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We develop the theory to describe the generation of entangled-photon pairs in the parametrically induced
transparency regime in an ensemble of � atoms. A highly effective conversion of the monochromatic drive field
into entangled-photon pairs is predicted. In the suggested regime, the generation of entangled photons has some
advantages as compared to the well-known methods, such as a narrow frequency band and a low threshold for
the drive power. The two-mode squeezed vacuum generation is thorouhly investigated.
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I. INTRODUCTION

Nowadays, entangled photons are considered to be the
most suitable method for quantum information transfer [1–5].
These quantum states are of great importance for some
fundamental problems (e.g., Bell’s inequalities tests [6]),
quantum cryptography [7], quantum teleportation [8], and
high-precision measurements [9–11]. Of special interest are
the entangled photons which form the so-called squeezed
vacuum and, particularly, the two-mode squeezed vacuum
[12–16]. The squeezed vacuum can be used for quantum
information processing, e.g., for quantum cryptography [17],
and for quantum noise suppression in interferometers [18,19].

Most schemes of entangled light-state generation are based
on nonlinear processes. In particular, the nonlinear decay of the
drive photon into two signal (probe) photons can be used for
squeezed vacuum generation [20–25]. One of the intensively
developing methods of entangled-photon generation is based
on the electromagnetically induced transparency (EIT) regime
in simple and doubled � schemes [26–35]. This method
uses resonantly enhanced nonlinearities [36]. We believe
that forward four-wave mixing of copropagating waves in
an ensemble of � atoms controlled by a monochromatic
drive field is promising for generation of intense entangled
photons. This case was discovered experimentally in [37], and
the complete theory was developed in [38,39] for classical
correlated fields. We consider a standard three-level � scheme
with the transition frequencies ω31,32,21 (see Fig. 1), which
are driven by an intense wave with the frequency ωd = ω32
(D wave). In such a system the signal (probe) wave with the
frequency of an anti-Stokes drive satellite ωp ≈ ωd + ω21 ≈
ω31 (P wave) propagates in the EIT regime. Drive scattering by
the low-frequency (LF) transition with the frequency ω21 also
generates a Stokes satellite with the frequency ωs ≈ ωd − ω21
(S wave) (see Fig. 1). Earlier studies of the EIT effect showed
that propagation of a P wave in a medium, which is opaque
for it, is possible due to the nonlinear coupling of the P

and D waves with any fairly long-lived mode of collective
oscillations of the medium. As in our previous papers, we will
call this regime “parametrically induced transparency”(PIT).
Unlike the standard variant of EIT, in this regime the condition
of synchronism of wave vectors, which is required for the
nonlinear wave processes, is not fulfilled automatically, but is
significantly dependent on the dispersion characteristics of the
waves under consideration. PIT is different from the standard

Raman scattering in that the medium is opaque for the P wave
in the absence of the nonlinear coupling with other waves.
The generation of bichromatic waves (combination of P and
S waves) is most effective in the four-wave-mixing regime,
which is determined by the energy-conservation law

2h̄ωd = h̄ωp + h̄ωs (1)

and the momentum-conservation law

2h̄kd = h̄kp + h̄ks . (2)

The linear theory from [38] explains previous experiments
on the Stokes satellite generation in the EIT propagation
regime for the probe field [40–42]. The nonlinear theory
was developed in [39], which predicted special regimes with
an almost complete transformation of drive radiation into
correlated polychromatic radiation.

In this paper, we present theoretical analysis of generation
of entangled photons, and, especially, the squeezed vacuum,
in the process of forward four-wave mixing in an optical
dense three-level � medium. Some benefits of this method
are revealed.

The paper is structured as follows. In Sec. II, we discuss
approximations and obtain the field operator equations. In
Sec. III, we construct a solution in the form of biharmonic
normal modes. In Sec. IV, we estimate the dissipation effects.
In Secs. V and VI, we consider the regimes of the biphoton
generation and the squeezed vacuum generation. In Sec. VII,
we make some numerical estimations and compare our results
with the parametric down-conversion method. In Sec. VIII, we
formulate our results and discuss them.

II. FORMALISM

At first, we formulate general relations, which determine
one-dimensional propagation of quantized fields with a rel-
atively narrow spectrum. The simplest way to obtain such
equations is to apply the “slowly varying amplitude” method
to the well-known wave equation for the Heisenberg quantum
field operator [46,47]:1

∂2

∂t2
(Ê + 4π P̂) − c2 ∂2 Ê

∂z2
= 0. (3a)

1The derivation of Eq. (3a) from the quantum Hamiltonian of the
field and medium system is presented, e.g., in [56].
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FIG. 1. � scheme with excitation of a Stokes wave.

This equation contains the electric-field operator Ê and the
polarization operator P̂ . We assume that all fields are x

polarized. If the spectrum is narrow and concentrated near
the carrier frequency ω0, we can represent the field operator
Ê in the following form:

Ê = x0[Ê(+) (z,t) eik0z−iω0t + Ê(−) (z,t) e−ik0z+iω0t ]; (3b)

here, x0 is a unit polarization vector, Ê(+,−) (z,t) are the
Hermitian conjugate Heisenberg operators for the slowly
varying amplitudes:

Ê(+) (z,t) =
∑

δ

Ê
(+)
δ (z) e−iδt , Ê(−) (z,t) =

∑
δ

Ê
(−)
δ (z) eiδt ,

Ê
(+)
δ (z) = Eδĉδ (z) , Ê

(−)
δ (z) = Eδĉ

†
δ (z) , (3c)

the set of the frequency detuning δ defines the quantization
modes set, Eδ are the normalization constants, and ĉδ (z) and
ĉ
†
δ (z) are the Fock state annihilation and creation operators,

which in our case depend on the coordinate. Thus, in our
description, the “slow” coordinate dependence of the field
corresponds to the similar dependence of operators. As in [47],
we represent the medium polarization operator in the following
form:

P̂ = x0[P̂ (+) (z,t) eik0z−iω0t + P̂ (−) (z,t) e−ik0z+iω0t ],

(4a)

P̂ (+) (z,t) =
∑

δ

P̂
(+)
δ (z) e−iδt ,

(4b)
P̂ (−) (z,t) =

∑
δ

P̂
(−)
δ (z) eiδt ,

where

P̂
(+)
δ (z) = χ (ω0 + δ)Ê(+)

δ (z) + P̂
(+)
N,δ (z) + P̂

(+)
L,δ (z) ,

(4c)
P̂

(−)
δ (z) = χ∗(ω0 + δ)Ê(−)

δ (z) + P̂
(−)
N,δ (z) + P̂

(−)
L,δ (z) ,

χ (ω0 + δ) is the linear susceptibility at the frequency
ω = ω0 + δ, P̂

(+,−)
N,δ and P̂

(+,−)
L,δ are the spectral polarization

terms, which correspond to the nonlinear (or parametrical)
processes and Langevin noise respectively. The Langevin
noise depends on the dissipative effects through the imaginary
component of susceptibility Imχ—see, e.g. [12,43–45,47]. We

define the wave number k0 by the relation c2k2
0/ω

2
0 = n2(ω0),

where n2(ω0) = 1 + 4πReχ (ω0) is the linear refractive index
at the “carrier” frequency ω0. We use the known results of
the procedure of quantization in a transparent medium [48] to
determine the normalization constants:2

Eδ =
√

4πh̄ω2

(
∂(ω2Ren2(ω))

∂ω

)−1

ω=ω0+δ

. (5a)

With this normalization operator n̂δ = ĉ
†
δ ĉδ corresponds to

the spatial density of the photon number in the medium
at the frequency ω0 + δ [48]. As in [48], we consider the
quantization volume V , which is much less than the scale
of spatial variation for the field intensity.3 According to [48]
and field representations (3b) and (3c), Eq. (5a) corresponds
to the following expression for the energy field operator in
the volume V (without consideration of the dissipation and/or
nonlinear processes),

Ŵ = h̄
∑

δ

(ω0 + δ)

(
V n̂δ + 1

2

)
, (5b)

and the following commutation relation:

[ĉδ,ĉ
†
δ′ ] = δδδ′/V . (5c)

It is significant that field energy operator (5b) includes both the
field energy and the medium excitation energy (see also [48]).

We assume that the frequency band is narrow, so we
simplify relation (3c) by using one and the same normalization
constant E0 = Eδ=0 for all values of δ. In this case, we obtain

Ê(+) ≈ E0ĉ0 (z,t) , Ê(−) ≈ E0ĉ
†
0 (z,t) , (6a)

where

ĉ0 (z,t) =
∑

δ

ĉδ (z) e−iδt , ĉ
†
0 (z,t) =

∑
δ

ĉ
†
δ (z) eiδt . (6b)

Here, ĉ0 (z,t) , ĉ
†
0 (z,t) are the “slowly varying” amplitudes

for the Heisenberg annihilation and creation operators. For
them, we obtain the commutation relations, which do not
depend on the arbitrary quantization volume V . Let us see
the volume equal to a ray tube with square �S and length
l = V/�S along the ray axis. The number of z-propagating
modes dZ in the wave vector interval dk is determined by the
following expression [45]:4

dZ = l

2π
dk = l

2π
k′
ωdω (7a)

(here, dω is the frequency interval corresponding to the wave
number interval). Using relations (5c), (6b), and (7a), we obtain
the following commutation relation:

[ĉ0 (z,t) ,ĉ
†
0(z,t ′)] = δ(t − t ′)

�Sνgr

, (7b)

2At the “vacuum” limit n2 = 1, this normalization corresponds
to the standard one for the unit quantization volume case: Eδ =√

2πh̄(ω0 + δ).
3The quantization volume is large according to the wavelength.
4One can obtain the same expression by multiplying the state density

(V k2/8π 3)k′
ω by the beam spectral angular width 4π 2/k2�S.
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where

νgr =
(

∂ω

∂k

)
ω=ω0

= 2k0c
2

(
∂(ω2Ren2(ω))

∂ω

)−1

ω=ω0

(8)

is the group velocity. Relation (7b) is of great generality. For
example, an analogous relation was obtained in [45] for a
particular case of a medium without frequency dispersion and
with a different field normalization.

The simplest way to obtain the evolution equation for
annihilation and creation operators is to substitute rela-
tions (3b), (4a), (4b), (6a), and (6b) into operator wave
equation (3a). For further evaluations, we need equations
for the z dependence of the harmonic field components
E0ĉδ (z) eik0z−i(δ+ω0)t and E0ĉ

†
δ (z) e−ik0z+i(δ+ω0)t . As in [48],

we take the “additional” polarization components P̂
(+,−)
N,δ

and P̂
(+,−)
L,δ into account by the perturbation method. Here,

we make the following approximations: (i) narrow spectrum
condition, |δ| � ω0; (ii) transparent medium approximation,
Ren2 � Imn2; (iii) operators ĉδ (z) and ĉ

†
δ (z) depend slowly

on the coordinate on the wavelength scale 2π/k0.
We use the relations

∂2

∂t2
[n2(ω0 + δ)ĉδe

−i(δ+ω0)t ]

≈ −e−i(δ+ω0)t

[
ω2

0n
2(ω0) + δ

(
∂(ω2n2(ω))

∂ω

)
ω=ω0

]
ĉδ,

− ∂2

∂z2
[ĉδ (z) eik0z] ≈ eik0z

(
k2

0 − 2ik0
∂

∂z

)
ĉδ (z)

and use expression (8) as well, for group velocity, and obtain
the following equation for the annihilation operator ĉδ (z):(

−iδ + νgr

∂

∂z
+ γδ

)
ĉδ = i

h̄

(
P̂

(+)
N,δ + P̂

(+)
L,δ

)
E0. (9a)

Here

γδ = ω2
0Imn2(ω0 + δ)

[∂(ω2Ren2(ω))/∂ω]ω=ω0

. (9b)

We also obtain a Hermitian conjugated equation for the
creation operator ĉ

†
δ . In the case of low optical density,

relation (9a) is simplified by substitution of νgr = c and
Ren2 = 1 (see, e.g. [43,44]). The case of a dense medium
is specified, and a relation similar to Eq. (9a) is obtained
in [48] for ideal resonator modes, i.e., for the case with no
convective and dissipative loss. We use the above-derived
general expressions (9a) and (9b) for the Heisenberg field
operators in medium and results of papers [38] and [39] to
analyze the four-wave interaction in the � system.

The consistency of Eqs. (1) and (2) depends on wave
dispersion in the medium. In this case, rapid dependence of
wave vector kp

(
ωp

)
on the frequency in the EIT “transparency

window” is of great importance. The corresponding one-
dimensional (1D) theory was developed in [38] and [39],
where the formula for the resonant frequencies5 ω0

p and ω0
s

5We consider copropagating waves, because conditions (1) and (2)
cannot be fulfilled, if the signal and the drive waves counterpropagate.

was obtained:

ω0
p = ω31 + �ωPIT, ω0

s = 2ω32 − ω31 − �ωPIT. (10)

Here, �ωPIT = 5�2
R/2ω21, �R = |d32ξd |

2h̄ is the Rabi frequency
for the drive field with the amplitude ξd , and d32 is the
electric dipole moment of corresponding transition. It is of
great importance that condition (10) does not depend on either
the �-atom density or the background refractive index. 6 In the
so-called parametrically induced transparency (PIT) band [38],
there is convective instability for wave pairs with frequencies
ωδ;p = ω0

p + δ and ωδ;s = ω0
s − δ. The instability takes place

in the case of the frequency band which is much narrower than
the EIT transparency window:

− 4
5�ωPIT � δ � 4

5�ωPIT. (11)

If we allow for the relaxation processes, the instability band
broadens (dissipative instability regime), but the maximum of
the increment corresponds to the weak relaxation case [38,39].

We assume that all waves propagate in the z direction and
the x polarized, and the �-atom layer is plane parallel. We
describe the drive field classically:

Ed = x0(ξde
ikdz−iωd t + ξ ∗

d e−ikd z+iωd t ). (12a)

It is a standard approximation [43–45]. Here, the signal
field corresponds to two relatively narrow spectral intervals
near the frequencies ω0

p and ω0
s . We call this field the biband

wave (BBW). We use an operator form similar to Eq. (3b) for
signal wave fields:

Ê = x0

[
Ê(+)

p (z,t) eik0
pz−iω0

pt + Ê(+)
s (z,t) eik0

s z−iω0
s t

+ Ê(−)
p (z,t) e−ik0

pz+iω0
pt + Ê(−)

s (z,t) e−ik0
s z+iω0

s t
]
. (12b)

Here, k0
p = kp(ω0

p), k0
s = ks(ω0

s ) and the Heisenberg oper-

ators Ê(+,−)
p and Ê(+,−)

s correspond to the P and S waves. For
these operators, we use a representation similar to Eqs. (6a)
and (6b):

Ê(+)
p,s =

∑
δ

Ep,s ĉδ;p,s (z) e∓iδt ,

(12c)
Ê(−)

p,s =
∑

δ

Ep,s ĉ
†
δ;p,s (z) e±iδt .

Here, the index “p” corresponds to the upper sign under
exponents and the index “s” corresponds to the lower sign,
and Ep,s are the normalization constants similar to E0 in
formula (6a):

Ep,s =
√

4πh̄ω2

(
∂ω2Ren2

p,s (ω)

∂ω

)−1

ω=ω0
p,s

. (13)

Here, n2
p,s (ω) are the frequency-dependent refractive indexes

for the corresponding waves, which will be specified below.
Annihilation and creation operators ĉδ;p,s (z) and ĉ

†
δ;p,s cor-

respond to the resonant frequency pairs ωδ;p,s = ω0
p,s ± δ,

6The background refractive index can be determined by other levels
neglected in the resonant scheme, the buffer gas, the material of the
matrix doped with atoms in condensed media, etc.
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which satisfy synchronism condition (1). Operators ĉδ;p,s (z)

and ĉ
†
δ;p,s depend on the z coordinate slowly on the wavelength

scale 2π/k0
p,s .

It should be emphasized that the classic drive field with
constant power implies that the refractive indexes n2

p,s in
Eq. (13) may depend on the drive field amplitude as a
parameter. In the case similar to (5b), the expressions for the
energy field operators do not simply correspond to a sum of the
“vacuum” signal field energy and the corresponding medium
excitation energy, but also contain a reversible exchange of
energy between the medium and the drive field. However, this
detail does not change any formulas in the linear in quantum
field theory (see also [49,50]).

We use papers [38] and [39] to determine the polarization
P̂ of the medium under the influence of P and S waves in
the presence of drive field. These papers present a solution of
the equation system for the � -system density operator in the
classical electromagnetic field case. In the case of a quantum
description of the P and S waves, there are similar formulas
for the density operator (and, consequently, the polarization
operator), if (i) the drive field is nonquantum and (ii) the theory
is linear on quantum field.

The only difference from the classic field case is the
substitution of the complex amplitudes of the P and S waves by
the corresponding Heisenberg field operators (12c). Moreover,
because of the dissipation we should, in principle, take into
consideration the polarization thermal noise. As in [12], we
treat the thermal fluctuation effect by simply introducing
Langevin noise sources directly in the final equations for the
Heisenberg field operators.

At first, we obtain the “dynamic” components of the
medium polarization operator at the frequencies of the P and S

waves. We represent them in the form similar to formulas (4a)
and (4b):

P̂ = x0
[
P̂ (+)

p (z,t) eik0
pz−iω0

pt + P̂ (−)
p (z,t) e−ik0

pz+iω0
pt

+ P̂ (+)
s (z,t) eik0

s z−iω0
s t + P̂ (−)

s (z,t) e−ik0
s z+iω0

s t
]
, (14a)

where

P̂ (+)
p,s (z,t) =

∑
δ

P̂
(+)
δ;p,s (z) e∓iδt ,

(14b)
P̂ (−)

p,s (z,t) =
∑

δ

P̂
(−)
δ;p,s (z) e±iδt

(the index “p” corresponds to the upper sign under exponent
and the index “s” corresponds to the lower one). Papers [38]
and [39] state that, if synchronism relations (1) and (2) are
fulfilled, the spectral components of the medium polarization
operator at the frequencies of the P and S waves are determined
by the following general relations:

P̂
(+)
δ;p = χppEpĉδ;p + χpse

2iθEs ĉ
†
δ;s ,

P̂
(+)
δ;s = χssEsĉδ;s + χspe2iθEpĉ†p;s ,

(15)
P̂

(−)
δ;p = χ∗

ppEpĉ
†
δ;p + χ∗

pse
−2iθEs ĉδ;s ,

P̂
(−)
δ;s = χ∗

ssEs ĉ
†
δ;s + χ∗

spe−2iθEpĉδ;p,

where θ is the drive field income phase. Similar to papers [38]
and [39], we define χpp, χss , χps , and χsp in the following
model approximations.

(i) The “rotating wave” approximation:

|ωδ;p − ω31| = |ωδ;s − ω32 + ω21| � ω21 � ω31,32; (16)

(ii) a hierarchy of relaxation constants:

γ21 � γ31,32 � ω21; (17)

(iii) some conditions for the drive field Rabi frequency

�2
R � γ31 · γ21, (18)

�R � γ31,32. (19)

Condition (18) provides the EIT-regime realization. Due to
condition (19), we assume that the drive field does not change
populations.

(iv) Only state |1〉 is populated.
We refer to [38] and [39] for detailed calculations and write

down the result: 7

χpp = η

4π�R

[
ωδ;p − ω31

�R

− |d31|2
|d32|2

�R

ω21

+i

(
γ21

�R

+ γ31(ωδ;p − ω31)2

�3
R

)]
,

χss = η

8πω21

(
1 − 3

2

ωδ;s − ω32 + ω21

ω21

− 3i

2

γ31

ω21

)
,

χps = χsp = − η

4πω21

. (20)

Here, d31,32 are the dipole moments of corresponding tran-
sitions, η = 4π |d31|2N/h̄, and N is the �-atoms density.8

Note that the factors χps and χss do not depend on the drive
field due to inequality (18), because in the EIT-PIT regime

these dependences are determined by the factor �2
R

�2
R+γ31γ21

≈ 1

(see [38] for more detail).
We substitute formulas (12b), (12c), (13), (14a), (14b),

and (15) into operator wave equation (3a). So we obtain
equations like (9a) and (9b) for the P and S waves. The
last terms in the right parts of Eqs. (15) correspond to the
polarization components P̂

(+)
N ;δ in the right-hand parts of field

operator equations (9a); the terms guarantee the parametrical
coupling of P and S waves. First terms in the right-hand
parts of Eqs. (15) determine the corresponding refractive
indexes n2

p,s = 1 + 4πχpp,ss . These indexes determine nor-
malization (13), group velocities, and wave decrements (or
increments).9 We also take into consideration the condition
for the �-atoms density and level splitting in the three-level

7Relations (20), according to the same in paper [38], have some
nonessential corrections in formulas for Reχpp and Reχss .

8Unlike in [38], we neglect effects of the nonresonant medium
(background refractive index, etc.) for simplicity.

9Previously used formulas (10) and (11) also follow from the corre-
sponding expressions for the refractive indexes n2

p,s = 1 + 4πχpp,ss .
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system:

η � ω21. (21)

Condition (21) means that the four-wave shift influence on the
partial wave dispersion laws is weak to a certain extent.

Similar to [38], it is appropriate to write the resulting
equations for operators, which describe photon fluxes. For that
purpose, we introduce operators p̂δ,ŝδ and p̂

†
δ,ŝ

†
δ ; thereby the

dyads p̂
†
δp̂δ and ŝ

†
δ ŝδ are the P,S-photon flux density operators.

Finally, we obtain quantum operator equations by adding the
corresponding Langevin noise operators (Langevin forces) to
the right-hand parts of the equations:(

∂

∂z
− iδ

V
gr

EIT

+ κEIT

)
p̂δ = −iχPITe2iθ ŝ

†
δ + F̂δ;p,

(22)(
∂

∂z
− iδ

V
gr
s

− μs

)
ŝ
†
δ = iχPITe−2iθ p̂δ + F̂

†
δ;s ,

where F̂δ;p and F̂
†
δ;s are the spectra for the Langevin operators,

which are described in detail in [12],

V
gr

EIT ≈ c

1 + ηωHF/2�2
R

, V gr
s ≈ c

1 − 3ηωHF/8ω2
21

, (23)

where V
gr

EIT is the group velocity for signal (probe) wave at
the EIT conditions, V

gr
s is the Stokes satellite group velocity,

and ωHF ≈ ωd ≈ ωδ;p ≈ ωδ;s is the characteristic frequency of
radiation. One can see that according to Eq. (23), V gr

s is a group
velocity that exceeds the speed of light and can be negative
at certain parameters. This effect is well known for active
and dissipative media and does not lead to any paradox (see
[51–54]). However, within the scope of our paper, we restrict
ourselves to the “positive” group velocities case for simplicity.

“Flux” operators p̂δ , p̂†
δ and ŝδ , ŝ†δ relates to previously intro-

duced field operators ĉδ;p, ĉ†δ;p and ĉδ;s , ĉ
†
δ;s the following way:

p̂δ =
√

V
gr

EITĉδ;p, p̂
†
δ =

√
V

gr

EITĉ
†
δ;p,

ŝδ =
√

V
gr
s ĉδ;s , ŝ

†
δ =

√
V

gr
s ĉ

†
δ;s . (24)

Other notations in Eqs. (22) are as follows:

κEIT ≈ ηω31

2c�2
R

(
γ21 + γ31

(ωδ;p − ω31)2

�2
R

)

is the absorption coefficient for the P wave with the frequency
ωδ;p = ω0

p + δ in the EIT regime; μs ≈ 3ωHFηγ31

8cω2
21

is the spatial

increment for dissipative instability transformation h̄ωd →
hωs + h̄ω21 which was reported in [38]; χPIT ≈ ωHFη

2cω21
is

the parametric wave interaction coefficient under resonance
conditions (1, 2); and θ is the drive field income phase.
In a transparent medium (i.e., κEIT = μs = F̂δ;p = F̂δ;s = 0),
Eqs. (22) have an integral, which expresses conservation
of the difference of P,S-photon fluxes in process (1, 2):
∂
∂z

(p̂†
δp̂δ − ŝ

†
δ ŝδ) = 0 (Manley-Rowe relation [48]).

Equations (22) need the corresponding boundary condi-
tions. Let us denote the border between the � medium and the
vacuum by z = zb. Similar to [38], we neglect the weak energy
flux reflection from the boundary. In this case, we suppose that
the operators p̂δ and ŝδ are continuous and get the following
relations for the field operators ĉδ;p and ĉδ;s in the vacuum and
the “flux” operators p̂δ and ŝδ in the medium:

ĉδ;p (zb)

∣∣∣∣
vacuum

= 1√
c
p̂δ (zb)

∣∣∣∣
medium

,

(25)

ĉδ;s (zb)

∣∣∣∣
vacuum

= 1√
c
ŝδ (zb)

∣∣∣∣
medium

.

Relations (22) and (25) make a complete description of the
transportation of quantum states of light through the �-atoms
layer.

We present some useful expressions for photon flux
operators in vacuum N̂p,s in a light beam with a constant
square of the cross section:

N̂p ≈ c�S
∑

δ

ĉ
†
δ;pĉδ;p, N̂s ≈ c�S

∑
δ

ĉ
†
δ;s ĉδ;s

(�S is the square of the beam cross section). Moving to the
continuous interval of the frequency detuning �ω, we use
relation (7a). For the unit quantization volume l�S = 1, we
obtain formulas

N̂p = 1

2π

∫
�ω

ĉ
†
δ;pĉδ;pdδ, N̂s = 1

2π

∫
�ω

ĉ
†
δ;s ĉδ;sdδ. (26a)

Here, the operators ĉ
†
δ;p, ĉδ;p and ĉ

†
δ;s , ĉδ;s correspond to the

creation and annihilation operators in the standard unit volume
normalization.

Using formulas (12b) and (12c), we similarly obtain a
convenient formula for the beam aperture average of the
electric-field correlator in vacuum:

〈Ê(z,t)Ê(z,t ′)〉 = h̄

c�S

∫
�ω

〈Ĝδ(z,t,t ′)〉dδ, (26b)

where

〈Ĝδ(z,t,t ′)〉 = ω0
p{2〈ĉ†δ;p(z)ĉδ;p(z)〉 cos[ωδ;p(t − t ′)] + eiωδ;p(t ′−t)} + ω0

s {2〈ĉ†δ;s(z)ĉδ;s(z)〉 cos[ωδ;s(t − t ′)] + eiωδ;s (t−t ′)}
+

√
ω0

pω0
s 〈ĉ†δ;p(z)ĉδ;s(z)〉ei(k0

s −k0
p)z(ei(ωδ;pt−ωδ;s t

′) + ei(ωδ;pt ′−ωδ;s t))

+
√

ω0
pω0

s 〈ĉ†δ;s(z)ĉδ;p(z)〉ei(k0
p−k0

s )z(ei(ωδ;s t−ωδ;pt ′) + ei(ωδ;s t
′−ωδ;pt))

+ [
ω0

p〈ĉδ;p(z)ĉδ;p(z)〉e2ik0
pz−iωδ;p(t+t ′) + ω0

s 〈ĉδ;s(z)ĉδ;s(z)〉e2ik0
s z−iωδ;s (t+t ′)

+
√

ω0
pω0

s 〈ĉδ;p(z)ĉδ;s(z)〉ei(k0
s +k0

p)z(e−i(ωδ;pt+ωδ;s t
′) + e−i(ωδ;pt ′+ωδ;s t)) + H.c.

]
. (26c)
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When finding the correlator of the electric field, we are not
interested in the terms with a different frequency detuning
(e.g., ĉ

†
δ;pĉδ′;p). We can see from Eqs. (22) that such operators

are completely independent and the average of their product
for nonentangled initial values is identically equal to zero.
Equation (22) means that the operators of P and S waves,
which correspond to one and the same index δ (e.g., ĉδ;p

and ĉ
†
δ;s), become dependent on each other after transmission

through the atom layer.

III. ANALYTIC SOLUTION FOR FIELD
OPERATOR EQUATIONS

Equations (22) have the following general solution:(
p̂δ

ŝ
†
δ

)
=

(
1

QX (δ)

)
eiqX(δ)z

(
ûX +

∫ z

0
e−iqX(δ)ξ f̂δ;Xdξ

)

+
(

1

QO (δ)

)
eiqO (δ)z

(
ûO +

∫ z

0
e−iqO (δ)ξ f̂δ;Odξ

)
,

(27)

where

qO,X (δ) = δ

2

(
1

V
gr

EIT

+ 1

V
gr
s

)
+ i

κEIT − μs

2
± iχPIT

√
1 − σ 2,

(28)

σ = δ

2χPIT

(
1

V
gr

EIT

− 1

V
gr
s

)
+ i

2χPIT

(κEIT + μs), (29)

and

QO,X(δ) = (σ ∓
√

σ 2 − 1)e−2iθ . (30)

Solution of Eq. (22) has the form of a superposition of
two bichromatic normal modes in the medium. As in [38],
we denote them the O and X modes. The coefficients QO,X

determine the amplitude ratio of the harmonic components
in the corresponding normal mode (they are similar to the
polarization factor in an anisotropic medium; see also [38]).
Formula (28) means that the X mode is always unstable.
Arbitrary operators ûX and ûO are determined by boundary
conditions (25). We specify the input field operators ĉδ;p (0)

and ĉ
†
δ;s (0) at the layer boundary z = 0 in vacuum and obtain

ûX = √
c
QO (δ) ĉδ;p (0) − ĉ

†
δ;s (0)

QO (δ) − QX (δ)
,

(31)

ûO = √
c
ĉ
†
δ;s (0) − QX (δ) ĉδ;p (0)

QO (δ) − QX (δ)
.

In (27), f̂δ;X and f̂δ;O are the Langevin sources for the O and
X modes:

f̂δ;X = QO (δ) F̂δ;p − F̂
†
δ;s

QO (δ) − QX (δ)
, f̂δ;O = F̂

†
δ;s − QX (δ) F̂δ;p

QO (δ) − QX (δ)
.

(32)

From Eqs. (27) and (31), it is clear that uncorrelated pho-
tons, which passed throw the driven �-atoms layer, became en-
tangled in pairs, being coupled in compliance with relation (1).
Formally, it follows from functional connections p̂δ (z) =
p̂δ(ĉδ;p (0) ,ĉ

†
δ;s (0) ,z) and ŝ

†
δ (z) = ŝ

†
δ (ĉδ;p (0) ,ĉ

†
δ;s (0) ,z)

which are determined by formulas (27) and (31).

IV. ESTIMATIONS OF DISSIPATIVE EFFECTS

Using the well-known estimations for the power of
Langevin sources (see [12,47]) and exact solution (27), one
can easily get the following estimation:

nL

nE

≈ max(κEIT,μs)

|ImqX|
nT

n0

. (33)

Here, n0 is the number of “seed” photons at the layer input,
nE is the number of the entangled photons at the layer output,
nL is the number of the Langevin “noise” photons, and nT is
the number of the thermal photons corresponding to the layer
temperature T. Quantities nT,0 also contain the so-called zero-
point motion, e.g., nT =0 = 1/2 (in a case of a specific normal-
ization). Estimation (33) corresponds to the paper [55], which
describes the influence of the finite temperature reservoir on
the generation of entangled quantum states in an unstable sys-
tem of two oscillators with harmonically modulated coupling.
Formula (33) means that the contribution of Langevin sources
is weak if nT � |Imqx | / max(κEIT,μs). The regime of strong
instability leads to the optimal generation of entangled photon:

|ImqX| ≈ χPIT � max(κEIT,μs). (34)

For the sake of simplicity we do not consider fluctuations
of the drive field amplitude and phase. Under typical
experimental conditions, they are of less importance than the
Langevin noise sources. It is derived from the independence
of the amplifying coefficient χPIT of the drive power.

V. GENERATION OF ENTANGLED PHOTONS

The most intense entangled-state generation takes place in
the narrow band of the PIT-resonance frequencies (11). In this
band, the condition of comparatively weak dissipative effects
Eq. (34) is automatically fulfilled if

�2
R � ω21γ21 (35)

(see [38,39]). Thus, near the PIT resonance, |δ| � 4
5�ωPIT,

we can neglect the dissipative effects and assume that
κEIT, μs, f̂δ;X, f̂δ;O ≈ 0. We take into account the strong
inequalities V

gr

EIT � V
gr
s and V

gr

EIT � c (it is the well-
known EIT slow light effect10), which leads to the follow-
ing relations: qO,X ≈ δ

2V
gr

EIT
± iχPIT

√
1 − σ 2 and σ ≈ 5

4
δ

�ωPIT
.

Then, solution (27) at the layer output takes on the

10The condition of extremely low group velocity and the inequal-
ity (21) defines the following feasible interval for �-atoms density:

ω21 � η � �2
R

ωHF
.
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following form:

p̂δ(L)√
c

= eiφδ

√
1 − σ 2

(cδ;p(0)[
√

1 − σ 2cosh(τ
√

1 − σ 2) + iσ sinh(τ
√

1 − σ 2)] − ic
†
δ;p(0)e2iθ sinh(τ

√
1 − σ 2)),

(36)
ŝ
†
δ (L)√

c
= eiφδ

√
1 − σ 2

(c†δ;s(0)[
√

1 − σ 2cosh(τ
√

1 − σ 2) − iσ sinh(τ
√

1 − σ 2)] + icδ;p(0)e−2iθ sinh(τ
√

1 − σ 2)).

Here, L is the depth of the layer, τ = χPITL, and φ = L

2V
gr

EIT
;

the variation interval δ of the frequency detuning is determined
by the condition σ 2 � 1. Note that formulas (36) are finite at
the limit σ 2 → 1 (at the boundary of the PIT region).

At the center of the PIT-resonance line |δ| � �ωPIT
(σ 2 � 1), we use boundary conditions (25), definition (12c),
and solution (36) and obtain the following expression for
transformation of the slowly varying amplitudes of field
operators during transmission through the layer:

Ê(+)
p (L,t) = Ê(+)

p (0,t̃)cosh(τ ) − ie2iθ Ê(−)
s (0,t̃)sinh(τ ),

(37)
Ê(+)

s (L,t) = Ê(+)
s (0,t̃)cosh(τ ) − ie2iθ Ê(−)

p (0,t̃)sinh(τ ),

where t̃ = t − L

2V
gr

EIT
. Formula (37) means that such a system

may amplify a field with nonclassical statistics. The P -
harmonic and the S-harmonic “exchange” their statistics
during the transmission. Under certain conditions, “cloning”
of nonclassical statistics from one frequency to another occurs
(there are two fields with different frequencies and similar
statistics at the output). If, e.g., the field with one frequency
is more intense than the field with the other frequency at the
input, at the output the both fields will be similar to the more
intense input field.

VI. GENERATION OF THE BIBAND SQUEEZED VACUUM

We describe the case of the vacuum input field in more
detail. It is convenient to use constant Schrödinger operators
for the boundary conditions and “empty” Fock states |�〉 =
�δ|0δ;p〉|0δ;s〉 to perform the quantum-mechanical averaging.
We define the frequency detuning range �ω as follows:

−�ω/2 < δ < �ω/2, �ω � 8
5�ωPIT.

Actually, the frequency detuning range �ω is determined by
the frequency filter or spectral susceptibility of the detector.

Substitution of solution (36) into Eq. (26a) gives the
following expression for the output photon flux operators:

〈N̂p,s〉 = �ω

2π

1

2σmax

∫ σmax

−σmax

sinh2(τ
√

1 − σ 2)

1 − σ 2
dσ, (38a)

where σ = 5δ
4�ωPIT

and σmax = 5�ω
8�ωPIT

� 1. The photon flux

fluctuations are relatively large:11√
〈(N̂p,s − 〈N̂p,s〉)2〉

= �ω

2π

1

2σmax

∫ σmax

−σmax

cosh(τ
√

1 − σ 2) · sinh(τ
√

1 − σ 2)√
1 − σ 2

dσ

∝ 〈N̂p,s〉. (38b)

This means that the field state is not the classical coherent
field. At the high amplification limit (e2τ � 1) and a relatively
narrow frequency band (�ω � �ωPIT), we can use Eqs. (37)
and simplify Eq. (38b):√

〈(N̂p,s − 〈N̂p,s〉)2〉 ≈ 〈N̂p,s〉 ≈ �ω

8π
e2τ .

The photon flux difference 〈�N̂〉 = 〈N̂p − N̂s〉 is an un-
fluctuated (exactly measurable) quantity: 〈�N̂〉 = 〈�N̂2〉= 0.
This expression corresponds to the well-known Manley-Rowe
relation for resonance processes with synchronism conditions
(1, 2).

The average electric field is 〈Ê(L)〉 = 0. We obtain the
field fluctuations 〈Ê2(L)〉 using Eqs. (26b) and (26c) and
the “vacuum” boundary condition which simplifies the cal-
culations substantially (quantum averaging makes some terms
equal to zero). We substitute solution (36) into Eqs. (26b)
and (26c), take into consideration the frequency hierarchy
ωHF � ω21 � �ωPIT, and finally get

〈Ê2(L)〉 = E2
0

2σmax

∫ σmax

−σmax

Gδdδ, (39a)

where

Gδ ≈ cosh2(τ
√

1 − σ 2) + sinh2(τ
√

1 − σ 2) − σ 2

1 − σ 2
+

(
2 − 1

4

ω2
21

ω2
HF

) sinh(τ
√

1 − σ 2)
√

cosh2(τ
√

1 − σ 2) − σ 2

1 − σ 2

× sin

⎡
⎣2kdL − 2ωdt + 2θ + arcsin

⎛
⎝ σ sinh(τ

√
1 − σ 2)√

cosh2(τ
√

1 − σ 2) − σ 2

⎞
⎠

⎤
⎦ , (39b)

and E2
0 ≈ 2h̄ωHF�ω

c�S
is the vacuum fluctuations level for the

uncorrelated bichromatic field in the corresponding range of
frequencies and spatial angles.

11We consider the averaging time is less than the characteristic
signal correlation time Tcorr ∝ �ω−1. In the opposite situation, the
relative fluctuations of photon counting will decrease.
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Phase characteristics of field (39b) can be described by the squeezing and antisqueezing coefficients KSQV and Kanti-SQV.
These values correspond to the ratio of the minimal or maximum fluctuation level over the vacuum level. The minimal and
maximum fluctuations correspond to the phase values ωdt − kdL + θ − πN = π

4 , 3π
4 , respectively. The definitions and values of

the squeezing and antisqueezing coefficients are

〈Ê2〉min

E2
0

= 1

KSQV
,

〈Ê2〉max

E2
0

= Kanti-SQV

1

KSQV
≈ 1

2σmax

∫ σmax

−σmax

{
e−2τ

√
1−σ 2 − σ 2

1 − σ 2
+

[
1

4

ω2
21

ω2
HF

√
1 − σ 2 + 2(1 −

√
1 − σ 2)

]
cosh(τ

√
1 − σ 2) · sinh(τ

√
1 − σ 2)

1 − σ 2

}
, (40a)

1

Kanti-SQV
≈ 1

KSQV
+ 1

2σmax

∫ σmax

−σmax

(
4 − 1

2

ω2
21

ω2
HF

√
1 − σ 2

)
cosh(τ

√
1 − σ 2)sinh(τ

√
1 − σ 2)

1 − σ 2
dσ. (40b)

Formula (40a) means that for sufficiently large amplification factor (e2τ � 1) the squeezing coefficient is big KSQV � 1 and the
state is “squeezed.”Assuming σmax � 1 in Eq. (40a), we simplify it:

KSQV = Kmax
SQV

1 + 1

12

(
Kmax

SQVσmax
)2 +

(
Kmax

SQVω21

4ωHF

)2 , Kmax
SQV ≈ e2τ . (41)

Comparing Eq. (40b) and Eqs. (38a) and (38b) we notice
that in the case of high squeezing level (KSQV � 1) and low
�-system splitting (ωHF � ω21) the antisqueezing coefficient
Kanti-SQV is proportional to spectral intensity per frequency

�f = �ω/2π : Kanti-SQV ∝ 〈N̂p,s 〉
�f

.
For a narrow frequency band �ω � �ωPIT and a suffi-

ciently high amplification (e2τ � 1), we get the following
estimation:

Kanti-SQV ≈ KSQV ≈ 1

4

〈N̂p,s〉
�f

≈ e2τ .

Figures 2 and 3 illustrate the dependence of Kanti-SQV

and KSQV on the relative spectral bandwidth σmax = 5�ω
8�ωPIT

for different amplification coefficients e2τ and characteris-
tic parameter ωHF

ω21
= 3 × 105 according to expressions (40a)

and (40b).

15

35

K x 0.5 ln 1( )( )

K_ x 0.5 ln 1( )( )

K x 0.5 ln 5( )( )

K_ x 0.5 ln 5( )( )

K x 0.5 ln 10( )( )

K_ x 0.5 ln 10( )( )

K x 0.5 ln 25( )( )

K_ x 0.5 ln 25( )( )

K x 0.5 ln 50( )( )

K_ x 0.5 ln 50( )( )

K x 0.5 ln 100( )( )

K_ x 0.5 ln 100( )( )

10.25

-1

-2

-3

0

0.750.50

1

max

1

2

3

4

5

6

2
10log eKSQV

FIG. 2. (Color online) Form of the normalized squeezing co-
efficient log10(KSQVe−2τ ) as a function of the relative bandwidth
σmax = 5�ω

8�ωPIT
. For lines 1–6, the amplifying coefficients e2τ are

1, 5, 10, 25, 50, and 100, respectively. The solid lines represent
expression (40a); the dashed lines represent approximation (41).

The antisqueezing coefficient depends weakly on the
spectral bandwidth. The squeezing coefficient is close to its
maximum value in the frequency band which is narrower for
greater values of the amplifying coefficient.

VII. NUMERICAL ESTIMATIONS

We make some numerical estimations for the characteristic
parameter range of the Rb (D1-line) experiment: ωHF ≈
2 × 1015 s−1 (λ = 794 nm), ω21 ≈ 6.83 × 109 s−1, γ31 ≈
108 s−1, γ21 ≈ 1,5 × 104 s−1. Key condition (35) is satisfied
automatically for, e.g., the drive power P ≈ 10 mW and the

FIG. 3. (Color online) Form of the normalized antisqueezing
coefficient Kanti-SQVe−2τ as a function of the relative bandwidth
σmax = 5�ω

8�ωPIT
. For lines 1–7, the amplifying coefficients e2τ are 1,

1.4, 2.5, 10, 22, 40, and 100, respectively.
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TABLE I. Latest numerical results in squeezing.

Squeezing Productivity
KSQV Kanti-SQV Drive power bandwidth (photon pairs

Paper (dB) (dB) (mW) (MHz) per second)

Here 20 20 10 0.016 105

[19] 11.5 16 600 170
0.08 (mean

[21] 11 power,
pulsed mode)

[15] 9 15 100 1
[25] 7 11.6 120
[24] 3.8 1100 0.1
[16] 2.75 7 290 1
[14] 2.5 600 0.08
[4] 160 0.3 103

[5] 100 0.75 105

beam focusing diameter is d ≈ 2 mm (�R ≈ 2.4 × 107 s−1 ≈
6γ21ω21). In this case, we obtain �ωPIT ≈ �2

R

ω21
≈ 105 s−1. The

energy amplifying coefficient e2τ corresponds to the product
of the layer length and the atom density LN ≈ τ × 3 cm ×
6.6 × 1011 cm−3; we can see that, e.g., amplification values of
e2τ ≈ 102−103 correspond to some experimentally appropri-
ate parameters. As a pessimistic estimation, we consider that
in any experiment the amplification coefficient e2τ is much less
than ωHF

ω21
= 3 × 105. Then we can neglect the last term in the

denominator in Eqs. (41). We set the maximum squeezing coef-
ficient Kmax

SQV ∼ e2τ ∼ 102 (maximum squeezing in the modern
experiments with nonlinear crystals is about 12 dB [19,21,25]),
and for the squeezing coefficient interval Kmax

SQV � KSQV �
0.5Kmax

SQV we get the frequency bandwidth �ωSQV ≈ 0.1�ωPIT,

that corresponds to �f = �ωSQV

2π
≈ 1.6 KHz. In this case,

the antisqueezing coefficient is ∝20 dB and, consequently,
the generation rate is ∝105 photon pairs per second at the
squeezing frequency band �f .

As compared with the known biphoton generation methods,
this scheme allows one, in theory, to get a narrower frequency
band with a lower drive power, a larger squeezing level,

and high or same productivity. For instance, we present the
following data in Table I.

VIII. SUMMARY

The theoretical analysis of the discussed PIT scheme in the
case of a quantum signal field demonstrates great potential
of the scheme for generation of entangled photons. Along
with the squeezed vacuum generation (we discuss it in this
paper), such a system can be used for amplification of a field
with nonclassical statistics and/or for the “statistics exchange”
between P,S harmonics. The efficiency and productivity of
this scheme may be limited by the inhomogeneous broadening
effects, the noise level, and the nonlinear effects in a specific
setup. We believe that noise analysis results in this paper and
the classical field nonlinear theory in [39] give grounds for
optimism. The principal question about the maximum power
of the fields with nonclassical statistics is more complicated
and needs some additional analysis (some aspects of it are
discussed, e.g., in [12]). Another important question con-
cerns the boundaries of experimentally achievable squeezing
degrees. The main limiting factors are the squeezed state
phase fluctuation and dissipation [15]. The drastic decrease
in the dissipation in the EIT regime and strict binding of the
generated squeezed vacuum phase to the drive phase make this
regime rather promising, though it surely needs more detailed
investigation for specific equipment and experiments.
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