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We present a simple semidefinite program whose optimal value is equal to the maximum probability of
perfectly distinguishing orthogonal maximally entangled states using any PPT measurement (a measurement
whose operators are positive under partial transpose). When the states to be distinguished are given by the tensor
product of Bell states, the semidefinite program simplifies to a linear program. In Phys. Rev. Lett. 109, 020506
(2012), Yu, Duan, and Ying exhibit a set of four maximally entangled states in C4 ⊗ C4, which is distinguishable
by any PPT measurement only with probability strictly less than 1. Using semidefinite programming, we show a
tight bound of 7/8 on this probability (3/4 for the case of unambiguous PPT measurements). We generalize this
result by demonstrating a simple construction of a set of k states in Ck ⊗ Ck with the same property, for any k

that is a power of 2. By running numerical experiments, we show the local indistinguishability of certain sets of
generalized Bell states in C5 ⊗ C5 and C6 ⊗ C6 previously considered in the literature.
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I. INTRODUCTION

A subject of much interest in quantum information theory is
understanding the powers and limitations of the set of quantum
operations and measurements defined within the paradigm
of local operations and classical communication (LOCC).
This is aimed at a more general understanding of the role
of entanglement and nonlocality in quantum information.

The challenge of distinguishing certain sets of pure states
is one of the most basic problems among those used to test
what can and cannot be achieved using LOCC protocols. We
will consider this problem in the bipartite case, for which the
setup is very simple. Suppose that Alice and Bob are given
a shared quantum state, drawn with some probability from a
set of orthogonal states of which they have full knowledge.
Their goal is to determine which state is given. We could
consider variants of this problem, according to how much
error we allow, but we will only investigate the case of perfect
distinguishability, where no error is allowed. The question
in which we are interested is as follows: For what sets of
states are Alice and Bob able to perfectly achieve their goal
by performing only LOCC protocols? The sets we consider
contain only mutually orthogonal states, so the restriction
of allowing only LOCC protocols is important. If global
operations were permitted, Alice and Bob could obviously
distinguish the states with no error.

A fundamental result in this area is by Walgate et al. [1],
who established that any two orthogonal pure states can
be locally distinguished with no error. This result has been
extended to the case of three maximally entangled states when
Alice and Bob’s systems are three-dimensional [2]. Both these
results show a surprising power of LOCC protocols. On the
other hand, there exist examples of larger sets that are not
perfectly distinguishable if we limit the allowed operations
to the LOCC framework. In fact, if both Alice and Bob hold
d-dimensional systems, it is impossible for them to locally
distinguish any k > d maximally entangled states [3]. It is
important to observe that entanglement is not an essential
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feature of indistinguishable sets of states. For instance, Bennett
et al. [4] showed a set containing only product states that cannot
be perfectly distinguished by LOCC protocols.

It is natural to ask what is the upper bound on the number
of states that can be perfectly distinguishable by LOCC
measurements. If Alice and Bob’s systems are d-dimensional,
is it always possible to locally distinguish a set of k � d

orthogonal states? If we allow product states to be in the set,
we can easily construct indistinguishable sets with a fixed
size in any dimension we like by using the result in [3].
However, the question becomes interesting when we consider
sets consisting only of maximally entangled states. In some
sense, entanglement makes distinguishability harder, but it can
also be used as a resource by the two parties. For d � 3, the
above-mentioned results by Walgate et al. [1] and Nathanson
[2] give a positive answer to the question. For d � 4, the
problem is not yet as well understood. Fan [5] showed that
when d is prime, any k orthogonal maximally entangled states
can be perfectly distinguished if k(k − 1) � 2d. Recently,
Bandyopadhyay et al. [6] gave examples of sets of k � d

maximally entangled states in Cd ⊗ Cd for d = 4,5,6 that
are not perfectly distinguishable by one-way LOCC protocols.
Interestingly, for d = 5 and 6, they showed sets of size d − 1.
In another recent result, Yu et al. [7] gave an example of
a set of four maximally entangled states in C4 ⊗ C4 that
cannot be perfectly distinguished by positive partial transpose
operations (PPT operations). PPT operations form a superset
(in fact, a strict superset) of separable operations, which, in
turn, form a strict superset of LOCC operations. Therefore, any
upper bound on the power of PPT operations for achieving a
particular task holds also against LOCC operations. The partial
transpose mapping has an interesting relationship to entangle-
ment and distillation, with the Peres-Horodecki criterion being
the most renowned application of this relationship. Moreover,
the structure of the set of PPT operations is mathematically
simpler than the one of LOCC operations, and many problems
are easier to handle when we consider PPT rather than LOCC.
In fact, the set of positive-partial-transpose operators form a
closed convex cone, and many problems concerning them can
be studied by using semidefinite programming; e.g., see [8]. Yu
et al. [7] also noticed that the above-mentioned result about the
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indistinguishability of any set of k > d states [3] holds even if
we broaden the set of allowed operations to PPT.

In this paper, we show how the success probability of
distinguishing a set of states by using PPT measurements
can be expressed as the solution of a semidefinite program.
A consequence of this is a simpler proof using semidefinite
duality that the set given in [7] is not perfectly distinguishable
by PPT measurements. In particular, we show a tight bound of
7/8 on the probability of success. We generalize this result by
showing an easy construction of sets with the same properties
for the case in which k = d is any power of 2. Another
consequence of expressing the problem as a semidefinite
program is that for small dimensions we can find the optimal
solution by running a semidefinite programming solver. By
doing that, we find that the PPT approach cannot be used to
prove that the sets mentioned by Bandyopadhyay et al. in [6]
are not perfectly distinguishable by LOCC measurements.
Recall that they only prove the impossibility of perfectly
distinguishing them by one-way LOCC protocols. On the other
hand, again by numerical calculation, we find examples of
local indistinguishable sets of nontrivial size, whose states
lie in systems of the same dimensions as the ones in [6]. In
particular, these sets were considered in [3], where they were
shown to be not distinguishable by teleportation protocols, a
subset of LOCC protocols.

We conclude the paper with a section about unambiguous
PPT discrimination. Again, we formulate the problem as a
semidefinite program and we show a bound of 3/4 on the
success probability of distinguishing the set given in [7], when
we restrict the strategy to be unambiguous.

II. PRELIMINARIES

Throughout this paper, we will use notation and terminol-
ogy that, for the most part, is standard in quantum information
theory. All vector spaces discussed are assumed to be complex
Euclidean spaces. We write Lin(X ,Y) to denote the space
of linear mappings from a space X to a space Y , and we
write Lin (X ) as shorthand for Lin (X ,X ). For any space X ,
we write Herm (X ), Pos (X ), Den(X ), and U (X ) to denote the
sets of all Hermitian operators, positive-semidefinite operators,
density operators, and unitary operators on X , respectively.
The identity operator acting on a given space X is denoted
by 1X , or just 1 when X is implicit. For Hermitian operators
A,B ∈ Herm (X ), the notations A � B and B � A indicate
that A − B is positive semidefinite. When we refer to a
channel, we mean a completely positive, trace-preserving
linear mapping of the form

� : Lin (X ) → Lin (Y) .

The transpose mapping T : Lin (X ) → Lin (X ) is the positive
(non-completely-positive) mapping defined as T (X) = XT

for all X ∈ Lin (X ). In this definition and implicitly in the
rest of the paper, we use the correspondence between linear
operators and matrices with respect to the standard basis.
In this correspondence, XT denotes the operator associated
with the matrix that is obtained by transposing the matrix
representation of X. The partial transpose on X ⊗ Y is the
mapping defined by tensoring the transpose mapping acting on

X and the identity mapping acting on Y , and it is denoted as

TX = T ⊗ 1Lin(Y).

Positive operators that remain positive under the action
of partial transposition are called PPT operators. We write
PPT (X : Y) to denote the set of all PPT operators on a tensor
product space X ⊗ Y . Notice that for the definition of PPT op-
erator, the subspace on which we apply the partial transposition
does not matter. Let us also notice that the set PPT (X : Y) is a
closed convex cone. We will assume thatA = Cd andB = Cd

are two identical vector spaces referring to Alice’s and Bob’s
systems, respectively. A pure state u ∈ A ⊗ B lying across
these spaces is called maximally entangled if we are left with
a maximally mixed state once we trace out one of the spaces,
i.e., TrA(uu∗) = TrB(uu∗) = 1/d. Any maximally entangled
state uu∗ ∈ Den (A ⊗ B) may be written as

(U ⊗ 1B)Md (U ⊗ 1B)∗,

where U ∈ U (A) is some unitary operator and
Md ∈ Den(A ⊗ B) is the state

Md = 1

d

d−1∑
i,j=0

|i〉〈j | ⊗ |i〉〈j |. (1)

In the rest of the paper, we will use the standard Pauli
matrices, σ0 = 1,σ1,σ2,σ3 ∈ U(C2), and the standard set of
Bell states {|ψi〉 ∈ C2 ⊗ C2 : i ∈ {0,1,2,3}}, where

|ψ0〉 = 1√
2

(|00〉 + |11〉)
and |ψi〉 = (1 ⊗ σi)|ψ0〉 for i = 1,2,3.

For any positive integer d, letZd be the ring of integers modulo
d and ωd = exp(2πi/d). For any choice of (a,b) ∈ Z2

d we
define the generalized Bell state |ψa,b〉 ∈ Cd ⊗ Cd as follows:

|ψa,b〉 = 1√
d

d−1∑
j=0

ω
aj

d |j 〉 ⊗ |j + b〉,

where addition is inZd . Whenever we write states as lowercase
Greek letters out of the kets, we will mean their density
operator representation, for example, ψ0 = |ψ0〉〈ψ0|. A mea-
surement on a space X is a set of operators {Pa : a ∈ �} ⊂
Pos (X ), indexed by a finite, nonempty set of measurement
outcomes �, for which the following constraint holds:

∑
a∈�

Pa = 1X .

In the rest of this paper, we will make use of semidefinite
programming. For a formalization of semidefinite program-
ming similar to the one used in this paper and a general
overview of semidefinite duality theory, see [9].

III. PPT DISTINGUISHABILITY

Let A and B be the complex Euclidean spaces correspond-
ing to Alice and Bob’s systems and let S = {ρ1, . . . ,ρk} ⊂
Den (A ⊗ B) be a set of states. Alice and Bob are given a state
ρi ∈ S for some i ∈ {1, . . . ,k} drawn with some probability
pi , and their goal is to determine the value of i, assuming that
they have complete knowledge of the set S. For the results in
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the paper, we consider the interesting case in which the states
in S are mutually orthogonal.

A measurement {Pa : a ∈ �} ⊂ Pos (A ⊗ B) is said to be
PPT if it can be implemented by a PPT channel, or equivalently,
if each measurement operator is PPT, that is, Pa ∈ PPT (A : B)
for each a ∈ �. We say that a set S is PPT-distinguishable
if Alice and Bob can achieve the goal described above for
the set S without error and by using only PPT measurements.
Otherwise we say that the set S is PPT-indistinguishable. More
formally, for the setup described above, the success probability
for a measurement {Pi : 1 � i � k} of distinguishing the set S

is
∑k

i=1 pi 〈Pi,ρi〉. We say that a set S is PPT-distinguishable
if and only if there exists a PPT measurement for which this
value is equal to 1.

A. A semidefinite program for the PPT
distinguishability problem

We will now describe and analyze a semidefinite program
whose optimal value is equal to the maximum success
probability of PPT-distinguishing the set of states that is
given as input to the program. Let k > 0 be an integer,
p = (p1, . . . ,pk) ∈ Rk a probability vector, and assume that
S = {ρi ∈ Den (A ⊗ B) : i = 1, . . . ,k} is the set of states that
Alice and Bob are asked to distinguish. Each state ρi ∈ S

is prepared with probability pi . We can phrase the maximum
probability of successfully distinguishing S with the following
semidefinite program, whose constraints characterize the fact
that the measurement must be PPT.

Primal problem:

maximize :
k∑

j=1

pj 〈Pj ,ρj 〉
(2)

subject to : P1 + · · · + Pk = 1A ⊗ 1B,

P1, . . . ,Pk ∈ PPT (A : B) .

Since we are interested in perfect distinguishability, in the rest
of the paper we will assume, without loss of generality, that
each state is prepared with uniform probability, i.e., pi = 1/k,
for each i = 1, . . . ,k. We obtain the following dual problem by
routine calculation. The only thing to notice is that the partial
transpose mapping is its own adjoint.

Dual problem:

minimize :
1

k
Tr(Y )

subject to : Y − ρj � TA(Qj ), j = 1, . . . ,k , (3)

Y ∈ Herm (A ⊗ B) ,

Q1, . . . ,Qk ∈ Pos (A ⊗ B) .

If we further constrain the dual problem by imposing equality
instead of inequality constraints in the above program, we
obtain the following version:

minimize :
1

k
Tr(Y )

subject to : Y � TA(ρj ), j = 1, . . . ,k , (4)

Y ∈ Herm (A ⊗ B) .

Let α, β, and β ′ be, respectively, the solutions of the primal (2),
the dual (3), and the more constrained dual problem (4). By the
weak duality theorem, we have that α � β � β ′, that is, any
feasible solution to (4) upper-bounds the success probability
of distinguishing the set of states {ρ1, . . . ,ρk} by performing
only PPT measurements. An immediate application of this is
the following simple proof of the fact shown in [7] that it is
impossible for Alice and Bob to perfectly distinguish any set
of k > d maximally entangled states in Cd ⊗ Cd using only
PPT measurements.

Theorem 1. No PPT measurement can perfectly distinguish
more than d maximally entangled states in Cd ⊗ Cd .

Proof. Let A = B = Cd . We are assuming that the states
we want to distinguish {ρ1, . . . ,ρk} ⊂ Den (A ⊗ B) are all
maximally entangled. Therefore, each ρj ∈ Den (A ⊗ B), j ∈
{1, . . . ,k}, may be written as ρj = (Vj ⊗ 1B)Md (Vj ⊗ 1B)∗,
where Md is the state defined in Eq. (1) and Vj ∈ U (A) is
some unitary operator. The partial transpose of Md is the state
1
d
Wd , where Wd ∈ U (A ⊗ B) is the SWAP operator, i.e.,

TA(Md ) = 1

d
Wd = 1

d

d−1∑
i,j=0

|j 〉〈i| ⊗ |i〉〈j |. (5)

Moreover, the partial transposition map is Hermiticity-
preserving. Then, for each j = 1, . . . ,k, we have

TA(ρj ) = 1

d
Uj

for some Hermitian unitary operator Uj ∈ U (A ⊗ B) ∩
Herm (A ⊗ B).

It holds that (1A ⊗ 1B) � Uj for each j = 1, . . . ,k. There-
fore, Y = (1A ⊗ 1B)/d is a feasible solution of the semidef-
inite program (4) and, for any measurement {P1, . . . ,Pk} ⊂
PPT (A : B), we have

1

k

k∑
j=1

〈Pj ,ρj 〉 � 1

k
Tr(Y ) = d

k
.

B. Bell diagonal states

The following two basic propositions about Bell states will
be used throughout the paper and can be proved by direct
inspection:

Proposition 1. Let A = B = C2 and let ψi = |ψi〉〈ψi | ∈
Den (A ⊗ B) for i ∈ {0,1,2,3}, with the density operators
corresponding to the standard Bell states. Then the following
equations hold:

TA(ψ0) = 1
2 1 − ψ2, TA(ψ1) = 1

2 1 − ψ3,

TA(ψ2) = 1
2 1 − ψ0, TA(ψ3) = 1

2 1 − ψ1.

Proposition 2. The Bell states are invariant under the
following set of local symmetries:

C = {1 ⊗ 1,σ1 ⊗ σ1,σ2 ⊗ σ2,σ3 ⊗ σ3},
i.e., ψi = UψiU

∗ for any U ∈ C and i ∈ {0,1,2,3}.
Definition 1. We will describe the mapping of

Proposition 1 with the following bijection f : {0,1,2,3} →
{0,1,2,3} between indices of the set of Bell states:

f (0) = 2, f (1) = 3, f (2) = 0, f (3) = 1.

012321-3



ALESSANDRO COSENTINO PHYSICAL REVIEW A 87, 012321 (2013)

Let v ∈ Zt
4 be a t-dimensional vector and let |ψv〉 ∈

C2t ⊗ C2t

be the maximally entangled state given by the tensor
product of Bell states indexed by the vector v = (v1, . . . ,vt ),
that is,

|ψv〉 = |ψv1〉 ⊗ · · · ⊗ |ψvt
〉.

In the literature, operators diagonal in the basis {ψv =
|ψv〉〈ψv| : v ∈ Zt

4} are called lattice operators, or lattice states
if they are also density operators [10]. It turns out that in
the case in which the set to distinguish contains only lattice
states, the semidefinite program (2) simplifies remarkably, as
the following theorem states:

Theorem 2. If ρ1, . . . ,ρk are lattice states, then the probabil-
ity of successfully PPT-distinguishing them can be expressed
as the optimal value of a linear program.

Proof. We will prove that for any feasible solution of the
semidefinite program (2), there is another feasible solution of
(2) consisting only of lattice operators for which the objective
function takes the same value. Let � : Lin(C2 ⊗ C2) →
Lin(C2 ⊗ C2) be the channel defined as follows:

�(X) = 1

|C|
∑
U∈C

UXU ∗ ,

where C is the set of local unitaries defined in Proposition
2. The channel �(X) acts on X as a completely dephasing
channel in the Bell basis. Suppose that A = B = C2t

and
ρ1, . . . ,ρk ∈ Den(A ⊗ B) are lattice states. We let � = �⊗t

and have

〈Pj ,ρj 〉 = 〈Pj ,�(ρj )〉 = 〈�(Pj ),ρj 〉
for any j = 1, . . . ,k. The channel � is unital and,
in fact, it is a mixed unitary channel. Therefore, if
P1, . . . ,Pk are such that P1 + · · · + Pk = 1, then it holds that
�(P1) + · · · + �(Pk) = 1. From the positivity of �, we have
that �(P ) � 0 for any P � 0. Now we show that the partial
transpose mapping commutes with the channel �. First we
observe how the partial transposition modifies the action
of local operators. Given U1 ∈ Lin (A), U2 ∈ Lin (B), and
X ∈ Lin (A ⊗ B), we have

TA[(U1 ⊗ U2)X(U1 ⊗ U2)∗] = (U1 ⊗ U2)TA(X)(U1 ⊗ U2)∗.

Notice that for the Pauli matrices, we have σj = σj for j ∈
{0,1,3} and σ2 = −σ2. Therefore,

�(TA(X)) = TA(�(X)) for any X ∈ Lin (A ⊗ B).

This observation, along with the positivity of �, leads to the
following implication, which concludes the proof:

TA(X) � 0 ⇒ �(TA(X)) � 0

⇒ TA(�(X)) � 0 for any X ∈ Lin (A ⊗ B).

For any feasible solution of the primal program, we found
another solution consisting only of lattice operators for which
the objective function takes the same value. Given that the
lattice operators are diagonal in the Bell basis, we can cast the
semidefinite program as a linear program.

Even though the states we will consider in the next sections
are lattice states, we will always refer to the more general

semidefinite programming formulation given in Sec. III A,
rather than expressing the problem in a more explicit linear
programming form.

C. Examples of indistinguishable sets

We are now ready to show some sets of k maximally
entangled states in Ck ⊗ Ck that are not distinguishable by
PPT measurements.

1. k = d = 4

The following set of k = 4 maximally entangled states
was shown in [7] to be not perfectly distinguishable by PPT
measurements. Here we prove via semidefinite programming
that the optimal probability of success of distinguishing this
set for any PPT measurement is 7/8. We do this by exhibiting
a feasible solution of the more constrained dual problem (4)
for which the objective function has a value 7/8.

Example 1. LetA = A1 ⊗ A2 andB = B1 ⊗ B2 be, respec-
tively, Alice and Bob’s system, with A1 = A2 = B1 = B2 =
C2. The set considered in [7] is {ρi = |xi〉〈xi | : i ∈ [1,4]},
where

|x1〉 = |ψ0〉 ⊗ |ψ0〉, |x2〉 = |ψ1〉 ⊗ |ψ3〉,
|x3〉 = |ψ2〉 ⊗ |ψ3〉, |x4〉 = |ψ3〉 ⊗ |ψ3〉,

and the bipartition is such that |xi〉 ∈ A1 ⊗ B1 ⊗ A2 ⊗ B2 for
each i ∈ [1,4].

Theorem 3. The maximal probability of success of distin-
guishing the set of Example 1 with a PPT measurement is
equal to 7/8.

Proof. It is easy to check that the following operator satisfies
the constraints in (4) and its trace is equal to 7/2:

Y = 1
4 1 ⊗ 1 − 1

2 (ψ2 ⊗ ψ1).

We will check the constraint Y � TA(ρ1) and the reader can
check the remaining constraints with a similar calculation. By
Proposition 1, we have

TA(ρ1) = TA(ψ0 ⊗ ψ0) = (
1
2 1 − ψ2

) ⊗ (
1
2 1 − ψ2

)

= 1
4 1 ⊗ 1 − 1

2

∑
i∈{0,1,3}(ψi ⊗ ψ2 + ψ2 ⊗ ψi)

and

Y − TA(ρ1) = 1
2 (ψ0 ⊗ ψ2 + ψ1 ⊗ ψ2 + ψ3 ⊗ ψ2

+ψ2 ⊗ ψ0 + ψ2 ⊗ ψ3) � 0.

Theorem 4. The bound of Theorem 3 is tight. In fact, there
is a PPT measurement that achieves the same value.

Proof. Let Q ∈ Pos(C4 ⊗ C4) and R,S ∈ Pos(C2 ⊗ C2)
be the following operators:

Q = 1
4 1 ⊗ (ψ1 + ψ2), R = 7

8ψ0 + 1
8ψ3,

S = 1
8ψ0 + 7

8ψ3.
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Then the following operators define a PPT measurement that
distinguishes the set of Example 1 with success probability
7/8:

P1 = Q + (
2
3ψ0 + 1

3 1
) ⊗ R,

P2 = Q + (
1
3ψ0 + ψ1

) ⊗ S + 1
3 (ψ2 + ψ3) ⊗ R,

P3 = Q + (
1
3ψ0 + ψ2

) ⊗ S + 1
3 (ψ1 + ψ3) ⊗ R,

P4 = Q + (
1
3ψ0 + ψ3

) ⊗ S + 1
3 (ψ1 + ψ2) ⊗ R.

It is easy to check that these operators define a measurement,
that is,

∑4
i=1 Pi = 1. Using the equations of Proposition 2,

it is easy to check that those operators are also PPT. For
instance,

TA(P1) = (ψ1 + ψ2 + ψ4) ⊗ (
1
3ψ1 + 1

2ψ2 + 1
3ψ4

)

+ 1
4ψ3 ⊗ (ψ2 + ψ3) � 0.

Finally, we have that 〈Pi,ρi〉 = 7
8 for each i ∈ [1,4].

2. k = d = 2n, n � 2

In [6], the authors pose the question of whether there exists a
set of k maximally entangled states in Cd ⊗ Cd not perfectly
distinguishable by LOCC, for some k such that 4 < k � d.
Here we give an explicit construction of such sets when k = d

is any power of 2 and the states are given by the tensor product
of Bell states.

Lemma 1. Given a vector i = (i1, . . . ,in), we define the set

K(i) = {(j1, . . . ,jn) :
⊕

l=1,...,n

δiljl
= 1},

where ⊕ denotes the sum modulo 2 and δiljl
= 1 if and only

if il = jl . Let A = B = C2n

. Then the partial transpose of
ψi = ψi1 ⊗ · · · ⊗ ψin ∈ Den (A ⊗ B) is equal to

TA(ψi) = 1

2n

⎛
⎝1 − 2

∑
(j1,...,jn)∈K(i)

ψf (j1) ⊗ · · · ⊗ ψf (jn)

⎞
⎠ ,

where f is the bijection defined in Sec. III B.
Proof. It follows straightforwardly from Proposition 1.
Theorem 5. For any n � 2, there is a set of k = 2n

maximally entangled states in Ck ⊗ Ck that is not perfectly
distinguishable by PPT operations.

Proof. The case n = 2 is covered in Sec. III C1. Here
we construct a set for any n � 3. Consider the set of states
S = {ρj = ψ0 ⊗ ρ ′

j : j = 1, . . . ,k}, where each ρ ′
j is a tensor

product of one of the 3n−1 combinations of Bell states different
from ψ0. Since 3n−1 > 2n for any n � 3, we can always
construct such a set. By using Lemma 1, it is easy to check
that the operator

Y = 1
k
1 − 2

k
ψ2 ⊗ · · · ⊗ ψ2

satisfies the constraints of the semidefinite program (4). Also,
its trace is strictly less than 1.

Remark 1. An interesting feature of the set of states S

considered in the above proof is that Alice and Bob are
basically being provided with the maximally entangled pair
ψ0 ∈ Den(C2 ⊗ C2) as a resource, but they are still not able to

distinguish the set {ρ ′
j : 1 � j � 2n} ⊂ Den(C2n−1 ⊗ C2n−1

).
In fact, for larger n, it is easy to see that we can even give
them c > 1 maximally entangled pairs, as long as c is odd
and 3n−c � 2n, i.e., c � (1 − log3 2)n, and a construction
of an indistinguishable set similar to the one above will
still work.

Remark 2. The upper bound of the probability of distin-
guishing the sets we derive from the semidefinite program
is 1 − 2/k2, which is the value of the trace of the operator
Y in the above theorem multiplied by 1/k. Notice that there
exist sets that are in some sense even more indistinguishable.
For example, in the case of k = 8, we could show that the
following set of states cannot be PPT-distinguished with a
success probability bigger than 15/16:

{ψ(1,1,1),ψ(1,1,3),ψ(1,1,4),ψ(2,2,2),ψ(3,3,1),ψ(3,3,3),

×ψ(3,3,4),ψ(4,2,2)},
where ψ(i,j,k) = ψi ⊗ ψj ⊗ ψk .

3. k = d = 5,6

We ran the semidefinite programming solver CVX [11]
against the sets of the examples given in [6] for the case k =
d = 5,6, and they turned out to be perfectly distinguishable
by PPT measurements. Therefore the question they pose,
namely whether LOCC protocols more powerful than one-
way protocols can perfectly distinguish those sets, remains
open.

On the other hand, again by running numerical com-
putations with CVX, we show that the two sets of k = 5
and 6 generalized Bell states in Ck ⊗ Ck are not perfectly
distinguishable by PPT measurements. These examples come
from [3], where it was shown that they cannot be reliably
distinguished by so-called standard teleportation protocols,
which are a subset of LOCC protocols.

Example 2. Any PPT measurement errs with probability at
least 0.0101 when trying to distinguish the set of generalized
Bell states

ψ0,0,ψ1,1,ψ2,1,ψ1,3,ψ2,3 ∈ C5 ⊗ C5.

Example 3. Any PPT measurement errs with probability at
least 0.002 when trying to distinguish the set of generalized
Bell states,

ψ0,0,ψ1,0,ψ2,0,ψ3,0,ψ4,0,ψ0,3 ∈ C6 ⊗ C6.

IV. UNAMBIGUOUS PPT DISCRIMINATION

In the preceding section, we analyzed the problem of
distinguishing quantum states using PPT measurements that
minimize the probability of error. Bandyopadhyay [12] raised
the question of what is the probability of error if, instead,
we consider an unambiguous PPT strategy to distinguish the
sets of states of Sec. III C. In such a strategy, Alice and Bob
never give an incorrect answer, although their answer can be
inconclusive. If there are k states to be distinguished, an unam-
biguous measurement consists of k + 1 operators, where the
outcome of the operator Pk+1 corresponds to the inconclusive
answer. In this section, we cast this problem into the framework
of semidefinite programming and we make a comparison with

012321-5



ALESSANDRO COSENTINO PHYSICAL REVIEW A 87, 012321 (2013)

the result we obtained in Sec. III for the example considered
in [7]. The semidefinite programming approach has already
been used to study unambiguous discrimination [13], but never,
as far as we know, to study unambiguous PPT discrimination.
In fact, we believe that unambiguous PPT discrimination in
general, or even unambiguous LOCC discrimination, has not
been thoroughly investigated yet.

The optimal value of the following semidefinite program
is equal to the success probability of unambiguously distin-
guishing a set of states {ρ1, . . . ,ρk} using PPT measurements.
Again, we assume that the states are drawn with a uniform
probability.

Primal problem:

maximize :
1

k

k∑
j=1

〈
Pj ,ρj

〉

subject to : P1 + · · · + Pk+1 = 1A ⊗ 1B, (6)

P1, . . . ,Pk+1 ∈ PPT (A : B) ,

〈Pi,ρj 〉 = 0, 1 � i, j � k, i �= j.

Dual problem:

minimize :
1

k
Tr(Y )

subject to : Y − ρj +
∑

1 � i � k

i �= j

yi,j ρi � TA(Qj ),

j = 1, . . . ,k ,

Y � TA(Qk+1), (7)

Q1, . . . ,Qk+1 ∈ Pos (A ⊗ B) ,

Y ∈ Herm (A ⊗ B) ,

yi,j ∈ R, 1 � i, j � k, i �= j.

Interestingly, the optimal probability of unambiguously distin-
guish the set of states of Example 1 with PPT measurements is
3/4, which should be compared with the success probability
of 7/8 that can be achieved with a minimum-error strategy
(see Theorem 4). In fact, using a semidefinite program solver,
we were also able to verify that this bound is actually tight.

Theorem 6. The maximum success probability of unam-
biguously distinguishing the set of states of Example 1 with
PPT measurements is equal to 3/4.

Proof. We show a feasible solution of the dual problem for
which the value of the objective function is 3/4. Let

Y = 1
4 [(1 − ψ1) ⊗ (1 − 2ψ4)

+ψ1 ⊗ (−ψ1 + 3ψ2 + 3ψ3 + ψ4)]

and

Q1 = (1 − ψ3) ⊗ ψ3 + ψ3 ⊗ (ψ2 + ψ3),

Q2 = (ψ1 + ψ2) ⊗ ψ2 + ψ4 ⊗ (1 − ψ2),

Q3 = (ψ2 + ψ4) ⊗ ψ2 + ψ1 ⊗ (1 − ψ2),

Q4 = (ψ1 + ψ4) ⊗ ψ2 + ψ2 ⊗ (1 − ψ2),

Q5 = ψ3 ⊗ ψ2.

We can use Proposition 1 to check that the following equations
hold:

Y − ρj +
∑

1 � i � k

i �= j

ρi = TA(Qj ), j = 1, . . . ,4

and Y � TA(Q5),

i.e., the constraints of the program (7) are satisfied. Also, we
have that Tr(Y ) = 3.

V. CONCLUSION

In summary, we have extended previously known results
about the indistinguishability of some sets of d orthogonal
maximally entangled states in Cd ⊗ Cd using PPT measure-
ments. We hope that our approach based on semidefinite
programming can lead to a better understanding of the power of
local operations at least with regard to the task of distinguishing
quantum states.

The main open question is whether there exist examples of
sets such as the ones we considered, but of size k < d. For
small values of d, we obtained an unsuccessful answer to this
question after running an exhaustive numerical search against
sets consisting of d − 1 generalized Bell states, or lattice
states, or states constructed from complex Hadamard matrices.
It would be interesting to try some different constructions
of orthogonal maximally entangled states. The following are
other interesting unanswered questions related to our results:

(i) Can we achieve the same bound of Theorem 4 using a
separable (or LOCC) measurement?

(ii) Are there examples of sets for which LOCC measure-
ments do worse than PPT?
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