
PHYSICAL REVIEW A 87, 012339 (2013)

High-dimensional quantum state transfer through a quantum spin chain

Wei Qin,1,2 Chuan Wang,3 and Gui Lu Long1,2,*

1State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, China
2Tsinghua National Laboratory for Information Science and Technology, Tsinghua University, Beijing 100084, China

3School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China
(Received 15 December 2012; published 31 January 2013)

In this paper, we investigate a high-dimensional quantum state transfer protocol. An arbitrary unknown
high-dimensional state can be transferred with high fidelity between two remote registers through an XX

coupling spin chain of arbitrary length. The evolution of the state transfer is determined by the natural dynamics
of the chain without external modulation and coupling strength engineering. As a consequence, entanglement
distribution with a high efficiency can be achieved. Also the strong field and high spin quantum number can
partly counteract the effect of finite temperature to ensure the high fidelity of the protocol when the quantum data
bus is in the thermal equilibrium state under an external magnetic field.
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I. INTRODUCTION

Quantum state transfer between two distant parties is an
important task for quantum information processing (QIP). The
high-fidelity state transfer relies on physical systems which can
serve as quantum data buses to connect remote parties. There
are many experimental realizations of the data buses, such as
phonons in ion traps [1,2], electrons in semiconductors [3],
flux qubits in superconductors [4–6], and photons in optics
[7–10]. Recently, the solid-state spin chain system has become
one of the most promising candidates for QIP due to its
long decoherence time and ability to manipulate and transfer
[11–17]. The dynamics of such a spin chain is determined
by the evolution under a suitable Hamiltonian, e.g., the
Heisenberg or XY Hamiltonian.

The first quantum state transfer (QST) protocol was
proposed by Bose in which the spin state can be efficiently
transferred through a spin chain via natural evolution [18].
In the proposed protocol, two qubits are located at the two
ends of the spin chain and the state of the encoded qubit at
one end will be transferred to the other end after a specific
amount of time without any operation on the chain. In the past
decades, there were many QIP protocols based on the spin
chain systems, especially the perfect quantum state transfer
(PQST) [19–28]. Later, Christandl et al. [29,30] generalized
the PQST of the spin chain to the spin network with arbitrary
length based on the Cartesian product method of graph theory.
Yao et al. [31,32] proposed a high-fidelity QST through an
infinite temperature (unpolarized) quantum data bus.

Entanglement and quantum parallelism in quantum com-
putation provide us with more powers that are superior to
conventional classical methods [33]. Moreover, it is difficult
to raise the number of qubits coupled experimentally [34]
and the high-dimensional systems can be coupled to a given
dimensionality of the Hilbert space more efficiently using
fewer systems than the two-dimensional systems. Hence,
the high-dimensional systems can be employed as qudits to
encode quantum information instead of qubits. The extensions
of various protocols of quantum computation and commu-
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nication from two-dimensional systems to high-dimensional
systems have been proposed, such as quantum cloning [35,36],
quantum cryptography [37], quantum teleportation [38,39],
quantum key distribution [40], and even implemented in
an experiment [41]. Additionally, the application of high-
dimensional systems will enhance and deepen our under-
standing of quantum computation and communication. The
high-dimensional PQST through the spin chain has been
shown to be possible when the distances between the two end
qudits are 1, 2, and 4 [42] and the three-dimensional case was
realized when the distance is 3 under the bilinear-biquadratic
Hamiltonian [43].

In this paper, we propose an efficient protocol to achieve
an arbitrary unknown high-dimensional QST through an XX

coupling spin chain. The high S spins are used to act as a
quantum data bus and quantum registers. The low-lying level
states of registers are used to encode quantum information as
qudits. The data bus is initialized to a ferromagnetic order with
the spins aligned in a parallel way. The states of the spin chain
are mapped onto a set of bosons after the Holstein-Primakoff
transformation. Under the limit that the dimension of the sent
state is much smaller than the spin quantum number, the spin-
wave interaction can be neglected to express the Hamiltonian
of the chain in terms of free bosons and diagonalize the
Hamiltonian of the data bus after an orthogonal transformation.
To ensure that the register-bus coupling strength is much
weaker than that between the data bus spins, the two registers
are resonantly coupled to one of the collective eigenmodes of
the data bus and the other off-resonant coupling can be ignored.
Then a swap gate between the two registers can be achieved
at the optimal time. The proposed protocol requires neither
the external modulation of the Hamiltonian evolution nor spin
chain coupling engineering. Consequently, an entanglement
distribution with high efficiency can be achieved by using this
scheme. We numerically simulate the average fidelity of the
data bus in the thermal equilibrium state under an external
magnetic field and find that the average fidelity decreases with
temperature and increases with the field and spin quantum
number.

The paper is organized as follows. In Sec. II, we give the
XX model Hamiltonian and treat it. In Sec. III, we show the
high-dimensional QST with high fidelity and entanglement
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FIG. 1. (Color online) (a) Two distant quantum registers are
intermediated by a quantum data bus with the coupling strength g,
which is much weaker than that between the data bus spins J . By using
the low-lying level states of the sender, ranging from the |0〉 state to
the |d − 1〉 state, to encode as a qudit, we achieve a high-dimensional
QST with high fidelity. (b) Entanglement distribution through a spin
chain. Sites b and c are coupled to the quantum data bus, while site
a not. a and b are prepared in a maximally entangled state. Under
the natural evolution, a and c gain entanglement from the maximally
entangled state with high efficiency at the optimal time.

distribution with high efficiency. In Sec. IV, the case where
the quantum data bus is in the thermal equilibrium state is
investigated. The last section is our summary.

II. MODEL AND CALCULATION

A spin chain consists of N sites, where each site comprises a
single S spin in the state |m〉 (m = S,S − 1, . . . ,−S + 1,−S).
The spin chain is used to act as a quantum data bus. The
data bus is placed between two additional spins, which are
considered as two quantum registers, denoted as the sender s

and the receiver r . The Hamiltonian of the system consisting
of spins coupled to their nearest neighbors on a finite lattice
of site N + 2 as shown in Fig. 1(a) includes two terms (we
have set h̄ = 1 in the present paper)

H = HXX + HM, (1)

where HXX = HB + HI . HB is the XX coupling of the data
bus as

HB = −J
∑
(i,j )

(S+
i S−

j + S−
i S+

j ), (2)

where J > 0 is the coupling strength between the data
bus spins, (i,j ) means that only the nearest neighbor (NN)
coupling is considered. S±

i = Sx
i ± iS

y

i and Sν
i (ν = x,y,z)

is the ν component of the spin operator Si at the site i. The
interaction Hamiltonian between the two registers and data
bus has the form

HI = −g(S+
s S−

1 + S+
r S−

N + H.c.), (3)

where g > 0 is the register-bus coupling strength and H.c.
denotes the complex conjugate. HM is the Zeeman term under
an external magnetic field h given by

HM = −h

(
Sz

s + Sz
r +

N∑
i=1

Sz
i

)
. (4)

After the Holstein-Primakoff (HP) transformation [44]

S+
i =

√
2S − a

†
i aiai,

S−
i = a

†
i

√
2S − a

†
i ai, (5)

Sz
i = S − a

†
i ai,

with [ai,a
†
j ] = δij and [a†

i ,a
†
j ] = [ai,aj ] = 0, the two

Hamiltonians HXX and HM are expressed in terms of the
bosonic operators.

Initially, the data bus and receiver has a simple ferromag-
netic order with the spins aligning in a parallel way denoted
by |0〉⊗N

bus |0〉r with |0〉⊗N
bus = |0〉1, . . . ,|0〉N . The low-lying level

states of the sender, ranging from the |0〉 state to the |d − 1〉
state, are employed to encode information as a qudit. The total
boson number

Ntot = Ns + Nr +
N∑

i=1

Ni, (6)

is conserved. The dimension of the Hilbert space H associated
with the spin-S chain of length N + 2 is (2S + 1)N+2.
The dimension of the state that should be sent is d and
the conservation law ensures that the d-dimensional state
transfer dynamics is determined by the evolution in the
dN+2-dimensional subspace S spanned by the basis vectors
|nsn1, . . . ,nNnr〉 (ni = 0, . . . ,d − 1). We assume that the
dimension d of the sent state is much smaller than 2S, as
d � 2S, which gives 〈a†

i ai〉 � 2S. The HP transformation is
simplified to [45]

S+
i = ai

√
2S, S−

i = a
†
i

√
2S. (7)

Substituting Eq. (7) into Eqs. (2)–(4), we have

HB = −2SJ
∑
(i,j )

(a†
i aj + aia

†
j ), (8)

HI = −2Sg(a†
s a1 + a†

r aN + H.c.) (9)

and

HM = −(N + 2)hS + h

(
a†

s as + a†
r ar +

N∑
i=1

a
†
i ai

)
. (10)

Here the spin-wave interaction of the system is neglected and
the three Hamiltonians are reexpressed in terms of free bosons.

As g/J � 1, HB works as a collective Hamiltonian and
HI works as a perturbation one, the diagonalization of
the Hamiltonian HB of Eq. (8) occurs after the following
orthogonal transformation [31,32,46]

a
†
i = 1

A

N∑
k=1

sin
ikπ

N + 1
b
†
k, (11)
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with k = 1, . . . ,N and A =
√

N+1
2 , the Hamiltonian HB

becomes

HB =
N∑

k=1

εkb
†
kbk, (12)

where εk = −4SJ cos( kπ
N+1 ). Combining Eqs. (9) and (11), it

gives that

HI =
N∑

k=1

tk[asb
†
k + (−1)k−1arb

†
k + H.c.] (13)

with tk = − 2Sg

A
sin kπ

N+1 .

III. QUANTUM STATE TRANSFER AND
ENTANGLEMENT DISTRIBUTION

A. Quantum state transfer

In this section, the high-dimensional QST with high fidelity
through a spin chain in the absence of an external magnetic
field is proposed. If the spin number in the data bus is
odd, there is a zero-energy bosonic eigenmode corresponding
to k = κ ≡ (N + 1)/2. By maintaining g/J � 1 to ensure
tκ � |εκ − εκ±1|, the off-resonant coupling to other bosonic
eigenmodes can be neglected and the two end registers
are resonantly coupled to the κth eigenmode [31,32] with
tκ = −2Sg/A. The state transfer dynamics is driven by the
evolution under the effective Hamiltonian

Heff = tκ [a†
s bκ + (−1)κ−1a†

r bκ + H.c.]. (14)

In the Heisenberg picture, the evolution of the operator is
determined by O(τ ) = U †(τ )O(0)U (τ ), where U (τ ) = e−iHτ

is the evolution operator. The operators A and B obey the
rule that e−αABeαA = B − α[A,B] + α2

2! [A,[A,B]] + · · · . By
applying the relations we get

U
†
effa

†
sUeff = a†

s + 1

2
[a†

s + (−1)κ−1a†
r ]

[−1 + cos(
√

2tκτ )] + ib†κ
sin(

√
2tκτ )√
2

. (15)

At the optimal time τ = τ0 ≡ π/
√

2tκ , we have

U
†
effa

†
sUeff|τ0 = (−1)κa†

r . (16)

Similarly,

U
†
effa

†
rUeff|τ0 = (−1)κa†

s . (17)

Equations (16) and (17) show that the creation operator
referring to the sender (receiver) at τ = 0 becomes that
referring to the receiver (sender) at the optimal time τ0.
Actually, it is a swap gate between the two registers with an
additional phase (−1)κ . The additional phase is independent of
the sent state and is only determined by the length of the data
bus. Thus the receiver will obtain an arbitrary unknown state

that is sent at initial time after a phase gate operation given by

P d
N+1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 · · · 0

0 (−1)κ 0 · · · 0

0 0 (−1)2κ · · · 0
...

...
...

. . .
...

0 0 0 · · · (−1)(d−1)κ

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

d

N+1

. (18)

For simplicity, we take the four-dimensional state transfer
as an example. The sent initial state is |ϕ〉s = ∑3

μ=0 αμ|μ〉 =∑3
μ=0

αμ√
μ!

(a†
s )μ|0〉 and

∑3
μ=0 |αμ|2 = 1. The initial state of

the whole spin chain, including the sender, receiver, and data
bus, will be

|ψ(0)〉 =
⎡
⎣ 3∑

μ=0

αμ√
μ!

(a†
s )μ|0〉

⎤
⎦

s

|0〉⊗N
bus |0〉r . (19)

At the optimal time τ0, the creation operator referring to the
sender becomes that referring to the receiver, we obtain the
final state

|ψ(τ0)〉 = |0〉s |0〉⊗N
bus

⎡
⎣ 3∑

μ=0

αμ√
μ!

(−1)μκ (a†
r )μ|0〉

⎤
⎦

r

= |0〉s |0〉⊗N
bus

⎡
⎣ 3∑

μ=0

(−1)μκαμ|μ〉
⎤
⎦

r

. (20)

After a phase-gate operation

P 4
N+1 =

⎛
⎜⎜⎜⎝

1 0 0 0

0 (−1)κ 0 0

0 0 (−1)2κ 0

0 0 0 (−1)3κ

⎞
⎟⎟⎟⎠

4

N+1

, (21)

we have P 4
N+1|ψ(τ )〉 = |0〉s |0〉bus|ϕ〉r .

In the two-dimensional Hilbert space, the set of the pure
states forms a complex projective space CP 1, one can use the
two-dimensional Bloch sphere to measure these pure states
since, in this case, U(2)/U(1) ∼ SO(3)/SO(2) ∼ S2. The set
of the pure states of a d-dimensional Hilbert space constructs
a complex projective space CP d−1, where the natural uniform
measure exists. To measure a random pure state on this
2(d − 1)-dimensional manifold, a vector of a random unitary
matrix distributed over the invariant (Haar) measure on U (d)
is taken. A d-dimensional normalized pure state |φ〉 can be
measured by the Hurwitz parametrization with d − 1 polar
angles χp and d − 1 azimuthal angles θp as [47]

|φ〉 =
(

cos θd−1, sind−1 cos θd−2e
iχd−1 ,

sin θd−1 sin θd−2 cos θd−3e
iχd−2 , . . . ,

d−1∏
i=1

sin θie
iχ1

)
,

(22)

where 0 � θp � π/2 and 0 � χp < 2π with p = 1,2, . . . ,d −1.
In analogy to the volume element on the two-dimensional
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Bloch sphere, which on the generalized Bloch sphere of
Eq. (22) in the complex space CP d−1, can be written as

dV =
d−1∏
p=1

cos θp(sin θp)2p−1dθpdχp, (23)

the total volume of the 2(d − 1)-dimensional manifold of
the pure states is Vd = πd−1/(d − 1). The average of an
observable O over the whole manifold of the pure states is
〈O〉 = ∫

CP d−1 OdV/Vd .
The sent state is |ϕ〉s = ∑d−1

μ=0 αμ|μ〉 and the initial state of
the entire spin chain is

|ψ(0)〉 =
d−1∑
μ=1

αμ|μ〉s |0〉⊗N
bus |0〉r . (24)

The state at time τ will be

|ψ(τ )〉 =
∑

(nsn1,..., nN nr )

c(nsn1,...,nN nr ,τ )|nsn1, . . . ,nNnr〉 (25)

and

c(nsn1,...,nN nr ,τ ) =
d−1∑
μ=1

αμf
μ

(nsn1,...,nN nr ), (26)

where f
μ

(nsn1,...,nN nr ) = 〈nsn1, . . . ,nNnr |e−iHτ |μ〉s |0〉⊗N
bus |0〉r .

The state of the receiver at τ is denoted by ρr (τ ) since it
is generally a mixed state. It can be obtained by tracing out the
other sites

ρr (τ ) = trr̂ (|ψ(τ )〉〈ψ(τ )|) =
d−1∑

nr ,n′
r=0

β(nrn′
r ,τ )|nr〉〈n′

r | (27)

with

β(nrn′
r ,τ ) =

∑
(n′′

s n′′
1 ,...,n

′′
N )

c(n′′
s n

′′
1 ,...,n

′′
N nr ,τ )c

∗
(n′′

s n
′′
1 ,...,n

′′
N n′

r ,τ ). (28)

The fidelity between the sent initial state |ϕ〉s and the
received final state ρr (τ ) is defined by F (τ ) = s〈ϕ|ρr (τ )|ϕ〉s ,
which turns out to be

F (τ ) =
d−1∑

μ,μ′=0

αμ′α∗
μβ(μμ′,τ ). (29)

The average of the fidelity over the complex projective space
CP d−1 is

〈F (τ )〉 = 1

Vd

∫
CP d−1

F (τ )dV. (30)

Figure 2 shows the numerical results of the average fidelity
at the optimal time τ0. The average fidelity as a function of
g/J is depicted in Fig. 2(a). 〈F (τ0)〉 decreases with either
g/J increasing or spin quantum number S decreasing when
g/J � 1. As g/J → 0, it reaches its maximum value, which
increases with spin quantum number. Note that 〈F (τ0)〉 could
reach high values at some g/J values which are not much
smaller than unity for high spin quantum number. The two
cases where N = 3, d = 3 and N = 3, d = 4 for three g/J

values are depicted in Figs. 2(b) and 2(c), respectively. It is

FIG. 2. (Color online) The average fidelity at the optimal time τ0.
(a) The average fidelity as a function of g/J at N = 3 and d = 3. The
average fidelity as a function of spin quantum number at (b) N = 3,
d = 3 and (c) N = 3, d = 4.

seen that 〈F (τ0)〉 increases with spin quantum number S. As
g/J � 1 and d � 2S, 〈F (τ0)〉 will tend to 1, for example,
〈F (τ0)〉= 0.9987 in the case N =3, d = 3, g/J = 0.1, S = 10,
and 〈F (τ0)〉 = 0.9946 in the case N = 3, d = 4, g/J = 0.1,
and S = 10.

B. Entanglement distribution

Entanglement has been considered as an important resource
in QIP [33]. Entanglement distribution among involved parties
is also required in quantum teleportation [48], quantum dense
coding [49], and quantum key distribution [50]. The proposed
model can also be generalized to complete the entanglement
distribution between two remote parties.

We assume that the sites b and c are coupled to the quantum
data bus, but site a is not as seen in Fig. 1(b). At the initial
time, a and b are prepared in a maximally entangled state

|ϕ〉ab = 1√
d

d−1∑
μ=0

|μ〉a|μ〉b. (31)
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The purpose is to transfer this entanglement by the natural
dynamics of the data bus to achieve a maximally entangled
state between a and c.

The state of the composite system can be described as

|ψ(0)〉 = 1√
d

d−1∑
μ=0

|μ〉a
[

(a†
b)μ√
μ!

|0〉b|0〉⊗N
bus |0〉c

]
. (32)

After evolution, the final state at the time τ0 is

|ψ(τ0)〉 = |0〉b|0〉⊗N
bus

⎡
⎣ 1√

d

d−1∑
μ=0

(−1)κμ|μ〉a|μ〉c
⎤
⎦ . (33)

The maximally entangled state between a and c has been
achieved. The logarithmic negativity [51,52] is used to
measure the entanglement of the state ρ12, which is given
by

L12 ≡ log2

∥∥ρ
T1
12

∥∥. (34)

Here T1 denotes the partial transpose of the density matrix ρ12

with respect to the subsystem 1 as

〈i1,j2|ρT1
12 |k1,l2〉 = 〈k1,j2|ρ12|i1,l2〉. (35)

The trace norm of operator O is ‖O‖≡ tr
√

O†O = 1 +
2| ∑i λi |, λi is the negativity eigenvalue of ρ

T1
12 . For a

pure maximally entangled state of Eq. (31), the logarithmic
negativity is yielded such that Lab = log2d from Eq. (34). The
efficiency of the entanglement distribution [42] is defined by

E = Lac

Lab

, (36)

which is used to measure the entanglement between a and c

gained from the maximally entangled state between a and b

under the spin chain evolution.
Figure 3 demonstrates the efficiency of entanglement

transition through a data bus of length N = 3 as a function of
the spin quantum number at the optimal time τ0. It is obvious
that the efficiency increases with spin quantum number and
approaches unity when the spin quantum number is high
enough. For example, E(τ0) = 0.9984 at d = 3, S = 10, and
E(τ0) = 0.9948 at d = 4, S = 10.

FIG. 3. (Color online) The efficiency of entanglement transition
through a data bus of length N = 3 when g/J = 0.1 at the optimal
time τ0.

IV. QUANTUM DATA BUS IN THE THERMAL
EQUILIBRIUM STATE

In the following, we will investigate the effects of tem-
perature on the quantum data bus which is in the thermal
equilibrium state in the presence of an external magnetic
field h.

In the case where h = 0, the evolution operator can be
described as

e−iHτ = e−iHXXτ e−iHMτ (37)

since [HXX,HM ] = 0. The final state at the optimal time τ0

under the evolution operator of Eq. (37) starting from the
initial state of Eq. (24) is

|ψ(τ )〉 = |0〉s |0〉⊗N
bus

d−1∑
μ=0

(−1)κμe−ihμτ0αμ|μ〉, (38)

where the overall phase induced by −(N + 2)hS has been
neglected. An additional phase e−ihμτ0 is introduced by the
field. When the quantum data bus is in the thermal equilibrium
state, the density matrix satisfies the Boltzmann distribution as

ρB = 1

Z
e− HB

T = 1

Z

∑
i

e− Ei
T |φi〉〈φi |, (39)

where |φi〉 and Ei are the eigenvectors and eigenvalues of the
data bus, respectively. Z = tr(e−H/T ) is the partial function
and T represents the temperature. The Boltzmann constant kB

has been set to be unity. As h = 0, the state |0〉⊗N
bus with zero

energy is not the ground state of the data bus. As h = 0, a
magnetic field is added into Eq. (12) and it becomes

HB =
N∑

k=1

(εk + h)b†kbk − hNS. (40)

The eigenvalue of the state |0〉⊗N
bus is −hNS. Hence, |0〉⊗N

bus is the
ground state as h � 4SJ cos π

N+1 . At zero temperature the data

bus is in |0〉⊗N
bus with no excited boson, and the data bus spins

are in a ferromagnetic order. With the increase of temperature,
the number of the excited bosons becomes larger.

The initial state of the whole spin chain is

ρ(0) =
d−1∑

μ,μ′=0

αμα∗
μ′ |μ〉s |0〉rρBs〈μ′|r〈0|, (41)

when the data bus is in the thermal equilibrium state. The
state of the reduced density matrix of the receiver at time
τ is ρr (τ ) = trr̂ [e−iHτ ρ(0)eiHτ ]. Figure 4 depicts the average
fidelity as a function of temperature at the optimal time τ0 when
the data bus is in the thermal equilibrium state for several fields.

Figure 4 shows that the average fidelity decreases with
temperature and increases with the field. With the temperature
increasing from zero, the number of the excited bosons
increases in the data bus, which could not ensure the condition
〈a†

i ai〉 � 2S, to lower the average fidelity. On the other hand,
the field depresses the excitation of the bosons to reduce
the effect of temperature and raise the average fidelity. A
feature of Fig. 4 is that all the red curves with S = 5 do
vary not as steeply as the corresponding black ones with
S = 3, which means that the high spin quantum number can
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FIG. 4. (Color online) The average fidelity as a function of
temperature when N = 1, d = 3 in the cases S = 3 and 5 at the
optimal time τ0.

partly counteract the effect of temperature. Therefore, at finite
temperature the strong field and high spin quantum number
can ensure the high fidelity of our protocol.

V. SUMMARY

In this paper, we have demonstrated that an arbitrary
unknown high-dimensional state can be transferred between

two parties at the optimal time with high fidelity by arbitrary
length. Consequently, the entanglement distribution between
two remote parties can be realized with high efficiency. This
protocol does not require external modulation and coupling
engineering. Its a direct application to communicate between
two remote registers in a quantum computer using high-
dimensional systems, which can construct a bigger Hilbert
space to process much more information than the two-
dimensional ones. When the quantum data bus is in the thermal
equilibrium state under an external magnetic field, the average
fidelity decreases with temperature and increases with either
the field or spin quantum number. Thus both the strong field
and high spin quantum number can ensure the high fidelity of
our protocol. This helps the protocol to be able to work in the
thermal environment.
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