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Entangled singularity patterns of photons in Ince-Gauss modes
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Photons with complex spatial mode structures open up possibilities for new fundamental high-dimensional
quantum experiments and for novel quantum information tasks. Here we show entanglement of photons with
complex vortex and singularity patterns called Ince-Gauss modes. In these modes, the position and number
of singularities vary depending on the mode parameters. We verify two-dimensional and three-dimensional
entanglement of Ince-Gauss modes. By measuring one photon and thereby defining its singularity pattern, we
nonlocally steer the singularity structure of its entangled partner, while the initial singularity structure of the
photons is undefined. In addition we measure an Ince-Gauss specific quantum-correlation function with possible

use in future quantum communication protocols.
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I. INTRODUCTION

Quantum entanglement is one of the most significant fea-
tures of quantum mechanics. It is used in quantum information
protocols for quantum cryptography, quantum teleportation,
and quantum computation [1]. Qubit entanglement of photons
has been shown in various degrees of freedom, such as
polarization [2], time and energy [3], path [4], or frequency [5].
In addition, photons can also be entangled in orbital angular
momentum (OAM) states [6]. These so-called Laguerre-Gauss
(LG) modes define a discrete, infinite-dimensional Hilbert
space [7,8] and have been used in fundamental experiments
concerning higher-dimensional entanglement [9—11] and cryp-
tography [12], two-dimensional entanglement of high quanta
of OAM [13,14], and entanglement of three-dimensional
structures [15], as well as quantum communication in free
space [16,17]. The LG,, ; modes are described by two quantum
numbers, n and 1. They have (n + 1) intensity rings [18] and
a central phase vortex with one singularity of order 1 [19].
Singularities, the centers of phase vortices, are points where the
phase is undefined. Their order corresponds to the topological
charge of the mode.

Here we focus on modes that can have very complex
vortex and singularity patterns—the so-called Ince-Gauss (IG)
modes [20,21], which are a natural generalization of LG
modes in elliptic coordinates. In addition to the two quantum
numbers of LG modes, they have one additional continuous
parameter: the ellipticity ¢ [22]. Each value of the ellipticity
defines a different complete orthonormal basis set; the LG
modes emerge as a special case for ¢ = 0. The ellipticity
leads to several unique phenomena, such as the splitting of
the singularity of LG modes with topological charge [ into
| separate singularities each with unit topological charge,
and the formation of additional singularities in the outer
rings [23,24]. The number of singularities can be defined
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by choosing the topological charge and their positions can
be adjusted by varying the ellipticity. Here we present the
first quantum experiment with Ince-Gauss modes [25]. It is
well known from the famous EPR (Einstein, Podolsky, and
Rosen) gedankenexperiment [26] that a measurement of one
particle immediately defines the state of its entangled partner.
In our experiment such a measurement of a specific singularity
pattern on one side defines the singularity structure of the
distant photon, while such a singularity structure was not an
element of reality before.

In the following we describe experiments in which we mea-
sure IG-qubit coincidence fringes and use a two-dimensional
entanglement witness and a steering inequality to verify
entanglement and nonlocal steering of complex singularity
patterns. Then we record the coincidences for the same mode
numbers, but with different ellipticities €. This effect is unique
for IG modes, and might be used in novel quantum information
protocols. In the end, we introduce a new method to prove
entanglement based on a three-dimensional entanglement
witness, and therewith verify that the produced state is
entangled in a higher-dimensional Hilbert space.

II. INCE-GAUSS MODES

Ince-Gauss modes are the natural solutions of the paraxial
wave equation in elliptical coordinate systems. The two-
dimensional elliptical coordinate system is described by the
radial and angular elliptic coordinate # and v. In the waist
plane z = 0 the transformation between elliptical (u, v) and
Cartesian (x, y) coordinates is given by

X cosh(u) cos(v)
=Jfol| .. . . (1

y sinh(u) sin(v)
fo is the semifocal separation (eccentricity) of the coordinate
system. A separation ansatz is used to solve the paraxial wave

equation in elliptical coordinates [27,28]. This leads to the
Ince equation which can be solved by the Ince polynomials,
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FIG. 1. (Color online) Ince-Gauss modes of varying ellipticity.
The mode IGs 3 . has two rings and three central singularities. In the
upper (lower) row the intensity (phase) distribution of each mode is
shown. From left to right the values of ¢ are 0, 0.5, 1.0, 2.0, 5.0,
oo. The splitting of the phase singularity in the center into three
singularities on a horizontal line can be observed as well as the
creation of additional pairs of singularities in the ring of zero intensity
[23]. For ¢ = 0, the IG beam becomes a Laguerre-Gauss mode with
continuous rotational symmetry of the intensity pattern. For & > 0,
only a twofold rotational symmetry remains. In the limitof ¢ — 00, a
fourfold rotational symmetry emerges; the corresponding modes are
called helical Hermite-Gauss modes [30].

and gives the even and odd Ince-Gauss modes [20],

- . r2
IG5, ,, () = N.C}(iu,e)C); (v,€) exp <_w_§) (2)

- . r2
IG), , (F) = N, S} (iu,&)S} (v,) exp <_E) 3)

0
&= Zwizo is the ellipticity parameter, w, is the beam radius at

the wa{)ist, and p and m are the IG mode indices with integer
values. For equal ellipticity, modes with different p or m are
orthogonal. As p and m both can take any positive integer
value, they define an infinite-dimensional Hilbert space. The
expressions C}’f(u,e) and S;’f(u,s) are the even and odd Ince
polynomials; N, and N, are normalization constants. Then the
helical Ince-Gauss (further referred to as Ince-Gauss) modes
can be defined as superpositions of even and odd Ince-Gauss
modes [29],

+ = 1 e
IG, ,, .(r) = E(IG[’J”LS
Taking the limit ¢ — 0, Ince-Gauss modes become Laguerre-
Gauss modes with an integer OAM value [ = m, with the
central singularities moving to the center of the beam. In
the limit of ¢ — o0, the Ince-Gauss modes become “helical”
Hermite-Gauss modes [30]. This transition can be seen in
Fig. 1.

) £ilG, ,, (7). (4)

III. EXPERIMENTS

In our experimental setup (Fig. 2), we employ type-II
spontaneous parametric down-conversion (SPDC) in a non-
linear crystal (periodically poled potassium titanyl phosphate,
ppKTP) which creates pairs of photons. The two photons
are collinear and have orthogonal polarizations. We split the
photons with a polarizing beam splitter. In the two arms of
the setup we analyze them by using a combination of spatial
light modulators (SLMs) and single-mode fibers (SMFs). A
SLM is aliquid crystal display, which can perform an arbitrary
phase transformation on the incoming beam. In our experiment

PHYSICAL REVIEW A 87, 012326 (2013)

SMF
ppKTP

405 g ¥

PBS

FIG. 2. (Color online) Schematic sketch of the experimental
setup. We pump a 5-mm nonlinear ppKTP crystal with a 405-nm
60-mW single-mode diode laser, and obtain 810-nm down-converted
spatially entangled photons of orthogonal polarization. We separate
the two photons on a polarizing beam splitter (PBS), and manipulate
their spatial mode using spatial light modulators (SLM), which
transform specific Ince-Gauss modes into Gauss modes. The photons
in the Gauss modes are then filtered by coupling into single-mode
fibers (SMF). Finally, they are detected with avalanche photodiodes
(D) and analyzed with a coincidence-logic (&) with around 5-ns
coincidence window. The SLMs are in the far field of the crystal, and
the SMFs are in the far field of the SLMs.

we use computer-generated holograms to convert specific
higher-order modes into a Gauss mode, which we couple into
a SMF. Since the SMFs only allow coupling of Gauss modes,
we thereby realize a spatial-mode-specific filter. The photons
are then detected with single-photon detectors and pairs are
counted using a coincidence logic.

A. Two-dimensional entanglement

In the first experiment, we restrict ourselves to a two-
dimensional Hilbert space, where we define a Bloch sphere
analogously to the one representing the polarization of photons
(Fig. 3). The poles are helical IG modes; each point on the
equator represents a specific superposition with a well defined
phase. The whole Bloch sphere can be represented by

1G9, .(F) = (Vaexp(i¢)G,, . (F)
+ V1 —aexp(—i$)IG,,, (). 5

where a goes from O to 1, and ¢ goes from O to 7.

As a specific example, we analyze the IGS'%, mode, which
has two rings and three split singularities with an ellipticity
& = 2 [Fig. 3(a)]. On both SLMs we display the phase pattern
for states at the equator of the Bloch sphere. The hologram
for four specific phases ¢ is displayed at the SLM1, while the
SLM2 scans through the holograms for phases from ¢ = 0
to ¢ = 180°. In Figs. 3(b) and 4 the coincidence counts are
shown as a function of the phase of the hologram displayed
at SLM2. We observe nonclassical two-photon fringes, with a
high visibility.

For quantifying the entanglement, we take advantage of
an entanglement witness operator [31]. Similar to entangled
OAM states from down-conversion, we expect a Bell state
close to |Y;) of the down-converted photon pair. Therefore
a suitable witness operator for detecting entanglement in this
state can be written as

W=1l-0,®0, —0,80,+0,®0), (6)
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FIG. 3. (Color online) (a) Bloch sphere constructed from the Ince-Gauss modes IGs 3, with two rings and three phase singularities. The
insets show the intensity (left) and phase patterns (right). Similarly to the Laguerre-Gauss (LG) modes, the intensity patterns at the north and
south poles are identical. However, in contrast to LG modes, where a continuous phase change of ¢ along the equator only leads to a rotation
of the phase and intensity pattern, these patterns also change their shape continuously. The consequence is a different decomposition into LG
modes, which leads to additional effects for nonmaximal entangled LG states such as those from down-conversion. (b) Coincidence fringes for
the 1Gs 3, mode with four different settings for the signal photon (22.5°, 67.5°, 112.5°, and 157.5°, respectively) and 15° phase steps of the
superposition for the idler, with sin? fits. Each point has been measured for 15 s. We estimate the statistical uncertainty assuming a Poisson
distribution of the count rates and obtained error bars are smaller than the symbols in the figure.
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FIG. 4. (Color online) Coincidence fringes for different Ince-
Gauss modes with ellipticity ¢ = 2. Panels (a), (b), and (c) have two,
three, and four singularities, respectively, and no additional rings,
and each data point has been measured for 5 s. Panel (d) has two
singularities and one additional ring. Each point has been measured
for 15 s. The different fringes correspond to the measurement setting
of the SLM2 (22.5°, 67.5°, 112.5°, and 157.5°, respectively). The
obtained error bars from Poisson distribution are smaller than the
symbols in the figure. The lines show sinusoidal fits. We expect
the different sinusoidal amplitudes as well as the deviation of
the experimental points from the sinusoidal fits to be due to the
plane-wave approximation used in programming the holograms.

where o, 0, and o, denote the single-qubit Pauli matrices
for the two photons. The witness operator is defined to be
positive for all separable states, and will give (W) = —0.5
for the maximally entangled state. Recently it was shown
that there exist systems that are entangled while the state
of the distant photon cannot be steered [32]. We show the
violation of a steering inequality to verify that by measuring
one photon, we can nonlocally steer the singularity structure
of its entangled partner. For that we use an inequality that has
been derived recently [33,34], namely S = |0, ® o, |2+ loy ®
oy|? + |o, ® 0,|> < 1 that holds for all nonsteerable states.
The values of the entanglement witness W and the steering
value S calculated from our measurement results are given
in Table I. The witness (W) for every measured mode is
negative, which verifies entanglement for the generated states.
Furthermore the steering value S is bigger than 1, which

TABLE 1. Entanglement witness and steering value for five
different Ince-Gauss modes. For five different IG modes we have
measured the entanglement witness as described in Eq. (6). The
negative witness value verifies entanglement of our state. The steering
value S is above the nonsteerable limit of S < 1, which verifies that by
measuring one photon we can nonlocally steer the singularity pattern
of the second photon. The statistical uncertainty given in parentheses
has been calculated assuming Poisson distributed statistics.

IG parameters Witness (W) Steering value S

p=2m=2e=2 —0.4847(3) 2.879(2)
p=3m=3,e=2 —0.4897(3) 2.918(2)
p=4,m=4¢=2 —0.4905(4) 2.925(3)
p=dm=22¢=2 —0.4581(7) 2.675(5)
p=5m=3,e=2 —0.4784(7) 2.830(5)
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FIG. 5. (Color online) Overlap between two Ince-Gauss modes
with the same value of p and m, but different ellipticities. This
measurement shows a unique behavior of Ince-Gauss modes, which
might be useful for quantum communication applications. The hori-
zontal axis is the ellipticity; the vertical axis shows the coincidence
counts. The blue line shows the theoretical overlap |(IGg 4.3|IGs 4.) |,
where the maximal overlap is at ¢ = 3. The red dots are measured
coincidence counts, which show good agreement to the theoretical
values. The obtained error bars are smaller than the symbols in the
figure.

demonstrates that we are able to nonlocally steer the singularity
pattern of the distant photon.

B. Specific quantum-correlation function

In our second experiment we analyze the correlation
between two down-converted photons when projected onto
Ince-Gauss modes with the same mode numbers, but with
different ellipticity. The ellipticity is a unique feature of
IG modes, which does not exist for LG modes. It can be
understood as a continuous nontrivial rotation parameter for
the infinite-dimensional basis of the Hilbert space. Thus by
analyzing two modes with different ellipticities, we measure
the overlap between continuously rotated basis elements.

As the basis rotation performed by the ellipticity parameter
affects the whole infinite-dimensional Hilbert space, this has
an interesting effect on two-dimensional subspaces. In contrast
to simple two-dimensional systems such as polarization, a
mode with a specific ellipticity cannot fully be reconstructed in
the corresponding two-dimensional subspace with a different
ellipticity. The projection into this basis gives a result smaller
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than 1, and therefore the coincidences are reduced. It might
be possible to use this effect for extensions to quantum
cryptography protocols such as BB84 or Ekert91 [35,36], for
instance by a two-step protocol where in the first step the
secret ellipticity is transmitted and in the second step the IG
basis is used, and the second step uses IG modes with the
ellipticity from step 1. An eavesdropper faces the additional
task of getting the correct value of the ellipticity, and might
gain less information for a wrong value. A full security proof
is out of the scope of this work.

In the experiment, we display on SLM1 the phase pattern
of an IG mode with a specific ellipticity, and on SLM2
we display the phase pattern of a mode with the same
characteristic numbers p and m but different . When the
two & match, we measure a maximum coincidence count rate,
whereas for different ellipticities ¢ and &’ the coincidence
rate decreases. The decrease of the coincidence rate is bigger
for higher modes; therefore we used 1Gg 4 .. The calculated
overlap, where we assume a maximally entangled state, and
the measured coincidence counts are shown in Fig. 5.

The overlap between two Ince-Gauss modes with different
ellipticities has been calculated in Fig. 6 for three different
quantum numbers. It can be observed that the overlap drops
faster for higher-order modes. This can be understood when
taking into account that the expansion into the Laguerre-Gauss
basis involves more terms the higher the Ince-Gauss modes are.
For example, for IG p = 14, m = 6, the overlap drops very
fast and reaches zero for a finite ellipticity, before it increases
again. The vanishing overlap indicates orthogonal modes with
the same quantum numbers (same number of initial rings and
singularities). It might be interesting to investigate whether
one can find multiple orthogonal modes and whether there are
nontrivial relations between those orthogonal modes.

C. Higher-dimensional entanglement

Finally, in our third experiment, we verify that the photons
are indeed entangled in a higher-dimensional Hilbert space.
For this task, we use the first nontrivial three-dimensional

[<1Ggge | 1Gege >

[<1Gg4c | 1Gg 4>

[<1G14ge| 1Grape >

FIG. 6. (Color online) Overlap between Ince-Gauss modes with the same quantum numbers but different ellipticity. When the ellipticities
match, the overlap is maximal. When the ellipticities are different, the overlap decreases. The higher the quantum number, the faster the overlap
decreases. For p = 14, m = 6, the overlap reaches zero (black line) and then increases again. This vanishing overlap indicates orthogonal

modes (with the same quantum number).
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Ince-Gauss space. A state in such a space can be written as

V) = allG},5.1G,, 5) + blIGY; 5.1G; 5 5)
+clIG}, 5,1G; , ). @

where a, b, and c are probabilities for specific modes, due to
the spiral bandwidth of the SPDC process [37-39]. Similarly
to the two-dimensional case, we can define an entanglement
witness for three dimensions, which consists of the visibilities
in three mutually unbiased bases for every two-dimensional
subspace [40,41]. The simplest correlation function of this
type can be written as

4 k<l

10 =Y 7= (k! © o)+ ot © 04

=3 k=2 ’
+(o*! @ ot (8)

The o 4; is a Pauli matrix constructed from IG* and denotes
the measurements in the mutually unbiased bases of a two-
dimensional subspace of the three-dimensional state. N ; are
normalization constants that appear because we ignore the
third degree of freedom in the two-dimensional measurement.

Due to the unavoidable normalization of the two-
dimensional subspaces, bounding this correlation function for
separable and two-dimensionally entangled states becomes
a challenging task. The function itself is neither linear nor
convex, inevitably excluding all previously known techniques
to bound such functions. We were able to prove analytical
bounds for the correlation function (for details and the full
analytical proof see Supplemental Material [42]). The results
are

Limit for separable states: f(p) = 3.

Limit for two-dimensionally entangled states: f(p) = 6.

Overall maximum: f(p) =9.

Inserting the measured visibilities into the correlation
function in Eq. (8) gives the value f(p) = 8.156(5) which
is well above the limit f(p) = 6 for an entangled state
in two dimensions, and therefore shows that the measured
state was at least a three-dimensionally entangled state. In
addition, one can use the ellipticity to tune the detection
probability of higher-order spatial modes (see Fig. 7), for
instance, to experimentally access higher-order modes than
with LG modes. This might be useful for down-conversion
experiments that deal with high mode numbers such as
high-dimensional entanglement detection, due to the potential
increase of detected count rates.
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FIG. 7. (Color online) Normalized coincidence count rates of sev-
eral different Ince-Gauss modes depending on the ellipticity. For five
different fixed p and m quantum number combination and nine values
of the ellipticity, coincidence counts have been measured. For every
quantum number combination, the coincidence counts have been
normalized to the maximum value of the nine measurements with
different ellipticity. It is shown that the probability of modes from the
down-conversion can be tuned by adjusting the ellipticity of the basis.
The effect is stronger for higher modes, which is crucial for high-
dimensional entanglement detection. The obtained error bars are in
the range of 1%, and therefore smaller than the symbols in the figure.

IV. CONCLUSIONS

We have shown the entanglement of photons with adjustable
singularity and vortex structures. By measuring a singularity
pattern for the first photon we nonlocally steer the positions
of multiple singularities on the second photon. Additionally,
we measured an IG-specific coincidence function depending
on the ellipticity, which could be used for quantum infor-
mation tasks. We also introduced a method for detecting
three-dimensional entanglement, and verified therewith three-
dimensional entanglement.

We suggest that the detection probability of higher-order
modes from SPDC can be tuned with the ellipticity parameter,
which might be useful for experiments that deal with high-
order modes. Furthermore, due to the nontrivial basis rotation
of the Hilbert space, we believe that this additional parameter
could be used to extend well-known quantum key distribution
protocols.
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