply gives
an irrelevant total phase that we do not have to reproduce with
the spins. But for the superposition (27), N̂ varies from one
component to the other and makes an important contribution to
the Fisher information. In fact, without this term, the relevant
Fisher information is simply F [|ψ〉,Jx] = N , and the SQL
cannot be surpassed.

Can one nevertheless find a spin state that resembles (27)
and reproduces the Fisher information in (30)? For large
enough N , when we can neglect linear terms in N compared

to N
2
, this is indeed possible, as we shall show now—at least

for bosonic states in which only even numbers of bosons are
superposed. First, observe that for K spins, the maximum
value of any spin component is given by K/2, reached in
the irreducible representation (irrep) that is fully symmetric
under permutation of particles. It appears therefore natural
to seek a superposition of different irreps (corresponding to
different maximum values of Jz), if we want to mimic states
with fluctuating boson numbers. This implies immediately,
however, that such a state will not be fully symmetric under
particle exchange, contrary to the two-mode boson state.
Furthermore, observe that adding one boson to a single mode
of a two-mode boson state changes the maximum value of
Jz as defined by (18) by 1/2, whereas the Jz for a given
number of spins can only change in steps of 1. There are
therefore twice as many components in (27) compared to a
superposition ˜|ψ〉 = ∑K/2

j=0 bj |j,j 〉 (in |j,m〉 notation). In or-
der to compare the two situations on equal footing, one should
therefore restrict (27) to states with components that contain
only even numbers of bosons, ˜|ψ〉 = ∑K

k=0,2,... ck|k〉|0〉 ≡∑K/2
m=0,1,... bm|2m〉|0〉. Once this restriction is made, we see

that in (30), the first two terms are exactly the fluctuations of
angular-momentum component Jz in a state of form ˜|ψ〉. In
order to get the same Fisher information for Jx , one should

therefore switch bases and consider |j,m〉 as an eigenbasis
of Jx rather than Jz. In order to keep notations simple, we
prefer to keep |j,m〉 as an eigenbasis of Jz and calculate
F [|ψ̃〉,Jz/2] instead, with the obvious result F [|ψ̃〉,Jz/2] =∑K/2

m=0 |bm|2m2 − (
∑K/2

m=0 |bm|2m)2. Comparing with (30), for
α = π/4 we find that the results agree for large N , when the
last term in (30) can be neglected compared to the quadratic
terms. Note that we have calculated the Fisher information
for Jz/2 instead of Jz for being able to compare to N̂/2. Of
course, one could have reproduced the same Fisher information
with a superposition in the same irrep with Jz = K/2, but the
point here was to mimic an observable that corresponds to N̂ ,
different from but commuting with Jz.

The optimal state (33) with N = K/2 corresponds to the
state of K spins,

|ψ̃〉 = (|j = 0,m = 0〉 + |j = K/2,m = K/2〉) /
√

2. (35)

The first component is a singlet state, thus not symmetric
under particle exchange, preventing the whole state from being
symmetric.

In summary, the additional term N̂/2 in the Schwinger
representation of the MZ prevents an exact reproduction
of the bosonic MZ with symmetric spin states once one
considers generic superpositions that do not conserve the total
boson number. When giving up full permutational symmetry,
a corresponding state with asymptotically the same Fisher
information can be constructed with spins and a corresponding
spin MZ. It is entangled already before the first BS, but has the
advantage of being realizable with a fixed number of spins.

C. Optimal state

It has meanwhile become generally accepted that the
so-called NOON state [62] is the optimal state for phase
estimation in a MZ with a given maximum photon number
if decoherence is neglected. In Ref. [63], numerical and some
analytical results were shown as evidence for this statement,
based on the classical Fisher information and photon counting
measurements at the two output ports of the MZ. Here we
give a simple demonstration using the quantum Cramér-Rao
bound that the NOON state in the absence of losses and
dephasing is optimal for a balanced MZ interferometer no
matter what measurement is performed in the end. We do
so mostly for completeness and for discussing once more
the physical realizability and the role of entanglement in the
three different settings, as meanwhile it has become clear that
NOON states are not very useful in practice. The slightest
chance of photon loss leads, in the limit of large N , back to
the standard quantum limit [64–66].

We shall consider Eq. (31) and introduce a new class of
orthogonal states adapted to the Schwinger representation:
these are the pseudoangular momentum states |jm〉�, � =
x,y,z, that form the eigenbasis of Jl , such that

J�|j,m〉� = m|j,m〉�, J2|j,m〉� = j (j + 1)|j,m〉�. (36)

One easily shows that in the Schwinger representation, J2 =
(N̂/2)(N̂/2 + 1), which implies that the usual pseudo-angular-
momentum states |jm〉� are also eigenstates of N̂ , N̂ |jm〉� =
2j |jm〉�. Furthermore, if � = z, using the expression of Jz in
Eq. (18), the Fock states |k,N − k〉 can be recast as common
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eigenstates |jm〉z of J2 and Jz with

j = N

2
, − j � m = k − N

2
� j. (37)

Consider now first a state |ψ〉 with fixed j . It is useful
to write |ψ〉 in the Jx eigenbasis, |ψ〉 = ∑j

m=−j cm|jm〉x ,

with Jx |jm〉x = m|jm〉x . There are no fluctuations from N̂/2
in J , and from Eq. (31) we have thus 
2

ψJ = 〈J 2
x 〉 − 〈Jx〉2.

Inserting the expansion of |ψ〉 in the Jx eigenbasis, we are led
to


2
ψJ =

j∑
m=−j

pmm2 −
⎛
⎝ j∑

m=−j

pmm

⎞
⎠

2

, (38)

with pm = |cm|2.
Let 
π denote the right-hand side of Eq. (38) depending

on the distribution π = {pm}jm=−j ; because of the apparent

symmetry of the expression, the distribution π ′ = {p−m}jm=−j

obtained by exchanging pm with p−m leads to 
π ′ = 
π .
Let us then consider the symmetrized distribution πsym =
{pm+p−m

2 }jm=−j ; convexity yields⎛
⎝ j∑

m=−j

pm + p−m

2
m

⎞
⎠

2

� 1

2

⎛
⎝ j∑

m=−j

pmm

⎞
⎠

2

+ 1

2

⎛
⎝ j∑

m=−j

p−mm

⎞
⎠

2

,

therefore 
πsym � 
π , i.e., a generic distribution π cannot
provide a 
π larger than the 
πsym obtained by symmetrizing
it. The maximum 
π must then be attained at distributions with
the property that pm = p−m; this means maximizing 
2

ψJ =
2
∑j

m=1 pmm2 under the constraints 0 � pm � 1/2 for all m

and
∑j

m=−j pm = 1. Since 〈ψ |J 2
x |ψ〉 � j 2, for fixed j , the

maximum of the variance is attained at pj = 1/2 = p−j .
Next, consider a general state with at most jmax excitations,

|ψ〉 =
jmax∑
j=0

m∑
j=−m

cjm|jm〉x. (39)

Since both N̂ and Jx conserve j , we get

〈J 〉 =
∑

j

∑
m,n

c∗
jncjm x〈jn|J |jm〉x, (40)

and similarly for J 2. It is useful to introduce the notation
〈X〉j = j 〈ψ |X|ψ〉j , where |ψ〉j is the wave function in
the j sector, that is, |ψ〉j = ∑

m cjm|jm〉x/√pj , with pj =∑
m |cjm|2 assuring the correct normalization. This gives


2
ψJ =

∑
j

pj 〈J 2〉j −
⎛
⎝∑

j

pj 〈J 〉j
⎞
⎠

2

=
∑

j

pj 〈(J − 〈J 〉)2〉j . (41)

Since max{cjm}〈(J − 〈J 〉)2〉j = j 2 grows monotonically with
j , we obtain the maximum of 
2

ψJ over all cjm by choosing

pjmax = 1 (and, correspondingly, all other pj = 0). Thus, the
state that maximizes the quantum Fisher information is

|ψ〉 = 1√
2

(|jmaxjmax〉x + eiχ |jmax − jmax〉x), (42)

where χ is an arbitrary phase.
Since we have derived the state in the |j,m〉l representation

and since the number of particles is fixed, it is clear that it can
be created at least in principle from N qubits or spins, where
it corresponds to a superposition of all spins up and all spins
down. This state, commonly called the Greenberger-Horne-
Zeilinger (GHZ) state in quantum information theory [67], is
clearly entangled. In order to give a physical interpretation
to such states in terms of bosons, let us consider the
Bogoliubov transformation (14) to new modes described by
creation (annihilation) operators c , d (c†, d†). With reference
to the new modes, the pseudo-angular-momentum operator Jx

becomes

Jx = c†c − d†d

2
. (43)

In terms of occupation number states of these modes, it follows
that, as expected, the state (42) has the form of a NOON state;
see (37), namely, a superposition of all bosons in mode c and
all bosons in mode d:

|ψ〉 = (c†)2jmax + eiχ (d†)2jmax

√
2

|0〉. (44)

In addition to photons, the above analysis also applies to
interferometric setups based on ultracold-atom gases trapped
by double-well potentials: the modes a, b describe atoms
confined in the left and right well, whereas the modes c, d are
related to the first two tunneling split single-particle energy
eigenstates (in the limit of high barrier). Clearly, the NOON
state of the photons presents two-mode entanglement. The
NOON state of cold bosonic atoms is (A,B) entangled.

V. CONCLUSIONS

We have shown that the “trivial” entanglement that comes
for free with identical bosons is useful for precision measure-
ments. This is most clearly seen for the task of measuring the
transparency of a single beam splitter, where a two-mode Fock
state can enable one to beat the standard quantum limit (SQL).
We have discussed different states with respect to the presence
or absence of entanglement and their physical realizability in
three different physical setups, known to implement a beam
splitter or Mach-Zehnder interferometer: (1) N spins or qubits
acted upon by local unitary operations and state-dependent
phase shift, (2) two photonic modes containing N photons,
and (3) N massive bosons. Depending on these realizations,
entanglement has a different meaning, and a straightforward
conclusion about the possibility for beating the SQL based
on the entanglement of N distinguishable particles [5] is
only possible in the first setup. For identical bosons, we have
made use of an extended concept of entanglement based on
operator algebras, and its converse, (A,B) separability. In
this framework, entanglement vanishes for the trivial state
entanglement that is solely due to symmetrization. In the case
of fixed boson number N , the two-mode Fock states |k,N − k〉
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with k bosons in mode a and N − k bosons in mode b are (A,B)
separable, as there are no correlations between observables
of the first and the second mode. Nevertheless, except when
k = 0 or k = N (the single-mode case), these states can
achieve squared sensitivities scaling faster than 1/N (i.e.,
beat the SQL) if subjected to beam-splitting transformations
generated by pseudo-angular-momentum operators like Jx =
(a† b + a b†)/2 that are nonlocal with respect to the given
modes. If one wants to obtain the same result in the first
scenario of N spins or qubits, one has to explicitly entangle
all of them. Superpositions of Fock states can beat the
shot-noise limit even for single-mode states. An ON state
in one mode, i.e., a superposition of 0 and N bosons in
one mode, leads to a scaling of the squared sensitivity of a

Mach-Zehnder interferometer as ∝1/N
2
, which corresponds

to the Heisenberg limit. The latter scaling is also obtained, at
least in principle, under ideal unitary evolution for the NOON
state. Using the quantum Fisher information we showed that
the NOON state is—in such a highly idealized situation—the
optimal two-mode state, in the sense that it saturates the
quantum Cramér-Rao bound for pure states with the same
maximum number of excitations fed into a Mach-Zehnder
interferometer.
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and M. Riedel, Nature (London) 464, 1170 (2010).
[11] F. Benatti, R. Floreanini, and U. Marzolino, Ann. Phys. 325, 924

(2010).
[12] F. Benatti, R. Floreanini, and U. Marzolino, J. Phys. B 44, 924

(2011).
[13] A. Fisher, Proc. Cambr. Soc. 22, 700 (1925).
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