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Synthesis of multivalued quantum logic circuits by elementary gates
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We propose the generalized controlled X (GCX) gate as the two-qudit elementary gate, and based on Cartan
decomposition, we also give the one-qudit elementary gates. Then we discuss the physical implementation of these
elementary gates and show that it is feasible with current technology. With these elementary gates many important
qudit quantum gates can be synthesized conveniently. We provide efficient methods for the synthesis of various
kinds of controlled qudit gates and greatly simplify the synthesis of existing generic multi-valued quantum circuits.
Moreover, we generalize the quantum Shannon decomposition (QSD), the most powerful technique for the synthe-
sis of generic qubit circuits, to the qudit case. A comparison of ququart (d = 4) circuits and qubit circuits reveals
that using ququart circuits may have an advantage over the qubit circuits in the synthesis of quantum circuits.
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I. INTRODUCTION

Using multivalued quantum systems (qudits) instead of
qubits has a number of potential advantages. As a specific
name, three-level quantum systems are called qutrits, and
four-level systems are also called ququarts. There have
been many proposals to use qudits to implement quantum
computing [1–6]. Now there is an increasing interest in this
area, and some experimental works on qudit systems have
been developed in recent years [7–9].

Many works have been done in multivalued quantum logic
synthesis. Brylinski and Brylinski [10] and Bremner et al. [11]
concluded that any two-qudit gate that creates entanglement
without ancillas can act as a universal gate for quantum
computation, when assisted by arbitrary one-qudit gates.
Brennen et al. proposed use of the controlled increment (CINC)
gate as a two-qudit elementary gate, investigated the synthesis
of general qudit circuits based on spectral decomposition, and
the “Triangle” algorithm [4,5], and obtained asymptotically
optimal results, but for the synthesis of specific qudit gates,
using this gate is inconvenient and relevant work is rarely seen.
There are other proposals, such as the GXOR [3], SUM [6], etc.,
but no practice circuits are given. The synthesis of binary
quantum circuits has been extensively investigated by many
authors [12–22], and it is rather mature now. In the previous
work for qudit circuits the methods in qubit circuits are seldom
used. Since there are technical difficulties [23] with the tensor
product structure of qudits, whether these methods are useful
for qudits has been an open question. Moreover, there is no
unified measure for the complexity of qubit and various qudit
circuits yet, which makes it inconvenient to compare them.

In this article we focus on the synthesis of multivalued
quantum logic circuits. With the elementary gates proposed
here we can synthesize many specific qudit quantum gates
conveniently, greatly simplify the synthesis of existing generic
multivalued quantum circuits, generalize the quantum Shan-
non decomposition (QSD) [20], the most powerful technique
for the synthesis of generic qubit circuits, to the qudit case and
get many best known results. Moreover, the defects mentioned
above are all overcome.
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The article is organized as follows. In Sec. II we propose
the general controlled X (GCX) gate as a two-qudit elementary
gate, and based on Cartan decomposition [24] we also give a
set of one-qudit elementary gates. They can be used as a unified
measure of complexity for various quantum logic circuits. In
Sec. III we investigate the physical implementation of these
gates and show that it is feasible with current technology. With
these gates we investigate the synthesis of some important mul-
tivalued quantum gates and the synthesis of various controlled
qudit gates in Sec. IV. We generalize the QSD to qudit case
in Sec. V, revealing that using ququart circuits may have an
advantage over the qubit circuits in the synthesis of quantum
circuits. Finally, a brief conclusion is given in Sec. VI. The
Cartan decomposition used in Sec. II is given in Appendix A.

II. ELEMENTARY GATES

There are d(d − 1)/2 single-qudit X(ij ) gates which act
on the two-dimensional (2D) subspace Hij of d-dimensional
Hilbert space, where X(ij ) = |i〉〈j | + |j 〉〈i| + ∑

k �=i,j |k〉〈k|.
The GCX gate is the two-qudit gate which implements the X(ij )

operation on the target qudit iff the control qudit is in the state
|m〉, (m ∈ {0,1, . . . ,d − 1}). The circuit representation for the
GCX gate is shown in Fig. 1, in which the line with a circle
represents the control qudit while that with a square the target
qudit. There are d2(d − 1)/2 different forms of the gate and
they can be easily transferred to one another as shown in Fig. 2.

The CINC gate is a controlled one-qudit gate which
implements the INC operation on the target qudit iff the control
qudit is in the states |m〉, where INC|j 〉 = |j + 1,mod d〉. The
INC operation can be decomposed into d − 1 X operations, so
the CINC gate can be synthesized by d − 1 GCX gates. The GCX

gate is an elementary counterpart of the binary CNOT gate, so
we propose the GCX gate as the two-qudit elementary gate for

( )ijX

m

FIG. 1. Generalized controlled-X gate.
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FIG. 2. Transformation among different GCX gates: (a) transfor-
mation of control mode and (b) transformation of target operations.

multivalued quantum computing. It can be used as a unified
measure for the complexity of various quantum circuits.

Suppose M is the matrix of a one-qutrit gate. Take a kind of
AIII-type Cartan decomposition [23] of the U(3) group, which
can be expressed as

M = eiϕM
(jk)
1 M (j ′k′)M

(jk)
2 . (1)

Here M (jk) is a special unitary transformation in the 2D
subspace Hjk , and it can be factored further by the Euler
decomposition. The Euler decomposition usually has two
modes: ZYZ decomposition and XYX decomposition. So
the set of one-qutrit elementary gates has two pairs of
basic gates, R

(jk)
y , R

(jk)
z , R

(j ′k′)
y , R

(j ′k′)
z or R

(jk)
x , R

(jk)
y , R

(j ′k′)
x ,

R
(j ′k′)
y . Here R

(jk)
α (θ ) = exp(−iθσ

(jk)
α /2), for 0 � j < k � 2,

α ∈ {x,y,z}, and σ
(jk)
x = |j 〉〈k| + |k〉〈j |, σ

(jk)
y = −i|j 〉〈k| +

i|k〉〈j |, σ
(jk)
z = |j 〉〈j | − |k〉〈k|.

Using successive AIII-type Cartan decompositions of the
U(d) group, a generic one-qudit gate can be decomposed to a
series of M (jk), which involves at least d − 1 kinds of M (jk)

that act on different 2D subspace. To implement a qudit gate
requires d − 1 driving fields, and M (jk)s essentially are single-
qubit gates. So the set of one-qudit elementary gates has d − 1
pairs of R

(jk)
α gates acting on d − 1 different 2D subspaces.

The choice of d − 1 pairs of basic gates is not unique. They are
universal if only the corresponding driving fields can connect
the d levels of the qudit together.

III. PHYSICAL IMPLEMENTATION

In the last decade there has been tremendous progress in the
experimental development of qubit quantum computing, and
the problem of constructing a CNOT gate has been addressed
from various perspectives and for different physical systems
[25–36]. The GCX gate is essentially binary, so it can be
implemented with existing technique.

Assume we have a V-type three-level quantum system
shown in Fig. 3, which constitutes a qutrit and the two levels
of the system |0〉 and |1〉 forms a qubit. Two laser beams �1
and �2 are applied to the ion to manipulate |0〉 ↔ |1〉 and
|0〉 ↔ |2〉 transition, respectively. If a two-qubit CNOT gate is
realized in such systems, one GCX gate is naturally obtained,
and the eight other GCX gates formed can be obtained by the
transformation shown in Fig. 2. The single-qutrit gates are

g

1e

2
1

0

2e

1Ω
2Ω

FIG. 3. V-type three-level quantum system.

implemented by Rabi oscillations between the qutrit levels.
Applying the laser pulses in �1 and �2 and choosing suitable
phases, this allows us to perform R(01)

x , R(01)
y and R(02)

x , R(02)
y

gates, respectively [37,38]. So a set of one-qutrit elementary
gates is obtained, and any one-qutrit gate can be implemented
according to Eq. (4). There are two other types of quantum
systems: the � type and cascade type. We can use R(01)

x , R(01)
y ,

R(12)
x , R(12)

y or R(02)
y , R(02)

z , R(12)
y , R(12)

z as one-qutrit elementary
gates to meet the requirement of manipulating quantum
states in these types of quantum systems. The method can be
naturally generalized to the generic qudit case.

It is not too difficult to find such a quantum system. Early
in 2003, the Innsbruck group implemented the complete
Cirac-Zoller protocol [25] of the CNOT gate with two calcium
ions (Ca+) in a trap [27]. The original qubit information is
encoded in the ground-state S1/2 and metastable D5/2 state.
The D5/2 state has a lifetime τ � 1.16 s. There is another
metastable D3/2 state in Ca+. Its lifetime is about the same as
that of the D5/2 state. The three levels of Ca+, one ground state
and two metastable states, may constitute a qutrit candidate.
The CNOT gate was implemented by Schmidt-Kaler et al. [27]
and forms naturally a TCX gate. Two laser pulses are used
to manipulate the S1/2 ↔ D5/2 quadruple transition near 729
nm and the S1/2 ↔ D3/2 transition near 732 nm, respectively.
Rabi oscillations between these levels can implement the
one-qutrit elementary gates R(01)

x , R(01)
y and R(02)

x , R(02)
y .

The superconducting quantum information processing
devices are typically operated as qubit by restricting them
to the two lowest energy eigenstates. By relaxing this
restriction, we can operate it as a qutrit or qudit. The
experimental demonstrations of the tomography of a transmon-
type superconducting qutrit have been reported in [9], and the
emulation of a quantum spin greater than 1/2 has been imple-
mented in a superconducting phase qudit [8]. This means that
to prepare a one-qutrit state or one-qudit state and read them on
these systems has been implemented, so the one-qutrit gates
or one-qudit gates can also be implemented on the systems.
Construction of a robust CNOT gate on superconducting qubits
has been extensively investigated [34–36], which means that
the condition to implement multivalued quantum computing
has come to maturity on these superconducting devices.

IV. SYNTHESIS OF MULTIVALUED QUANTUM
LOGIC GATES

A. Synthesis of some important multivalued quantum gates

By using GCX gates, some important qudit gates can be
synthesized conveniently. The reason is that the X(i, i+1)’s

( )01X

2

( )12X

2

( )01X

1

( )12X

1

FIG. 4. Synthesis of ternary SUM gate.
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FIG. 5. Synthesis of ternary GXOR gate.

operations are the generators of the permutation group Sd ,
while INC, etc. operations are not. The multivalued SWAP gate
interchanges the states of two qudits acted on by the gate. The
ternary SWAP gate can be decomposed into three binary SWAP

gates, that is

W = W (01)W (02)W (12). (2)

Here W (ij ) = |ij 〉〈ji| + |ji〉〈ij | + ∑
kl �=ij,j i |kl〉〈kl|, and it

can be synthesized by three GCX gates. So the ternary SWAP gate
is synthesized by nine GCX gates. For the generic qudit case,
the multivalued SWAP gate can be decomposed into d(d − 1)/2
binary SWAP gates, each of them needing three GCX gates.
The multivalued root SWAP gate can also be decomposed into
d(d − 1)/2 binary root SWAP gates.

We denote two inputs of a d-dimensional two-qudit as A

and B, respectively. The SUM gate is a two-qudit gate in which
an output remains A unchanged, and another output is the
sum of A and B modulo d denoted A ⊕ B. The GXOR gate
is similar to the SUM gate. The difference is that the output
is the difference of A and B modulo d. The synthesis of the
ternary SUM gate and ternary GXOR gate base on the GCX gates
is shown in Figs. 4 and 5, respectively.

The twofold generalized controlled X gate [∧2(X)] is a
three-qudit gate in which two control qudits are unaffected by
the action of the gate, and the target qudit is acted on by the
X(ij ) operation iff the two control qudits are in the states |m〉,
|m′〉, respectively. It is essentially a Toffoli gate [37], which
can be synthesized with six GCX gates and ten single-qudit
gates acting on a 2D subspace. In some cases we can use the
psuedo-∧2(X) gate [p ∧2 (X)] instead of the ∧2(X) gate. The
p ∧2 (X) gate is also a three-qudit gate where two control
qudits are unaffected by the action of the gate, the target qudit
is acted on by the X(ij ) operation iff the two control qudits are
in the states |m〉, |m′〉, respectively, and by the Z(ij ) or Z(ji)

operation iff the first control qudit is in the state |m〉, and the
second control qudit is not in the state |m′〉. It is synthesized by
three GCX gates and two R

(ij )
α (π/4) and two R

(ij )
α (−π/4) gates

(see Appendix B). The twofold controlled INC gate [∧2(INC)]
is that the two qudits remain no change, and the qudit is acted
on by the INC operation iff two control qudits are in the control
states |m〉, |m′〉, respectively. The ternary ∧2(INC) gate consists
of two p ∧2 (X) gates, and the synthesis is shown in Fig. 6,
which requires six GCX gates and eight R

(ij )
y (θ ) gates. In the

m

=
U

m

Δ †VV

FIG. 7. Synthesis of a controlled U gate.

d-valued qudit case, the synthesis of the ∧2(INC) gate requires
3(d − 1) GCX gates when d is odd and 3d GCX gates when
d is even. It is much simpler than that in Ref. [5], which
needs (d + 2)d CINC gates and (d + 1)dCINC−1 gates, which
is equivalent to (2d + 3)d(d − 1)GCX gates.

B. Synthesis of various controlled qudit gates

A controlled one-qudit gate [∧1(U )] is a two-qudit gate
in that iff the control qudit is set to the state |m〉 then a
unitary operation U is applied to the target qudit. From the
diagonal decomposition U = V DV †, we can get a synthesis
of a controlled U gate which involves a pair of one-qudit gates
and a controlled diagonal [∧1(
)] gate as shown in Fig. 7.
Here V is unitary, and D is diagonal and has the form

D = eϕdiag{e−i(α1+α2+...+αd−1),eiα1 ,eiα2 , . . . ,eiαd−1}
= eϕR(01)

z (α1)R(02)
z (α2) . . . R(0(d−1))

z (αd−1). (3)

The ∧1(
) gate can be synthesized by a phase qudit and d − 1
controlled R

(ij )
z gates, each of them needing two GCX gates.

Hence the generic ∧1(U ) gate can be synthesized by 2(d − 1)
GCX gates in the worst case. In qutrit case the synthesis of a
∧1(
) gate is shown in Fig. 8, where Sm = ∑

j (1 + δjm(eiϕ −
1)|j 〉〈j | is a phase qutrit gate.

The k-fold controlled one-qudit gate [∧k(U )] has k control
qudits and a target qudit. Similar to the synthesis of the ∧1(U )
gate, a ∧k(U ) gate is composed of a pair of one-qudit gates and
a k-fold controlled one-qudit diagonal one-qudit gate [∧k(
)].
The ∧k(
) gate can be synthesized by a (k − 1)-fold controlled
phase qudit and d − 1 ∧k(Rz) gates, and each ∧k(Rz) needs
a pair of ∧k(X) gates. To simplify the synthesis of ∧k(U )
gates, we introduce the pseudo-∧k(X) [p ∧k (X)] gates. The
p ∧k (X) gate has two sets of control qudits. Its target qudit is
acted by the X(ij ) operation iff the two sets of control qudits are
in the control states |m1,m2, · · · ,mk1〉 and |m′

1,m
′
2, · · · ,m′

k2
〉,

respectively, and by the Z(ij ) operation iff the first set of control
qudits is in the control states and the second set of control
qudits is not in the control states, where k1 + k2 = k. Now
we present a scheme for implementing p ∧k (X) gates and
a scheme for implementing ∧k(X) gates, shown in Figs. 9
and 10, respectively. Since the ∧k(X) gates appear in the
∧k(Rz) gate in a pair and the Rz gates are diagonal, they
can be replaced by p ∧k (X) gates. The k-fold controlled
unimodular one-qudit gate can be synthesized by 2pk(d − 1)

(12) ( / 4)yR π(12)X

m′

m

(12)X
(12) ( / 4)yR π− (12) ( / 4)yR π− (01)X

m′

(12)X

m′

(12)( / 4)yR π (01)( / 4)yR π (01)( / 4)yR π

m

(01)X (01)X

m′

(01) ( / 4)yR π− (01) ( / 4)yR π−

FIG. 6. Synthesis of the ternary ∧2(INC) gate.
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FIG. 8. Synthesis of a controlled diagonal qutrit gate.

GCX gates. Here pk denotes the numbers of GCX gates in
a p ∧k (X) gate, and it can be obtained by its recursive
implementing process. The (k − 1)-fold controlled phase gate
can be further decomposed into a (k − 1)-fold controlled
unimodular diagonal gate and a (k − 2)-fold controlled phase
gate. By successive decomposition we can get that the
synthesis of a k-fold controlled general one-qudit gate requires
2(1 + ∑k

s=2 ps)(d − 1) � (1 + δn2)k3(d − 1) GCX gates. The
estimate 2(1 + ∑k

s=2 ps) � (1 + δn2)k3 comes from practice
data.

With efficient synthesis of ∧1(U ) and ∧k(U ) gates we can
greatly simplify the synthesis of existing multiqudit circuits.
Based on the spectral decomposition, for the circuit without
ancillas, the GCX count of generic n-qudit circuits is

Cs = 2dn[(dn − 1) − n(d − 1)] + 2

(
1 +

n−1∑
s=2

ps

)
dn(d − 1)

� 2dn[(dn − 1) − n(d − 1)]

+ (1 + δn2)(n − 1)3dn(d − 1), (4)

whereas the CINC count using the spectral decomposition given
in [5] is

�s � 2dn+1[(dn−1)/(d−1) − n] + (n+1)2+log2 ddn+4. (5)

( )/ 4yR π−( )/ 4yR π ( )/ 4yR π−( )/4yR π

1m′

1m

2m

3m

4m

2m′

1m′

2m′

X X X

FIG. 9. A circuit implementing a p ∧k (X) gate.

=

FIG. 10. A circuit implementing ∧k(X) gate. For brief, the
symbols in the qubit circuit are used and the � denotes the pseudo-X
operation.

V. QUANTUM SHANNON DECOMPOSITION

An n-qudit gate corresponds to a dn × dn unitary matrix.
Using Cosine-sine decomposition (CSD) [14,39] we decom-
pose it to dn−1 × dn−1 block diagonal matrices and cosine-sine
matrices. The block diagonal matrix is a uniformly controlled
multiqudit gate which can be reduced to an (n − 1)-qudit gate
and d − 1 copies of controlled (n − 1)-qudit [∧1(U (dn−1))]
gates. It can be further reduced to d copies of (n − 1)-qudit
gates and d − 1 copies of (n − 1)-qudit diagonal [∧1(�n−1)]
gates as shown in Fig. 11. Taking d = 2, the related decompo-
sition of a block diagonal matrix is(

U1

U2

)
=

(
V1

V1

) (
I

�n−1

)(
V2

V2

)
. (6)

It is equivalent to the decomposition(
U1

U2

)
=

(
W

W

) (
D

D†

) (
V

V

)
, (7)

where W = V1�
1/2
n−1, D = �

−1/2
n−1 , and V = V2. It is just the

decomposition of block diagonal matrices in QSD. So the
decomposition given here for qudit circuit can be considered
as a generalized QSD.

Here we give a very efficient synthesis of the multivalued
uniformly multifold controlled R

(ij )
α (α ∈ y,z) rotation. The

method parallels the techniques in [14,40] for the qubit case.
For d = 3 and n = 3, its synthesis is shown in Fig. 12, and
in the generic case, it needs 2dn−2(d − 1) GCX gates (see
Appendix C). The circuit can be conveniently obtained by
the ♣ sequence [4]. To divide the elements of a ∧1(
n−1) gate
into dn−2 groups and factor out a phase for each group to make
it unimodular, we get a circuit of the gate as shown in Fig. 13.
It can be further inferred that it needs 2(dn−1 − 1) GCX gates
for the synthesis of a ∧1(
n−1) gate.

Taking d = 4 as an example, using CSD, the matrix of an
n-ququart circuit can be decomposed into four block diagonal
matrices and three cosine-sine matrices. Each of the block
diagonal matrices involves four (n − 1)-ququart gates and
three controlled diagonal (n − 1)-ququart gates, and each of
the cosine-sine matrices involves two uniformly (n − 1)-fold
controlled Ry rotations. So a generic n-ququart circuit involves
16 (n − 1)-ququart gates, 12 controlled diagonal (n − 1)-
ququart gates, and six uniformly (n − 1)-fold controlled Ry

1V 2V dV

1 2 1d−

(1)
1n−Δ ( 1)

1
d

n
−

−Δ(2)
1n−Δ

≅

FIG. 11. Decomposition of a uniformly controlled multiqudit
gate. Here the small square (�) denotes uniform control and the
slash (/) represents multiple qudits on the line.
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♣− ♣ ♣ ♣♣ ♣ ♣ ♣♣ ♣ ♣ ♣♣ ♣ ♣ ♣♣
α

+
α

+
αααααα

+
ααα

FIG. 12. Quantum circuit implementing ternary uniformly twofold controlled R(ij )
α (α ∈ y,z) rotation. Here we use R̃k

α = R(ij )
α (θk), and the

♣ codes without zero entry are used to define the position of the control nodes of GCX gates.

≅
−Δ

−Δ

−

FIG. 13. Quantum circuit implementing a ∧1(
n−1) gate.

rotations. From these, we can calculate the GCX gate count
based on QSD.

The exact GCX counts based on generalized QSD are
tabulated in Table I. When the number of qudits n is
small, it gives the simplest known quantum circuit, and
when d is a power of two, the circuits given here have the
best known asymptotic features. The n-ququart (d = 4) gate is
needed asymptotically O(47/80 × 42n) GCX gates, whereas it
needs asymptotically O(2 × 42n) GCX gates based on a spectral
algorithm. Moreover, we compare ququart circuits with qubit
circuits based on QSD in Table II. Here the gate counts of a
generic n-ququart circuit are obtained with recursion bottoms
out at one-ququart gates (l = 1); they are smaller than that
of the corresponding 2n-qubit circuit (l = 1). The counts can
be improved further by finding more efficient synthesis of
two-qudit gates and using some special optimal techniques.

From this, the advantage of ququart over qubit in the synthesis
of generic quantum circuits has been presented.

VI. CONCLUSION

We propose the GCX gate as the two-qudit elementary
gate of multivalued quantum circuits, and based on Cartan
decomposition, the one-qudit elementary gates are also given.
They are simple, efficient, and easy to implement. With these
gates, various qudit circuits can be efficiently synthesized.
Moreover, it can be used as a unified measure for the
complexity of various quantum circuits. So the crucial issue of
which gate is chosen as the elementary gate of qudit circuits
is addressed. In spite of the difficulties with the tensor product
structure of qudits, the methods used in qubit circuits still can
play a very important role. The comparison of ququart circuits
and qubit circuits based on QSD reveals that using ququart
circuits may have an advantage over the qubit circuits in the
synthesis of quantum circuits.

Multivalued quantum computing is a new and exciting
research area. In the synthesis of multivalued quantum circuits
there is still plenty of work to do. It will further reveal
the advantages of qudit circuits over the conventional qubit
circuits. Choosing a suitable quantum system, such as trapped
ions, superconducting qudits, and quantum dots, to investigate

TABLE I. Exact GCX gate count for the synthesis of qudit quantum circuits obtained using the QSD decomposition. Here � means this
count is better than that using the spectral algorithm obtained by Eq. (4).

n d = 3 d = 4 d = 5 d = 6 d = 7 d = 8

2 �44 �108 �272 �510 �828 �1176
3 �692 �2232 �10256 �25860 �52740 �85456
4 �6860 �37800 �336144 �1158720 �2965788 �5551504
5 �83924 �613248 �10796560 �51109320 �166400964 �355955600
6 �1011932 �7392768 �345689872 �2.25 × 109

�9.32 × 109
�2.28 × 1010

7 12157748 �118419456 �1.11 × 1010
�9.90 × 1010

�5.22 × 1011
�1.46 × 1012

8 145936700 �1.90 × 109 3.55 × 1011
�4.36 × 1012

�2.92 × 1013
�9.34 × 1013

TABLE II. A Comparison of gate counts of ququart circuits and qubit circuits [20] based on QSD. The index l denotes the recursion bottoms
with which the results come out at one-qubit or one-ququart gates (l = 1), or two-qubit gates (l = 2).

1 2 3 4 n

n-ququart gate (l = 1) 0 108 2232 37800 (47/80) × 42n − (11/4) × 4n + 8/5
2n-qubit gate (l = 1) 6 168 2976 48768 (3/4) × 42n − (3/2) × 4n

2n-qubit gate (l = 2) 3 120 2208 36480 (9/16) × 42n − (3/2) × 4n

2n-qubit gate (l = 2, optimal) 3 100 1868 30927 (23/48) × 42n − (3/2) × 4n + 4/3
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the physical implementation of multivalued quantum logic
gates and undertaking the experimental work is crucial for
the development of multivalued quantum information science.
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APPENDIX A: CARTAN DECOMPOSITION

The Cartan decomposition of a Lie group depends on the
decomposition of its Lie algebras [24]. Let g be a semisimple
Lie algebra and there is the decomposition

g = l ⊕ p, (A1)

where l and p satisfy the commutation relations

[l,l] ⊆ l,[l,p] ⊆ p,[p,p] ⊆ l, (A2)

where we said the decomposition is the Cartan decomposition
of Lie algebra g. The l is closed under the Lie bracket, so
it is a Lie subalgebra of g, and p = l⊥. A maximal Abelian
subalgebra a contained in p is called a Cartan subalgebra.
Then the element M of Lie group G can be decomposed as

M = K1AK2, (A3)

where G = eg, K1,K2 ∈ el, and A ∈ ea.
For the qutrit case, we have eight independent ternary

Pauli’s matrices: three σ
(ij )
x matrices, three σ

(ij )
y matrices,

and two independent σ
(ij )
z matrices in the three of them.

Multiplying these eight Pauli’s matrices by i, we get the basis
vectors of Lie algebra su(3), which we called the qusi-spin
basis. Together with the 3 × 3 identity matrix multiplied by
i, they constitute the basis vectors of Lie algebra u(3). Take a
kind of AIII-type Cartan decomposition [24] of u(3), that is

u(3) = s[u(2) ⊕ u(1)] ⊕ s[u(2) ⊕ u(1)]⊥. (A4)

Lie subalgebra s[u(2) ⊕ u(1)] consists of subalgebra su(2) and
a complex basis r = diag{I2,−2} = 2σ (02)

z − σ (01)
z . We choose

s[u(2) ⊕ u(1)] = span
{
i
(
σ (01)

x ,σ (01)
y ,σ (01)

z ,r
)}

(A5)

and its Cartan subalgebra

a = span
{
i
(
I3,iσ

(02)
y

)}
. (A6)

So the one-qutrit matrix can be decomposed as

M = eiαM̃
(01)
1 R(01)

z (−θ )R(02)
z (2θ )R(02)

y (β)

×R(02)
z (2θ ′)R(01)

z (−θ ′)M̃ (01)
2

= eiαM
(01)
1 M (02)M

(01)
2 . (A7)

Lie subalgebra and Cartan subalgebra of the Cartan decom-
position can be different, so the decomposition is not unique,
and we can get the more generic Eq. (1) in Sec. II.

For the generic qudit case, we can also use the qusi-
spin basis. There are 1

2d(d − 1) σ
(ij )
x matrices, 1

2d(d − 1)

σ
(ij )
y matrices, and d − 1 independent σ

(ij )
z matrices for

an n-dimensional Hilbert space. Multiplying these d2 − 1
independent qusi-spin matrices by i, we gain the basis vectors
of the Lie algebra su(d). Together with a d × d identity matrix
multiplied by i, they constitute the basis vectors of Lie algebra
u(d). We also take a kind of AIII-type Cartan decomposition
for u(d), that is,

u(d) = s[u(d − 1) ⊕ u(1)] + s[u(d − 1) ⊕ u(1)]⊥. (A8)

The Lie algebra s[u(d − 1) ⊕ u(1)] consists of subalgebra
su(d − 1) and a complex basis r = diag{Id−1,−(d − 1)}. We
choose its Cartan subalgebra

α = span
{
i
(
Id,σ

(d−2,d−1)
y

)}
, (A9)

so the arbitrary one-qudit matrix can be expressed as

M = eiαK1R
(d−2,d−1)
y (β)K2, (A10)

where Ki ∈ S[U(d − 1) ⊕ U(1)] group. The matrix M can be
reexpressed as

M = eiαK̃ ′
1e

iθrR(d−2,d−1)
y (β)eiθ ′r K̃ ′

2

= eiαK ′
1M

(d−2,d−1)K ′
2, (A11)

where K̃ ′
i ,K

′
i ∈ SU(d − 1) ⊕ 1. That is because that r can be

expressed as a linear combination of σ
(jk)
z s, r = σ (0, d−2)

z +
· · · + σ (d−3,d−2)

z + (d − 1)σ (d−2, d−1)
z , so the eiθr is a product

of a series of R
(jk)
z s. The R(d−2, d−1)

y combines with R(d−2, d−1)
z

in eiθr and eiθr ′
to form the M (d−2, d−1); other R

(jk)
z s are

absorbed in K ′
is.

From Eq. (A11) we can see that the d-dimensional one-
qudit elementary gates need one pair of R

(jk)
α gates more

than that for the (d − 1)-dimensional qudit. They come from
Euler decomposition of M (d−2, d−1). The (d − 1)-dimensional
qudit matrix K ′ can be decomposed further in the same mode.
The successive decomposition can be done until the qutrit
occurs. So we can infer that the set of d-dimensional one-qudit
elementary gates has d − 1 pairs of R

(jk)
α gates.

APPENDIX B: SYNTHESIS OF p ∧2 (X) GATE

Many syntheses of gates given in Sec. IV can be verified
by matrix computing. In the simplest case of Fig. 9, we get the
p ∧2 (X) gate. For d = 3, m = 2, m′ = 2, X(ij ) = X(12), we
calculate the matrix

M = [
I3 ⊗ I3 ⊗ R(12)

y (−π/4)
] · (I3 ⊗ GCX)

· [I3 ⊗ I3 ⊗ R(12)
y (−π/4)

] · GCX(1 → 3)

· [I3 ⊗ I3 ⊗ R(12)
y (π/4)

] · (I3 ⊗ GCX)

· [I3 ⊗ I3 ⊗ R(12)
y (π/4)

]
. (B1)

The result is

M = diag{I18,Z
(12),Z(12),X(12)}, (B2)
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where

Z(12) =

⎛
⎜⎝

1 0 0

0 1 0

0 0 −1

⎞
⎟⎠ , X(12) =

⎛
⎜⎝

1 0 0

0 0 1

0 1 0

⎞
⎟⎠ . (B3)

If we calculate

M ′ = [
I3 ⊗ I3 ⊗ R(12)

y (π/4)
] · (I3 ⊗ GCX)

· [I3 ⊗ I3 ⊗ R(12)
y (π/4)

] · GCX(1 → 3)

· [I3 ⊗ I3 ⊗ R(12)
y (−π/4)

] · (I3 ⊗ GCX)

· [I3 ⊗ I3 ⊗ R(12)
y (−π/4)

]
, (B4)

the result is

M ′ = diag{I18,Z
(21),Z(21),X(12)}, (B5)

where

Z(21) =

⎛
⎜⎝

1 0 0

0 −1 0

0 0 1

⎞
⎟⎠ . (B6)

The M and M ′ satisfy the definition of p ∧2 (X) gate.
Likewise, the syntheses of the ∧2(INC) gates, the generic
p ∧k (X) gates, and so on have been verified.

≅

α α α α α

FIG. 14. First step decomposition of a uniformly multifold
controlled R(ij )

α rotation.

APPENDIX C: SYNTHESIS OF MULTIVALUED
UNIFORMLY MULTIFOLD CONTROLLED

R(i j )
α (α ∈ y,z) ROTATION

Taking d = 3 as an example, the first step of the decompo-
sition is shown in Fig. 14. It involves four GCX gates and four
uniformly (k − 1)-fold controlled R

(ij )
α rotations.

The second step is to decomposition the four uniformly
(k − 1)-fold controlled rotations. It produces eight GCX gates
and 12 uniformly (k − 2)-fold controlled rotations. In the
process, four pairs of GCX gate cancel, and four pairs of
uniformly (k − 2)-fold controlled rotation are combined. The
uniformly (k − 2)-fold controlled rotation can be decoupled
further. The method can be used to generic case. The first
step produces a 2(d − 1) GCX gate, the second step produces
2(d − 1)2 GCX gates, and so on. Totally, it needs
2dk−1(d − 1)GCX gates.

The quantum circuit implementing ternary uniformly
twofold controlled Rα rotation is shown in Fig. 12. It has
also been verified by matrix computing.
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