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Minimum-error discrimination of qubit states: Methods, solutions, and properties
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We show a geometric formulation for minimum-error discrimination of qubit states that can be applied to
arbitrary sets of qubit states given with arbitrary a priori probabilities. In particular, when qubit states are given
with equal a priori probabilities, we provide a systematic way of finding optimal discrimination and the complete
solution in a closed form. This generally gives a bound to cases when prior probabilities are unequal. Then it is
shown that the guessing probability does not depend on detailed relations among the given states, such as the
angles between them, but on a property that can be assigned by the set of given states itself. This also shows how a
set of quantum states can be modified such that the guessing probability remains the same. Optimal measurements
are also characterized accordingly, and a general method of finding them is provided.
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Discrimination of quantum states is a fundamental process
to extract information encrypted in collected quantum states.
In practical applications, its framework characterizes the
communication capabilities of encoding and decoding mes-
sages via quantum states [1,2]. The process of distinguishing
quantum states is generally a building block when quantum
systems are applied to information processing, in particular for
communication tasks [1]. Its usefulness as a theoretical tool to
investigate quantum information theory has also been shown,
with recent progress in secure communication, randomness
extraction in classical-quantum correlations [3], and semi-
device-independent quantum information tasks [4].

There has been much effort devoted to discrimination of
various sets of quantum states so far (see reviews in Ref. [5] for
theoretical and experimental developments); however, apart
from the general method of two-state discrimination shown
in 1976 [1] or restricted cases where some specific symmetry
exists in given quantum states, e.g., Ref. [6], little is known
in general about optimal discrimination of quantum states; see
also the review in Ref. [7] of progress in this area. For instance,
the next simplest example that comes after the two-state
discrimination is an arbitrary set of three-qubit states, for
which no analytical solution is known yet. When arbitrary
quantum states are given, the general method for optimal
discrimination has been a numerical procedure (e.g., Ref. [8])
which only numerically approximates the exact solution. Apart
from its importance in its own right, the lack of a general
method for state discrimination even in simple instances is,
due to its fundamental importance, potentially a significant
obstacle preventing further investigations in both quantum
information theory and quantum foundations.

In the present work, we provide progress in the long-
standing problem of minimum-error state discrimination, in
particular, for arbitrarily given sets of qubit states. This could
lead to significant improvement in understanding related prob-
lems in quantum information theory; see those in the review
in Ref. [5] or the recent applications of state discrimination as
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in Ref. [4]. We show a geometric formulation of the optimal
discrimination of qubit states by analysis of optimality con-
ditions. This approach is called the complementarity problem
in the context of semidefinite programming. We provide the
guessing probability, i.e., the maximal probability of making
correct guesses, in a closed form for cases where arbitrary
qubit states, among which no symmetry may exist, are given
with equal a priori probabilities. The geometric formulation
also applies to other cases of unequal a priori probabilities,
and we characterize optimal measurements accordingly. From
these results, it is shown that the guessing probability does not
depend on detailed relations among the given states in general
but on a property assigned by the set of given states. This
also shows how a set of states can be modified such that the
modification cannot be recognized in the discrimination task
in terms of the guessing probability.

For the purpose, let us briefly summarize the minimum-
error discrimination in the context of a communication
scenario of two parties Alice and Bob. They have agreed on
N alphabets {x}Nx=1 and states {ρx}Nx=1, as well as a priori
probabilities {qx}Nx=1. Alice’s encoding works by mapping
alphabet x to state ρx , and relating states with a priori
probabilities {qx}Nx=1. This can be seen as Alice’s pressing
button x with probability qx , and then Bob’s guessing among
states {ρx}Nx=1 given with a priori probabilities {qx}Nx=1, which
we write as {qx,ρx}Nx=1.

Bob’s discrimination of quantum states is described by
positive-operator-valued-measure (POVM) elements {Mx �
0}Nx=1 satisfying

∑
x Mx = I (completeness). Let PB|A(x|y)

denote the probability that Bob has a detection event on Mx

that leads to the conclusion that ρx is given, while a state ρy is
provided by Alice’s sending message y. This is computed as
follows: PB|A(x|y) := P (x|y) = tr[Mxρy]. The figure of merit
is the maximal probability that Bob makes a correct guess on
average, and is called the guessing probability,

Pguess = max
{Mx }Nx=1

∑

x

qx tr[Mxρx],
∑

x

Mx = I, (1)

where the maximization runs over all POVM elements. This
naturally introduces the discrimination as an optimization task.
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In fact, the above can be put into the framework of
semidefinite programming [8]. A useful property of this
approach is that a given maximization (minimization) problem
can be alternatively described by its dual, a minimization (max-
imization) problem. The dual problem to the maximization in
Eq. (1) is obtained as follows:

Pguess = min
K

tr[K], K � qxρx, ∀ x = 1, . . . ,N. (2)

In this case, the minimization works to find a single parameter
K which then gives the guessing probability, as in the approach
in Ref. [9].

For convenience, we call the problem in Eq. (1) the primal,
with respect to the dual in Eq. (2). Note that solutions of the two
problems do not generally coincide with each other. The fact
that, in this case, the guessing probability can be obtained from
both primal and dual optimizations follows from the property
called strong duality. This holds when both primal and dual
problems have a nonempty set of parameters satisfying given
constraints; these are referred to as feasible problems. Once
both problems are feasible, strong duality holds, and then it
follows that the solutions of both problems coincide with each
other.

Apart from solving those optimization problems, there is
another approach called a complementarity problem. This
collects optimality conditions that parameters of both primal
and dual problems should satisfy, in order to give optimal
solutions. Then, any set of parameters satisfying optimality
conditions immediately provides optimal solutions of primal
and dual problems. As more parameters are taken into account,
the approach is not considered to be easier; however, the
advantage lies in its usefulness for finding general structures
in a given problem.

In the semidefinite programming formulation, the optimal-
ity conditions can be summarized by the so-called Karus-
Khun-Tucker (KKT) conditions. For quantum-state discrim-
ination, they are given, together with the two constraints in
Eqs. (1) and (2), by

K = qxρx + rxσx (3)

and

rx tr[σxMx] = 0, ∀ x = 1, . . . ,N (4)

for a set of complementary states {σx}Nx=1 with non-negative
coefficients {rx � 0}Nx=1 and POVM elements {Mx}Nx=1. Once
states {rx,σx}Nx=1 and measurements {Mx}Nx=1 satisfying these
conditions are found, they are automatically optimal to give
solutions in both primal and dual problems. From the fact that
strong duality holds in this case, it is clear that the guessing
probability is obtained from either of the problems. Note that
the first condition in Eq. (3) is called the Lagrangian stability,
and shows that there exists a single operator K that can be
decomposed in N different ways. The second one in Eq. (4) is
the complementary slackness which shows the orthogonality
relation between primal and dual parameters.

The particular usefulness of the KKT conditions here is
that, as shown above, they separate the guessing probability
[i.e., tr[K] in Eq. (2)] from the optimal measurements: a
single operator K alone characterizes the guessing probability,
and the optimal measurements themselves are independently

expressed in Eq. (4). The operator K can be explained as hav-
ing N decompositions with qxρx and rxσx for x = 1, . . . ,N .
Optimal measurements are described as POVM elements
orthogonal to states {σx}Nx=1 for each x. The discrimination
problem is then equivalent to finding states {σx}Nx=1 that fulfill
these conditions.

We now show a geometric formulation to find the comple-
mentary states. Let us first define the polytope of the given
states {qx,ρx}Nx=1, denoted as P({qx,ρx}Nx=1), in the underlying
state space, in which each vertex corresponds to qxρx . It is
useful to rewrite the condition in Eq. (3) as

qxρx − qyρy = ryσy − rxσx, ∀ x,y. (5)

This shows that the two polytopes P({qx,ρx}Nx=1) of the given
states and P({rx,σx}Nx=1) of the complementary states, which
we are searching for, are actually congruent. Thus, the structure
of the complementary states is already determined from the
given states {qx,ρx}Nx=1. Once the state geometry is clear (see,
e.g., [10]), the formulation can be applied.

For qubit states, their geometry can generally be described
on the Bloch sphere in which the distance measure is given
by the Hilbert-Schmidt norm. In what follows, we restrict
our consideration to qubit states and apply the geometric
formulation to discrimination among them. For a qubit state
ρx , we write the Bloch vector as �v(ρx), with which ρx =
[I + �v(ρx) · �σ ]/2, where �σ = (X,Y,Z) are the Pauli matrices
X, Y , and Z.

We first characterize the general form of optimal measure-
ments for qubit-state discrimination, from the KKT condition
in Eq. (4). Suppose that rx > 0; otherwise, the measurement
can be arbitrarily chosen. To fulfill the condition, it is not
difficult to see that optimal POVM elements are either of
rank 1 [11] or the null operator. If σx = |ψx〉〈ψx | then Mx =
mx |ψ⊥

x 〉〈ψ⊥
x | with coefficients mx , where it holds that �v(ψx) =

−�v(ψ⊥
x ). If a state σx is not of rank 1, the only possibility to

fulfill the KKT condition in Eq. (4) is that the measurement
corresponds to the null operator, i.e., Mx = 0. In fact, optimal
discrimination sometimes consists of a strategy that makes
a guess without actual measurement [12]. Note, however,
that, as measurements are done in most cases (otherwise,
the completeness of POVM elements in the following is
not fulfilled), one does not have to immediately assume that
{σx}Nx=1 are not of rank 1 from the beginning. Then, for cases
where measurements are done, corresponding complementary
states must be of rank 1—otherwise, the orthogonality in Eq.
(4) cannot be fulfilled.

Once states {σx}Nx=1 are found, optimal measurements are
automatically obtained. What remains is that the POVM
elements fulfill the completeness condition

∑
x Mx = I , or

equivalently in terms of Bloch vectors
∑

x mxv(ψ⊥
x ) = 0,

while
∑

x mx = 2 with mx � 0, ∀ x. This refers to finding
a convex combination {mx}Nx=1 of Bloch vectors {�v(ψ⊥

x )}Nx=1
such that their result is zero, i.e., the origin of the Bloch sphere.
This is equivalent to the condition that the convex hull of
Bloch vectors {�v(ψx)}Nx=1 of complementary states contain
the origin of the Bloch sphere. As we will show later, this
is always fulfilled by complementary states. To summarize,
once complementary states are found, the optimal POVMs
follow automatically as their Bloch vectors are determined
and completeness is also straightforward.
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We can thus proceed to construction of complementary
states in the Bloch sphere for qubit states {qx,ρx}Nx=1. Let us
identify the polytope P({qx,ρx}Nx=1) in the state space as the
convex hull of their Bloch vectors {qx,�v(ρx)}Nx=1, so that each
vertex qxρx corresponds to the Bloch vector qx �v(ρx). Then, the
task is to find the polytope P({rx,σx}Nx=1) of complementary
states that is congruent to P({qx,ρx}Nx=1) in the Bloch sphere.
Moreover, as we show, most of the complementary states
{σx}Nx=1 are of rank 1 and themselves lie at the border; thus,
only their polytopeP({σx}Nx=1) is maximal in the Bloch sphere.
Using these properties of complementary states, a geometric
approach can generally be employed.

All these results already give the guessing probability in a
simple way for cases when the qubit states are given with equal
a priori probabilities, that is, when qx = 1/N for all x. In this
case, it is not difficult to see the general form of the guessing
probability. Substituting qx = 1/N in the KKT condition in
Eq. (3), the result is that the parameters {rx}Nx=1 are equal. We
put r := rx for all x. This holds true for an arbitrary set of
quantum states in general. Then the guessing probability is
written as

Pguess = tr[K] = 1

N
+ r with r =

∥∥ 1
N

ρx − 1
N

ρy

∥∥
‖σx − σy‖ , (6)

where the equation for the parameter r is from the relation in
Eq. (5), and the distance measure can be taken as the Hilbert-
Schmidt norm DHS (as is natural on the Bloch sphere) or the
trace norm DT . Both measures give the same value of r since
they are related only by a constant: DHS = √

2DT for qubit
states. This means that the parameter r can be obtained by
either of the distance measures when referring to the geometry
on the Bloch sphere, since the parameter is only a ratio; see
Eq. (6).

The parameter r corresponds to the ratio between the two
polytopes P({1/N,ρx}Nx=1) of the given states and P({σx}Nx=1)
of the complementary states, as shown in Eq. (6). We recall
that most of {σ }Nx=1 are pure (i.e., of rank 1), lying at the
border of the Bloch sphere. This implies that the polytope
P({σx}Nx=1) of complementary states is clearly maximal in
the Bloch sphere. In this way, the polytope P({σx}Nx=1)
always contains the origin of the sphere, from which optimal
measurements can be constructed. Note also that, from this,
the completeness condition of the measurement is fulfilled;
see Eq. (4). Finally, the two polytopes P({1/N,ρx}Nx=1) and
P({σx}Nx=1) are, from the relation in Eq. (5), related by
the ratio r , since the two polytopes P({1/N,ρx}Nx=1) and
P({1/N,σx}Nx=1) are congruent.

We summarize the method of finding optimal discrimina-
tion in the following.

(1) Construct a polytope from given states as the convex
hull of {1/N,v(ρx)}Nx=1 in the Bloch sphere, where the vertices
correspond to �v(ρx)/N .

(2) Expand the polytope such that it keeps being similar to
the original one until it is maximal within the Bloch sphere
(as most of {σx}Nx=1 are pure), and then compute the ratio r

of the resulting polytope with respect to the original one. The
guessing probability is thus obtained, Pguess = 1/N + r .

(3) Rotate the maximal polytope within the Bloch sphere
until it is found that corresponding lines are parallel to the

original ones to fulfill Eq. (5). From this, the corresponding
vertices are complementary states {σx}Nx=1 and optimal POVM
elements are explicitly constructed, according to Eq. (4).

This completely solves the problem of discrimination of
qubit states given with equal a priori probabilities.

It has already been observed that the guessing probability
does not depend on the detailed relations of the quantum states
to be discriminated, but on a property from the whole set
{ρx}Nx=1, since the ratio r is the relevant parameter. If the given
states are modified such that the polytope has the same ratio
r , then the guessing probability remains the same. This means
that, in the communication scenario we introduced earlier,
Alice, who encodes messages can choose, or modify, sets of
quantum states {ρx}Nx=1 in such a way that Bob, who decodes
from quantum states, cannot recognize her modification using
optimal guessing. This actually defines equivalence classes of
sets of quantum states in terms of optimal guessing [7].

In the following, we apply the method to various cases
of qubit-state discrimination. The simplest example, and also
the case when a general solution is known, is for N = 2,
say ρ1 and ρ2. Following the instructions above, (i) the
polytope constructed from the two given states corresponds to
a line connecting two Bloch vectors of the states. The length
can be computed using the trace distance as ‖ρ1 − ρ2‖/2.
Then, (ii) the maximal polytope similar to the original one is
clearly the diameter of the Bloch sphere, which has length
2 in terms of the trace distance; hence, r = ‖ρ1 − ρ2‖/4
(which equivalently can be obtained with the Hilbert-Schmidt
distance). Substituting this in Eq. (6), the Helstrom bound
in Ref. [1] is reproduced. Then, (iii) the diameter can be
rotated until it is parallel to the original one. Thus, optimal
measurements are also obtained.

Next, let us consider N states on the half plane. We can
begin with N states {1/N,ρx}Nx=1 that are equally distributed
in the plane. They are characterized by Bloch vectors �v(ρx) =
fx(cos θx, sin θx,0) where θx = 2πx/N . For these states, no
general solution is known, except in cases of geometrically
uniform states together with the condition that the {fx}Nx=1
are equal [6]. For convenience, we also suppose that N is an
even number and assume that fN/2 = fN = maxx fx . Then,
applying the method introduced, one can easily find that the
ratio depends on the maximal purity, that is, r = fN/N , and
the guessing probability is obtained as Pguess = 1/N + fN/N ,
no matter what are purities of the other N − 2 states; see also
Fig. 1. This already reproduces the result in Ref. [6] for qubit
states. The assumption of equal distribution over angles can
be relaxed while keeping θN = π + θN/2 and fN/2 = fN =
maxx fx , for which the guessing probability then remains the
same no matter how the other N − 2 states are structured.
This is because, as shown in Eq. (6), they are given with equal
probabilities and the ratio r is unchanged.

Optimal measurements can be analyzed as follows, based
on the geometric formulation; see also Fig. 1. For two states
ρN/2 and ρN having the maximal purity, it is clear that
a measurement is applied, and we let σN = |ψN 〉〈ψN | and
σN/2 = |ψN/2〉〈ψN/2|. From these expressions, obtaining op-
timal POVM elements is straightforward. For the other states,
say {ρz} having fz < fN , it holds from the KKT condition
in Eq. (5) that �vN − �vz is parallel to r[�v(σN ) − �v(σz)]. This
simply shows that their complementary states {σz} cannot be
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FIG. 1. (a) Six states {1/6,ρx}6
x=1 in the half plane are given with

purities {fx}6
x=1, i.e., OPx = fx/6, where three of them (x = 1,3,4)

have the same purity and the others are less pure. See also that the
relation in Eq. (5) is fulfilled. The ratio r in Eq. (6) can be obtained by
expanding the given polytope until it is maximal in the plane. This is
also the ratio between the radii of two circles covering the respective
polygons. Thus, Pguess = 1/6 + f1/6. The complementary state σx

corresponds to OSx . For x = 2,5,6, the states are not pure, and thus
for these states, the optimal strategy is to make a guess without actual
measurement [11]. (b) For {1/N,ρx}N

x=1 pure states, each vertex of the
polyhedron corresponds to the Bloch vector of state ρx/N . The ratio
r is equal to Q1Q2/R1R2 [see also Eq. (5)], and thus Pguess = 2/N .
Even if these states are modified, if the minimal sphere covering the
polyhedron is unchanged, the guessing probability remains the same.

pure states, i.e., not of rank 1. Then, the corresponding POVM
element is the null operator, that is, for these states the optimal
strategy is to make a guess without actual measurement.

The method can be applied to a set of qubit states having
a volume. For instance, let us look at the case when the
given pure states are such that their Bloch vectors form a
regular polyhedron of N vertices; see Fig. 1. Following the
instructions above, the parameter r can be obtained as the
ratio of two spheres, one the Bloch sphere and the other

the minimal sphere covering the polyhedron of given states
{1/N,ρx}Nx=1. From this, we have r = 1/N , and the guessing
probability is thus Pguess = 2/N . One can also modify the
angles between those N states such that the minimal sphere
covering the polyhedron remains the same, and then the
guessing probability is unchanged.

The method of finding optimal state discrimination pre-
sented here can in principle be applied to high-dimensional
states if their geometry is clear, or qubit states with unequal
a priori probabilities. For the latter, although the geometry is
clear, we do not have yet a general and systematic method to
derive the guessing probability. Nevertheless, the geometric
formulation can be applied and provides analytical solutions.
The guessing probability under equal a priori probabilities,
which is automatically computed via the geometric formula-
tion, would then give an upper bound. Illuminating examples
are presented in Ref. [7].

To conclude, we have shown a geometric formulation
for qubit-state discrimination and provided the guessing
probability in a closed form for equal a priori probabilities.
This makes a significant contribution to the study of quantum-
state discrimination. Optimal measurements are characterized
accordingly. It is shown how qubit states can be modified
while the guessing probability remains the same. As qubits are
units of quantum information processing, we envisage that the
method of discrimination and the results presented here will be
useful to develop further investigations of qubit applications,
e.g., Refs. [1,3,4], or approaches to related open questions,
e.g., Ref. [13].
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