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We investigate multipartite entanglement for composite quantum systems in a pure state. Using the generalized
Bloch representation for n-qubit states, we express the condition that all k-qubit reductions of the whole system
are maximally mixed, reflecting maximum bipartite entanglement across all k vs n − k bipartitions. As a special
case, we examine the class of balanced pure states, which are constructed from a subset of the Pauli groupPn that is
isomorphic toZn

2. This makes a connection with the theory of quantum error-correcting codes and provides bounds
on the largest allowed k for fixed n. In particular, the ratio k/n can be lower and upper bounded in the asymptotic
regime, implying that there must exist multipartite entangled states with at least k = �0.189 n� when n → ∞.
We also analyze symmetric states as another natural class of states with high multipartite entanglement and prove
that, surprisingly, they cannot have all maximally mixed k-qubit reductions with k > 1. Thus, measured through
bipartite entanglement across all bipartitions, symmetric states cannot exhibit large entanglement. However, we
show that the permutation symmetry only constrains some components of the generalized Bloch vector, so that
very specific patterns in this vector may be allowed even though k > 1 is forbidden. This is illustrated numerically
for a few symmetric states that maximize geometric entanglement, revealing some interesting structures.
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I. INTRODUCTION

Quantum entanglement is certainly one of the most fas-
cinating concepts arising in quantum mechanics, essentially
because it appears as a contradiction to reductionism, i.e., the
principle by which understanding a complex system reduces to
the description of each of its individual constituents [1]. As a
matter of fact, a quantum composite system can possibly be in
a state such that its parts are more disordered—have a higher
entropy—than the whole system. This peculiar property,
known as the nonmonotonicity of the von Neumann entropy
[2], is tightly linked to the notion of bipartite entanglement.
A pure bipartite entangled state, for example, admits a zero
entropy, which translates the fact that one has complete
knowledge about the joint system via its wave function. Its
two parts, however, are mixed, so that they exhibit a nonzero
entropy. In other words, one knows less about the parts than
about the system taken as a whole, a property which cannot be
conceived in classical terms.

The essence of bipartite entanglement is thus that the
information about a quantum bipartite system is not only
encoded in its parts, but also in the correlations between them.
Remarkably, when a bipartite quantum system is maximally
entangled, the information appears to be fully encoded in
these correlations and no longer in the system’s constituents.
Mathematically speaking, while the whole system is described
as a pure state, its parts are individually described as maximally
mixed states (with a density matrix proportional to the
identity). A paradigmatic example of such a situation is the
Einstein-Poldolsky-Rosen (EPR) state of two qubits [3,4],
which is a pure bipartite state whose parts are maximally
mixed: each qubit has an entropy of 1 bit, so its state
is completely unknown, while the two-qubit joint state is
perfectly determined. Equivalently, one observes that the
entropy of one part conditionally on the other is negative
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(it is −1 bit), which is a sufficient condition for bipartite
entanglement and can be associated with a flow of (virtual)
information backwards in time [5].

A very intriguing question is of course whether similar
situations may exist if the system is made out of more than two
parts. The underlying concept of multipartite entanglement
becomes naturally much richer than bipartite entanglement,
but also generally much more difficult to understand (see,
e.g., [6] for a review on entanglement). It leads to stronger
contradictions with local realism than bipartite entanglement
[7], as well as to the existence of several inequivalent classes
of entangled states even in the simplest case of three qubits
[8]. Multipartite entanglement is also crucial to applications,
such as one-way quantum computing [9], and its dynamics
when exposed to a dissipative environment has revealed a
surprisingly large variety of flavors [10,11].

Among the possible approaches to multipartite entangle-
ment, one of them consists of probing the presence of bipartite
entanglement over all inequivalent bipartitions of all sizes [12].
Roughly speaking, the idea is to measure how much each
subset of k out of n constituents (with 0 < k � �n/2�) can be
bipartite entangled with its n − k complementary constituents,
knowing that there is a subtle balance with the bipartite
entanglement exhibited by all other possible subsets with
respect to their complements. This leads to the concept of a
genuine multipartite entangled state, that is, an n-partite pure
state such that none of its k-partite subsets can be represented
by a pure state (all subsets are mixed, hence bipartite entangled
with their complements).

One may even be more specific and seek for a strong
form of a genuine multipartite entangled state. This would
be a composite system in a pure state such that all of its
individual constituents are maximally mixed, all pairs of
its constituents are maximally mixed, all triplets of its
constituents are maximally mixed, and so on up to all k-tuples
of its constituents. This property, namely, the fact of admitting
maximally mixed reductions, is an ideal case of genuine
multipartite entanglement. We expect that the constraint of
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having an overall pure state will set a limit on the possibility
of having maximally mixed k-tuples for large k. Consider, for
example, a system of n qubits in an overall pure state. It is
tempting to search for n-qubit pure states having the property
that all subsets of k qubits are maximally mixed up to size
k = �n/2�. It has long been known, however, that except for
a very few low-dimensional cases, such as the EPR state for
n = 2, it is impossible to find an n-qubit pure state exhibiting
this strong form of genuine multipartite entanglement [13].

In this paper, we examine this fundamental question and
investigate multipartite entanglement under two perspectives.
First, we focus on the possible existence of n-qubit states that
satisfy this property of admitting maximally mixed k-partite
reductions for arbitrary n and k. We give examples of known
states exhibiting this property, then provide a set of conditions
that such states must satisfy as well as asymptotic existence
bounds. The second part is centered on a weaker version of
this maximally mixed reduction property, which is motivated
by recent results on symmetric states, a special class of states
that are known to exhibit a high multipartite entanglement as
measured in terms of their geometric entanglement [14–16].

In Sec. II, we expose the representation of n-qubit pure
states in terms of a generalized Bloch vector, which is very
convenient in order to express the conditions that all k-partite
reductions are maximally mixed. This leads us to consider,
in Sec. III, a class of n-partite pure states that we name
“balanced.” In the Bloch representation, they correspond to
a Bloch vector with all components equal to a same value
for indices belonging to some subset of the Pauli group (the
other components being all taken equal to zero). This makes
a connection with the theory of quantum error correction,
from which we obtain lower and upper bounds on the highest
allowed value of k for a given value of n. In particular, we show
that there exist n-qubit states admitting all maximally mixed
k-partite reductions with at least k = �0.189 n� when n → ∞.

In Sec. IV, we then consider another natural class of states,
namely, symmetric states, among which it is known that some
states with genuine multipartite entanglement can be found.
We prove that, surprisingly, the symmetric states cannot have
maximally mixed reductions of size k that exceed 1, regardless
of n. In that sense, they are very far from the strong form of
genuine multipartite entanglement that we seek. On the other
hand, we show that the permutation symmetry underlying
symmetric states only puts constraints on the components of
the Bloch vector with an even index, so that the components
with an odd index may possibly be taken equal to zero. This
brings us to investigate n-partite symmetric pure states whose
Bloch vector has many vanishing odd-index components. This
investigation is carried out numerically, focusing on some
symmetric states that maximize geometric entanglement as
found in [15]. We show that some of these states are close to
having maximally mixed k-partite reductions for large values
of k (although, strictly speaking, k = 1), so that they approach
the strong form of genuine multipartite entanglement. Finally,
some conclusions are drawn in Sec. V.

II. MAXIMALLY MIXED REDUCTION PROPERTY

The property of admitting maximally mixed reductions is
encapsulated by the following definition:

Definition 1. An n-qubit pure state |ψ〉 is a k-MM state if
all its reductions of size k are maximally mixed. Here and in
what follows, MM stands for maximally mixed.

Note that according to the definition, a k-MM state is also a
(k − �)-MM state for 0 � � � k, and, in particular, every pure
state is a 0-MM state. A natural question which arises here is
whether a k-MM state exists for a given couple (n,k). Note that
no more than half of the qubits can be in a maximal mixed state,
as a consequence of the Hilbert-Schmidt decomposition of the
overall pure state. So, it is clear that k-MM states cannot exist
when k > �n/2�. In the following section we list the known
facts about the existence of k-MM states for small values of n.

A. k-MM states of small size n

For n = 2, it is easy to check that the four Bell states

|�±〉 = |00〉 ± |11〉√
2

, |�±〉 = |01〉 ± |10〉√
2

(1)

are 1-MM states.
For n = 3, the Greenberger-Horne-Zeilinger (GHZ) state is

a 1-MM state, while the W state [8] is not. In general, for any
size n, the generalized GHZ state

|GHZ〉 = |00 · · · 0〉 + |11 · · · 1〉√
2

(2)

is a 1-MM state.
For n = 4, there exists no 2-MM state. To see this, consider

the following four-qubit states:

|L〉 = 1

2
√

3
[(1 − ω)(|0011〉 + |1100〉) + ω2(|0101〉 + |0110〉

+ |1001〉 + |1010〉 − |0000〉 − |1111〉)], (3)

|HS〉 = 1√
6

[|0011〉 + |1100〉 + ω(|0101〉 + |1010〉)

+ω2(|0110〉 + |1001〉)], ω = e2πi/3. (4)

All of their one-qubit reductions are maximally mixed, so
they are 1-MM states, but this is not true for their two-qubit
reductions. |HS〉 was introduced in [17] and conjectured to
be the four-qubit maximally entangled state. Then, it was
shown to be a local maximum of the averaged two-qubit von
Neumann entropy in [18]. Finally, in [19], it was shown that the
global maximum for all averaged two-qubit Tsallis and Rényi
entropies is reached by |HS〉 for α < 2, and by the states |L〉
for α > 2. This implies that no four-qubit state can have all of
its two-qubit reductions maximally mixed, so indeed no 2-MM
state of four qubits exists.

For n = 5, the two logical states |0〉L and |1〉L of the five-
qubit code introduced in [20] are both 2-MM states. It is easy
to check that every qubit (or every pair of qubits) is found in a
maximally mixed state after tracing over the remaining qubits.

For n = 6, the four six-qubit states constructed as logical
Bell states using the previous five-qubit code states∣∣Mφ±

6

〉 = |0〉|0〉L ± |1〉|1〉L√
2

,

(5)∣∣Mψ±
6

〉 = |0〉|1〉L ± |1〉|0〉L√
2

are 3-MM states.
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For n > 7, it is shown in [13] that no state can have all of its
�n/2� reduction maximally mixed. Note that the case n = 7 is
not solved yet.

We see that the two-qubit 1-MM state and the six-qubit
3-MM state appear to be very special cases, with maximally
mixed reductions up to precisely half the number of qubits
(the trivial upper bound on k set by the Hilbert-Schmidt
decomposition). In general, for an arbitrary number n of qubits,
we can expect that it will be possible to find a k-MM state up
to some threshold value kmax < �n/2�, which only depends on
n.

B. Generalized Bloch vector formalism

To analyze this question, we need first to introduce the
generalized Pauli matrices, which are the set of matrices
constructed in terms of all n-fold tensor products of the form

σα = σα1 ⊗ σα2 ⊗ · · · ⊗ σαn
, (6)

where each σαi
represents, respectively, the 2 × 2 identity

matrix or one of the usual Pauli matrices, depending on the
index αi ∈ {0,1,2,3}. The bold index α refers to a vector index
containing the n indices αi . There exist 4n such matrices, all
being traceless except for σ0 which corresponds to the 2n × 2n

identity matrix and admits a trace Tr(σ0) = 2n. Using this set of
generalized Pauli matrices {σα}, it is also possible to construct
the bigger set of the form {σα,−σα,iσα,−iσα}. This set of
4n+1 elements becomes closed under matrix multiplication
and forms the so-called Pauli group Pn.

The set {σα} also forms a basis of a complex Schmidt-
Hilbert space of dimension 4n, so that every complex square
2n × 2n matrix can be seen as a vector r in this space. For
instance, a matrix ρ reads

ρ =
∑

α

rα σα ≡ r, (7)

while the components rα are given by the inverse formula

rα = 1

2n
Tr(σα ρ), (8)

which, for a pure state, becomes simply

rα = 1

2n
〈ψ |σα|ψ〉. (9)

If ρ is a quantum state, then Hermiticity (ρ = ρ†), positivity
(ρ � 0), and normalization (Tr ρ = 1) give the three following
constraints on the components rα [21]:⎧⎨

⎩
rα ∈ R, ∀α,

r is in the positive cone,
r0 = 1

2n .

These three relations mean that, after translation by −1/2n

in the zeroth direction, a quantum state is completely rep-
resented by the vector r, which lives in the positive cone
contained in a real subspace of a Schmidt-Hilbert space, the
so-called generalized Bloch vector of dimension 4n − 1. Note
that the concept of a positive cone embraces the idea that every
convex combination of positive operators is also a positive
operator.

Pure states, i.e., rank-one projectors that satisfy ρ2 = ρ,
appear in this representation as vectors r that are constrained
by ∑

αβ

gαβγ rαrβ = rγ , (10)

where gαβγ are the structure constants of SU(2n) defined as
σασβ := ∑

γ gαβγ σγ . Note that Eq. (10) also automatically
implies positivity. It can be decomposed in two independent
relations

|
r|2 ≡
∑

i

r2
i = 2n − 1

2n+1
= R2, (11)

(
r � 
r)i ≡
∑

j k

gi( j k)r j rk = 2n − 2

2n
ri , (12)

where Latin indices correspond to vector indices excluding
the zeroth component [α ≡ (0,i)], � is by definition the
generalization of the cross product, and parentheses stand
for symmetrization, gi( j k) = (gi j k + gi k j )/2. Relations (11)
and (12) express, respectively, that for a state being pure, its
Bloch vector r should live on a sphere of radius R (which is
actually the boundary of the positive cone) and should have a
specific orientation. For more details on the generalized Bloch
representation, see [21].

C. Conditions for maximally mixed reductions

The generalized Bloch representation is a very useful tool in
order to address the maximally mixed reduction property. Let
ρ be the density matrix of an n-qubit pure state |ψ〉 living in the
tensor product space H = C2 ⊗ C2 ⊗ · · · ⊗ C2, and consider
the bipartition H = HA ⊗ HB , where A and B are defined as
the sets of the first k qubits and last n − k qubits, respectively.
In the generalized Bloch representation, the k-qubit reduced
density matrix ρA resulting from tracing out the qubits of B is
given by

ρA = TrB(ρ) = TrB

( ∑
α

rα σα

)

=
∑
αAαB

rαAαB
σαA

TrB
(
σαB

)
, (13)

where the index α has been decomposed according to the
bipartition αAαB . By using the fact that the matrices σαB

are
all traceless excepted for the one corresponding to the identity
on HB , noted σ0B

, we get

ρA =
∑
αA

rαA0B
σαA

TrB
(
σ0B

) = 2n−k
∑
αA

rαA0B
σαA

, (14)

where rαA0B
≡ r(α1α2···αk00···0) with n − k zeros in the vector

index at the positions corresponding to B. If we now consider
an arbitrary bipartition (A,B), we obtain an expression similar
to (14) where in the vector index of rαA0B

, the zeros are located
at the positions of the traced out qubits. For instance, for a
six-qubit state, if the first, third, and last qubits are traced out,
the component rαA0B

corresponds to r(0α20α4α50).
Equation (14) gives a very nice operational procedure for

performing the partial trace. Usually, when expressing the
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FIG. 1. The partial trace seen as a loss of information, both in the
computational basis and in the generalized Bloch representation.

density matrix in the computational basis, the entropy resulting
from tracing out a part of the system manifests itself both as
a loss of some components and as the mixing of some other
components of the original density matrix. In the generalized
Bloch representation, the partial trace appears just as the loss
of some components (see Fig. 1). For instance, with the Bloch
representation, the linear entropy of the reduced state simply
reads

Sl(ρA) = 1 − TrA
(
ρ2

A

) = 1 −
(

22n−k
∑
αA

r2
αA0B

)
. (15)

Our concern now is the special case where all reduced
density matrices ρA for a given size |A| = k are proportional
to the identity on HA, i.e., when the original state is a k-MM
state. In view of Eq. (14), this is the case if all components rα

with a vector index α containing at least n − k zeros vanish,
except for the r0 component which is always equal to 1/2n. By
enumerating all these indices, we see that there are

Dk =
k∑

l=1

(
n

l

)
3l (16)

such components that must vanish. Let us define the weight
ω(α) of an index α (or by extension of a component rα or
of a generalized Pauli matrix σα) by its number of nonzero
subindices. Then, we can establish the following proposition:

Proposition 1. The n-qubit state ρ is a k-MM state if and
only if its corresponding Bloch vector r does not have any
component rα with an index weight in the range 0 < ω(α) � k.

This means that the vector r (after translation by −1/2n in
the zeroth direction) does not have any nonzero component
in the subspace spanned by the basis vectors σα with index
weight lower than or equal to k. If we denote this subspace
Ek (of dimension Dk), and Ēk its orthogonal-complementary
subspace, we can establish the equivalent proposition:

Proposition 1bis. The n-qubit state ρ is a k-MM state if and
only if its corresponding Bloch vector r has zero components
in Ek , so that its support belongs to Ēk .

The existence of a k-MM state results from the compat-
ibility between having a pure state satisfying Eq. (10) and
Proposition 1 at the same time. Such a compatibility is not easy
to study for an arbitrary couple (n,k) without more information
about the state. For this reason, we focus in the next section
on a class of balanced states that is suitable for analyzing this
question and obtaining existence bounds.

III. EXISTENCE BOUNDS FOR k-MM STATES

In the Bloch representation, constructing a pure state
directly in terms of the components of its Bloch vector
involves the orientation relation (12), which is difficult to
manipulate in general. Even checking the purity of a given state
numerically implies O(43n) operations, and beyond ten qubits
the computation time becomes unreasonable on a standard
desktop computer. Instead, we will focus on a restricted class
of states, which we call balanced states.

A. Balanced pure states as k-MM states

Balanced states are defined in the Bloch representation as
states whose nonzero components rα have all the same value,
namely, the same value as the identity component r0.

Definition 2. An n-qubit balanced state is expressed as

ρS = 1

2n

∑
σ∈S

σ, (17)

where S is a subset of the Pauli group Pn, which entirely
defines the state.

Note that in this definition, the Hermiticity of ρS implies
that S does not contain complex elements of the Pauli group
of the form ±i σ . We can now express the following theorem
about the purity of such balanced states:

Theorem 1. The n-qubit balanced state ρS defined from the
set S is pure if and only if S forms a group under matrix
multiplication that is isomorphic to Zn

2.
Proof. If ρS is a pure state (ρS = ρ2

S) then we have

1

2n

∑
σ∈S

σ = 1

22n

∑
σ,τ∈S

στ. (18)

The uniqueness of the expansion (17) implies that (18) is
satisfied only when S is closed under matrix multiplication,
i.e., when S is a subgroup of Pn. It follows that

1

2n

∑
σ∈S

σ = 1

22n

∑
τ∈S

∑
σ∈S

σ = |S|
22n

∑
σ∈S

σ, (19)

which implies that for ρS being pure, the order of S should be
2n. In summary, S must fulfill the three following properties:
(1) S has a finite order equal to 2n; (2) S is Abelian because
normalization and Hermiticity of ρS imply −σ0 /∈ S and
±i σ /∈ S, respectively; and (3) all the elements of S have
order 2, i.e., they are such that σ 2 = σ0, since ±iσ /∈ S.

According to the fundamental theorem of finite Abelian
groups [22], this implies that S � Z2 × Z2 × · · · × Z2 =
Zn

2. �
A simple example of such a pure balanced state is the state

|0〉 ≡ |00 · · · 0〉. Its components in the Bloch representation
are given by Eq. (8) as

rα = 1

2n
Tr(σα |0〉〈0|) = 1

2n
〈0|σα|0〉 = 1

2n
(σα)00,

which are nonzero if and only if σα is a tensor product of
identity and σZ matrices. There are 2n such matrices σα , which
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form the set S, and thus the state can be written explicitly as

|0〉〈0| = 1

2n
(σ(00···00) + σ(00···03) + σ(00···30) + · · ·

+ σ(33···30) + σ(33···33)), (20)

where it is clear that S � Zn
2 just by relabeling the identity

matrix σ0 as “0” and the Pauli matrix σZ = σ3 as “1,” for
instance, σ(00···03) → (00 · · · 01).

According to Proposition 1, a pure balanced state will be
a k-MM state if its group S does not contain elements with
an index weight lower than or equal to k (except for weight
zero). This problem is fully equivalent to finding an additive
self-orthogonal quantum error-correcting code over GF(4)
[23]. More generally, the connection between entanglement
and quantum error-correcting codes (QECC) was noted by
several authors, and it was proven, for example, in [13]
that a QECC that can detect k errors is also a k-MM state.
The reciprocal of this statement can easily be understood by
interpreting each Pauli matrix as an error operation. Indeed,
for every tensor product of Pauli matrices with index weight
0 < ω(α) � k, Eq. (9) gives

〈ψ |σα|ψ〉 = 0 (21)

for a k-MM state |ψ〉, which means that each error σα

is detectable because it rotates the state in an orthogonal
subspace.

B. Quantum Gilbert-Varshamov and quantum Hamming
bounds on k-MM states

By exploiting this relationship, known bounds in the context
of QECC can be mapped onto existence bounds for k-MM
states. The quantum Gilbert-Varshamov (GV) and quantum
Hamming (H) bounds introduced in [24] give, respectively,
lower and upper bounds on the number of errors that a quantum
code can detect, for a given number of qubits. They can be
directly translated in our context and give

D�k/2� + 1
(H)

� 2n � Dk + 1
(GV)

(22)

in terms of the subspace dimension Dk . Asymptotically, these
bounds can be written as [24]

f

(
k

n

)
(GV)

� 0 � f

(
k

2n

)
(H)

, (23)

where

f (x) = 1 − x log2 3 + x log2 x + (1 − x) log2(1 − x) (24)

is a decreasing function which has a root in x0 � 0.18929.
Physically, this means that it is always possible to find a n-qubit
k-MM state (n,k → ∞) that is such that, by keeping less than
19% or more than 81% of its qubits, we completely lose the
information on the initial pure state. On the other hand, it is
impossible to find such a state if we keep between 38% and
62% of its qubits. The situation in the region between 19%
and 38% (or between 62% and 81%) is unknown (see Fig. 2).
An intriguing physical implication of these bounds is that the
entropy behaves as an extensive quantity (it is proportional to
the number of qubits) in any subsystem as long as it has a
size lower than 19% of the total system. It is only beyond this

?

20 40 60 80 100
n

10

20

30

kmax

FIG. 2. (Color online) Constructive upper (thick red line) and
lower (thick green line) bounds for the existence of k-MM states
based on Markus Grassl’s database [26]. The asymptotic limits on the
domain of existence are also shown, namely, the quantum Hamming
bound (thin red line) and quantum Gilbert-Varshamov bound (thin
green line).

bound that, at some point, we observe a defect of extensitivity
which originates from the purity of the state of the total system.

Note that there exist more accurate bounds on QECC (see,
for instance, [25]), but these are useless in our case. Indeed,
finding a k-MM state is equivalent to finding a one-codeword’s
code, and typically these other bounds become stronger only
when the number of codewords exceeds 1. In our case, there
are no known better bounds than the quantum Hamming and
quantum Gilbert-Varshamov bounds.

C. Numerical bounds on k-MM states

Constructive upper and lower bounds can also be ob-
tained numerically. For instance, the search of additive
self-orthogonal quantum codes over GF(4) based on linear
programming has been performed up to around 100 qubits.
Such results are plotted in Fig. 2, based on Markus Grassl’s
database [26].

IV. SYMMETRIC k-MM STATES AND BEYOND

A. Symmetric states

In [27], it is conjectured that any n-qubit state of maximal
multipartite entanglement should be a 1-MM state, when the
entanglement is measured through (the sum of) the negativity
over all inequivalent bipartitions. We may naively extend
this conjecture by saying that any n-qubit state of maximal
multipartite entanglement should be a k-MM state, with k

being the maximum allowed value as analyzed in the previous
section. While this is very well possible, we will see that the
symmetric states, as defined below, are not good candidates to
test this conjecture. To understand why, we first recall that a
symmetric state is an n-qubit pure state that is invariant under
any permutations of its qubits, that is,

Uπ |ψ〉 = |ψ〉, ∀π ∈ Sn, (25)

where Uπ is the unitary transformation that maps the permuta-
tion π over the set of qubits and Sn is the symmetric group of
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n objects. These symmetric states form a (n + 1)-dimensional
symmetric subspace of H, which is often considered as a good
subspace to look for genuine multipartite entangled states,
particularly in terms of their geometric entanglement [14–16].
Surprisingly, we observe that they satisfy the following
theorem:

Theorem 2. Symmetric n-qubit states are at most 1-MM
states.

Proof. We first express the unitary transformation that maps
the transposition between qubits i and j , i.e., the SWAP
operator. In terms of generalized Pauli matrices, this operator
reads

Uij = 1

2

(
σ0 + σ

ij

11 + σ
ij

22 + σ
ij

33

) = 1

2

(
σ0 +

3∑
a=1

σ ij
aa

)
. (26)

In this expression we use the more usual notation for
generalized Pauli matrices, i.e., the positions of nonidentity
matrices are indicated as superscripts while the positions of
identity matrices are implicit, and the global identity is still
written σ0. For instance, σ 12

11 corresponds to the action of σx on
the first and second qubits. Now, we can write its expectation
value in a given pure state |ψ〉 as

〈Uij 〉 = 1

2

(
〈ψ |σ0|ψ〉 +

3∑
a=1

〈ψ |σ ij
aa|ψ〉

)

= 1

2

(
1 + 2n

3∑
a=1

rij
aa

)
. (27)

Because the symmetric group Sn can be generated by the set
of all transpositions of two elements, the set of relations (25)
is fully equivalent to the set of relations

Uij |ψ〉 = |ψ〉 ⇐⇒
3∑

a=1

rij
aa = 1

2n
, ∀ i > j ∈ [1,n], (28)

which provide conditions on some components of the general-
ized Bloch vector r of a symmetric state |ψ〉. At the same time,
a k-MM state with k > 1 should have all components r

ij

ab = 0
with i �= j , according to Proposition 1, which necessarily
contradicts some of the relations (28). �

Note that in the context of QECC, Theorem 2 means that it is
not possible to find a code in the symmetric subspace detecting
more than one error (or correcting any error). More physically,
we see that the permutation symmetry creates some frustration,
which prevents the subsets of two qubits (or more) to be all
maximally mixed. A natural question is of course whether
permutation symmetry also manifests itself by constraining
higher index weight terms to be nonzero. To answer this
question, let us define the concept of parity of an index α

(and by extension of a matrix σα or of a component rα):
Definition 3. Let index α contain λ1 subindices 1, λ2

subindices 2, and λ3 subindices 3. The parity of α is defined
as even if the λi’s are all even. Otherwise, it is defined as odd.

For instance, the indices (011) and (1122) are even, but
(122), (0123), and (1123) are odd. Note that any component
rα with an odd index weight ω(α) is necessarily an odd
component. We can now state that

Theorem 3. For a symmetric state, the even components rα

of a given index weight w(α) cannot all vanish.
Proof. Let us consider the expectation value of m transpo-

sitions acting on disjoined supports (m � �n/2�):

〈
m∏

k=1

Uikjk

〉
= 1

2m
〈ψ |

m∏
k=1

⎛
⎝σ0 +

3∑
ak=1

σ ikjk

akak

⎞
⎠ |ψ〉

= 1

2m

⎛
⎝1 +

m∑
k=1

3∑
ak=1

〈ψ |σ ikjk

akak
|ψ〉

+
∑
k<l

∑
ak,al

〈ψ |σ ikjkil jl

akakalal
|ψ〉 + · · ·

⎞
⎠ , (29)

where, in this expression, there are ( m
t ) terms of the form

∑
a1a2···at

〈ψ |σ i1j1i2j2···it jt

a1a1a2a2···at at
|ψ〉, (30)

which correspond to all the combinations of t transpositions
chosen among the m qubits. By induction, starting from the
case t = 1 corresponding to Eq. (28), we conclude that all
terms labeled by even indices should be equal to one, leading
to the constraints

∑
a1a2···at

r i1j1i2j2···it jt

a1a1a2a2···at at
= 1

2n
. (31)

for t = 1,2, . . . ,m. Thus for symmetric states, even compo-
nents rα of weight 2t cannot all vanish. �

Note that a priori the odd components are not constrained
explicitly by the permutation symmetry. To see this, a reason-
ing similar to the above proof can be done by considering the
expectation values of a 3-cycle acting on qubits i1, i2, and i3.
We have

〈
Ui1i2Ui2i3

〉 = 1

4
〈ψ |

(
σ0 +

3∑
a=1

σ i1i2
aa

) (
σ0 +

3∑
b=1

σ
i2i3
bb

)
|ψ〉

= 1

4

(
1 +

3∑
a=1

〈ψ |σ i1i2
aa |ψ〉 +

3∑
b=1

〈ψ |σ i2i3
bb |ψ〉

+
∑
ab

〈ψ |σ i1i2
aa σ

i2i3
bb |ψ〉

)

= 1

4

(
1 +

3∑
a=1

〈ψ |σ i1i2
aa |ψ〉 +

3∑
a=1

〈ψ |σ i2i3
aa |ψ〉

+
∑
a=b

〈ψ |σ i1i3
aa |ψ〉 +

∑
a �=b,c

εabc〈ψ |σ i1i2i3
acb |ψ〉

⎞
⎠ ,

(32)

where εabc stands for the completely antisymmetric symbol.
Since we must have 〈Ui1i2Ui2i3〉 = 1 and since Eq. (28) is
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satisfied, it follows

1

4

⎛
⎝4 +

∑
a �=b,c

εabc〈ψ |σ i1i2i3
acb |ψ〉

⎞
⎠ = 1

=⇒
∑
abc

εabcr
i1i2i3
acb = 0. (33)

Since r
i1i2i3
acb is completely symmetric in its lower indices for

a symmetric state, Eq. (33) is necessarily satisfied. Then, we
can generalize the last procedure by averaging the product of
disjoined transpositions and a 3-cycle (acting on a disjoined
support). Proceeding by induction in analogy to the reasoning
leading to Eq. (31), we obtain again a set of relations∑

a1a2 · · · at

b1b2b3

εb1b2b3r
i1j1i2j2···it jt i1i2i3
a1a1a2a2···at at b1b2b3

= 0 (34)

which are necessarily satisfied. Thus, in contrast with the even
components which cannot all vanish in a symmetric state, the
odd components are not constrained by permutation symmetry.

It must be stressed that the odd components may, however,
be possibly constrained for another reason, in particular, as a
result of the purity constraint (10). It is nevertheless natural to
seek for symmetric states such that a large number of their odd
components would vanish, which would correspond to high
multipartite entanglement. In order to test this possibility, we
now investigate specific states defined in [14–16], known to
exhibit high geometric entanglement.

B. Symmetric states with high geometric entanglement

In [14–16], some symmetric states with high geometric
entanglement have been found. In particular, in [15], an opti-
mization procedure was performed up to n = 12 in order to find
the states that maximize their geometric entanglement. Those
states are good candidates to test whether odd components
rα indeed vanish. Of course, a direct calculation of these
components by using expression (9) in the full 2n-dimensional
space is not realistic if n is not very small. Fortunately, by
exploiting permutation symmetry, we obtain the following
simplifications enabling an efficient calculation.

The first simplification comes from counting the number
of distinct components that we need to calculate for a
symmetric state. It is easy to see that UπρU †

π = ρ implies
rπ(α) = rα for any permutation π ∈ Sn. Thus, it is more
convenient to label each component rα by a four-component
vector 
λ = [λ0,λ1,λ2,λ3] which enumerates the numbers of
subindices 0, 1, 2, and 3 in the index α. For instance, we
have r(0113) = r(1031) = r[1,2,0,1]. For a given 
λ, the number
of equal components rα corresponding to the same r
λ is

given by the multinomial coefficient ( n
λ0λ1λ2λ3

) = ( n

λ ). Thus,

instead of having to calculate 4n components, only ( 4 + n − 1
n ) =

1
6 (n + 3)(n + 2)(n + 1) � n3

6 distinct components are needed,
corresponding to the number of distinct multinomial coef-
ficients. Note that permutation symmetry also implies that
UπρU

†
π ′ = ρ for any permutations π,π ′ ∈ Sn, which leads to

other constraints on the components rα .

The second simplification comes from calculating (9) in the
so-called Dicke basis, which is a natural basis of the (n + 1)-
dimensional symmetric subspace and allows us to use the states
as expressed in this basis in [15]. Any symmetric state can be
decomposed as

|ψ〉 =
n∑

k=0

dk

∣∣Sn
k

〉
,

where |Sn
k 〉 are the Dicke states, dk ∈ C, and

∑n
k=0 |dk|2 = 1.

The Dicke states are written in the computational basis as

∣∣Sn
k

〉 =
(

n

k−1/2

) ∑
π∈Sn

Uπ | 00 · · · 0︸ ︷︷ ︸
n−k

11 · · · 1︸ ︷︷ ︸
k

〉

=
(

n

k

)−1/2 ∑
|j |=k

| j〉, (35)

where j is a binary vector of size n such that | j | ≡ ∑n
i=1 ji =

k. Symmetric states can also be defined in terms of the
Majorana representation [28]. In this representation, every
symmetric state |ψ〉 is characterized by a collection of n

one-qubit states |qi〉 = xi |0〉 + yi |1〉 which can be viewed as
n points in the surface of the Bloch sphere, according to the
expression

|ψ〉 = eiθ

N
∑
π∈Sn

Uπ |q1〉|q2〉 · · · |qn〉, (36)

for some phase θ and some normalization factor N . We can
move from the Majorana representation to the Dicke basis
thanks to the relation [29]

dk =
(

n

k

)−1/2 ∑
π∈Sn

yπ(1) · · · yπ(k)xπ(k+1) · · · xπ(n),

but this is really inefficient as it involves a sum over all
permutations. Instead, we use the fact, also noted in [14,29],
that the Majorana parameters zi = xi/yi are the roots of the
polynomial

P (z) =
n∑

k=0

(−1)k
(

n

k

)−1/2

dkz
k. (37)

Thus, knowing the Majorana parameters zi , the Dicke com-
ponents dk can be calculated in about O(n3) operations by
solving the set of linear equations

∑
k Aikdk = 0, with A being

a matrix of entries Aik = (−1)k( n

k )−1/2zk
i .

The last simplification concerns the expression of the
generalized Pauli matrices themselves. Indeed, in order to
compute the components r
λ of a symmetric state of known
components dk in the Dicke basis, we only need the symmetric
part of the generalized Pauli matrices σα , that is, their
projection into the symmetric subspace. These symmetric
matrices are (n + 1) × (n + 1) matrices in the Dicke basis,
which we note as τ
λ. Just as for the components rα of a

symmetric state, there are ( n

λ ) generalized Pauli matrices σα

which are all projected onto the same symmetric matrix τ
λ,
labeled by the index 
λ. The matrix elements of τ
λ in the Dicke
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basis are

(τ
λ)kk′ = 〈Sn
k |σα|Sn

k′ 〉

=
(

n

k−1/2

) (
n

k′−1/2

) ∑
| j |=k

∑
| j ′|=k′

〈 j |σα| j ′〉

=
∑

| j | = k

| j ′| = k

〈 j |σ⊗λ0
0 ⊗ σ

⊗λ1
1 ⊗ σ

⊗λ2
2 ⊗ σ

⊗λ3
3 | j ′〉√(

n

k

)(
n

k′
) ,

where we have taken an arbitrary order for the individual
Pauli matrices in σα . Then, the vectors j and j ′ can be cut
in four pieces jα and j ′

α of size λα (α = [0,3]). To simplify
the notation, we note as J the domain satisfying the set of
constraints on vectors jα and j ′

α . It follows

(τ
λ)kk′ =
∑
J

〈 j0|σ⊗λ0
0 | j ′

0〉〈 j1|σ⊗λ1
1 | j ′

1〉 · · · 〈 j3|σ⊗λ3
3 | j ′

3〉√(
n

k

)(
n

k′
) .

By using the definition of the usual 2 × 2 Pauli matrices, we
can write each factor as

〈 j0|σ⊗λ0
0 | j ′

0〉 = δ j0 j ′
0
,

〈 j1|σ⊗λ1
1 | j ′

1〉 = δ j1 j ′
1
,

(38)
〈 j2|σ⊗λ2

2 | j ′
2〉 = (−1)| j ′

2|(i)λ2δ j2 j ′
2
,

〈 j3|σ⊗λ3
3 | j ′

3〉 = (−1)| j ′
3|δ j3 j ′

3
,

where barred vectors stand for the complementary vectors, for
instance, (1011) = (0100). These equations can be rewritten
in terms of the new indices kα = | jα| and k′

α = | j ′
α| as

〈k0|σ⊗λ0
0 |k′

0〉 = δk0 k′
0
,

〈k1|σ⊗λ1
1 |k′

1〉 = δk1 (λ1−k′
1),

(39)
〈k2|σ⊗λ2

2 |k′
2〉 = (−1)k

′
2 (i)λ2δk2 (λ2−k′

2),

〈k3|σ⊗λ3
3 |k′

3〉 = (−1)k
′
3δk3 k′

3
,

and the sum over each jα can be replaced by a sum over each
kα weighted by a factor ( λα

kα
). Eventually, the matrix elements

τ
λ can be reexpressed as

(τ
λ)kk′ =
∑ i(2k3+3λ2−2k2)

(λ0

k0

)(λ1

k1

)(λ2

k2

)(λ3

k3

)
√(

n

k

)(
n

k′
) , (40)

where the sum is taken over the four indices k0, k1, k2, and
k3 which can take values between 0 and λ0, λ1, λ2, and λ3,
respectively, with the two constraints

k = k0 + k1 + k2 + k3,
(41)

k′ = k0 + (λ1 − k1) + (λ2 − k2) + k3.

Note that in the worst case where each λα � �n/4�, this
calculation implies calculating about O(n4) terms. As an
example, for two qubits (n = 2), the symmetric part of the

TABLE I. Proportion of vanishing odd components in symmetric
states that maximize geometric entanglement (from [15]). Note that
|ψ10〉 is not the maximum but only a state really close to it which
allows an explicit writing.

n State Zero odd/Total odd

4 |ψ4〉 = 1√
3
|S4

0 〉 +
√

2
3 |S4

3 〉 18/25 = 72%

5 |ψ5〉 � 0.547|S5
0 〉 + 0.837|S5

4 〉 36/46 � 78%
6 |ψ6〉 = (|S6

1 〉 + |S6
5 〉)

√
2 64/64 = 100%

7 |ψ7〉 = (|S7
1 〉 + |S7

6 〉)
√

2 90/100 = 90%
8 |ψ8〉 � 0.672|S8

1 〉 + 0.741|S8
6 〉 94/130 � 72%

9 |ψ9〉 = (|S9
2 〉 + |S9

7 〉)
√

2 164/185 � 89%
10 |ψ10〉 = (|S10

2 〉 + |S10
8 〉)√2 230/230 = 100%

12 |ψ12〉 = (|S10
2 〉 + |S10

8 〉)√2 341/371 � 94%
20 Dodecahedron state from [30] 1266/1484 � 85%

generalized Pauli matrices σ(13) and σ(31) corresponds to

τ[0,1,0,1] =

⎛
⎜⎝ 0 1√

2
0

1√
2

0 − 1√
2

0 − 1√
2

0

⎞
⎟⎠ . (42)

By using explicit expressions of symmetric states with
maximum geometric entanglement taken from [15] or three-
dimensional (3D) coordinates available in the Sloane database
[30], these simplifications allow us to calculate efficiently the
distinct components in the Dicke basis as

r
λ = 1

2n
〈ψ |σ
λ|ψ〉.

For n = 4–12 (and also for n = 20), the ratios between
the number of zero odd components and the total number
of odd components are gathered in Table I. We observe
that a large proportion of odd components vanish for these
states. In the special cases n = 6 and n = 10, really all odd
components vanish. For the cases n = 4 and n = 12, the states
constructed thanks to the 3D coordinates available in [30] give
better results, namely, the ratios 24/25 � 96% for n = 4 and
371/371 = 100% for n = 12, even though these states are
equivalent to those of [15] (i.e., related by symmetric unitary
transformation U⊗n). This is the case because the proportion
of vanishing odd components is basis dependent, in the sense
that two equivalent symmetric states will have, in general, a
different structure in the vector r
λ even if they have the same
entanglement content.

Finally, we observe that the structure of the vector r
λ often
takes a particularly simple form, especially for those states
with a large proportion of vanishing odd components. For
n = 4 and n = 6, all the nonzero components are given by

n = 4 =⇒
⎛
⎝ rπ[4,0,0,0]

rπ[2,2,0,0]

rπ[1,1,1,1]

⎞
⎠ = 1

2n

⎛
⎝ 1

±1/3
1/

√
3

⎞
⎠, (43)

n = 6 =⇒
⎛
⎝ rπ[6,0,0,0]

rπ[4,2,0,0]

rπ[2,2,2,0]

⎞
⎠ = 1

2n

⎛
⎝ 1

±1/3
±1/3

⎞
⎠. (44)

In these expressions, the permutation symbols π applied on
vectors 
λ indicate that components with the same vector index
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λ up to some permutation are equal (or of opposite sign).
For instance, for the four-qubit state, it means that r(0011) =
r(0022) = −r(2211). Note that the presence of the minus sign can
be seen as a consequence of the purity constraint (10). For
n = 10 and n = 12, the structure is similar even if a little bit
more complex because it involves one or two different values
per permutation of the 
λ index. In particular, for n = 12, the
structure is similar to that of n = 4 or 6 in the sense that we
have the nonzero components

n = 12 =⇒

⎛
⎜⎝

rπ[12,0,0,0]

rπ[10,2,0,0]

rπ[8,4,0,0]

rπ[8,2,2,0]

⎞
⎟⎠ = 1

2n

⎛
⎜⎝

1
±1/3
2/10

±1/15

⎞
⎟⎠. (45)

We believe that a possible new approach to analyzing max-
imum entangled states in the symmetric subspace for higher
values of n should be inspired by these nice structures, and
take the vector r
λ as a starting point.

V. CONCLUSION

We have investigated the maximally mixed reduction
property through the concept of k-MM states. By making use of
the generalized Bloch representation in which the partial trace
operation takes a simple form, we expressed the condition
that a k-MM state must satisfy in terms of its generalized
Bloch vector components. Considering the class of balanced

k-MM states and a connection with quantum error-correcting
codes, we found asymptotic lower and upper bounds on the
reduction size k for n → ∞. Then, we analyzed the class of
symmetric states, which led us to consider a weaker version
of the maximally mixed reduction property. We showed
that symmetric states cannot have maximally mixed k-qubit
reductions with k > 1, which is linked to the fact that some
weight-two component of their generalized Bloch vector must
necessarily be nonzero. In other words, symmetric states do
not obey the maximally mixed reduction property (they cannot
be k-MM states with k growing linearly in n). However, we
showed that the constraint of admitting nonzero components
only holds for even components, so odd components are not
constrained by permutation symmetry. We studied the case
of symmetric states which maximize geometric entanglement
(up to n = 20) as examples of states admitting many zero
odd components, witnessing a high multipartite entanglement
content even though they do not obey the maximally mixed
reduction property for k > 1. This led us to observe some
interesting structures in the Bloch vector of states maximizing
the geometric entanglement, which may open new perspectives
in the analysis of multipartite entanglement.
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