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We present a way of identifying all kinds of entanglement for three-qubit pure states in terms of the expectation
values of Pauli operators. The necessary and sufficient conditions to classify the fully separable, biseparable, and
genuine entangled states are explicitly given. The approach can be generalized to multipartite high-dimensional
cases. For three-qubit mixed states, we propose two kinds of inequalities in terms of the expectation values of
complementary observables. One inequality has advantages in entanglement detection of the quantum state with
positive partial transpositions, and the other is able to detect genuine entanglement. The results give an effective
method for experimental entanglement identification.
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I. INTRODUCTION

Entanglement is the essential resource for many tasks in
quantum information processing [1,2]. As a result, various
approaches have been proposed to characterize entanglement.
But as of yet, there are no operational necessary and sufficient
separability criteria for high-dimensional states and multipar-
tite states in general.

For unknown quantum states, separability can only be
determined by measuring some suitable quantum mechanical
observables. An important approach in characterizing entan-
glement is the Bell inequality [3–8]. For instance, Gisin has
proven that all two-qubit pure entangled states violate the
Clauser-Horne-Shimony-Holt (CHSH) inequality [4]. In the
three-qubit system, Ref. [5] presents a Bell-type inequality
that would be violated by all three-qubit pure entangled states,
and Ref. [6] shows analytically that all pure entangled states
violate another Bell-type inequality by exploiting Hardy’s
nonlocality argument. Quite recently, Ref. [8] showed that
all multipartite high-dimensional entangled pure states violate
a single Bell inequality. For general mixed two-qubit states,
Bell-type inequality has been proposed to give the necessary
and sufficient criterion of separability [9,10]. Besides Bell
inequality, the entanglement witness could also be used for
experimental detection of quantum entanglement for some
special states, such as the W state [11], the GHZ state
[11], and the cluster state [12]. Some of these witnesses
can be implemented with the present technology [13,14].
Another method to detect entanglement is to measure the
entanglement measures experimentally [15–18], which have
been implemented for the two-qubit pure state [16,17].

In multipartite systems, there are many kinds of entangle-
ment. For the simplest case, in the three-qubit system, all pure
states are classified into six types in terms of stochastic local
operations and classical communication (SLOCC) equivalence
[19]. They can also be classified into nine types by the
canonical form of the pure three-qubit state [20]. Then for
three-qubit mixed states, they could be classified into four
types if one demands that each type consist of a compact
and convex set [21]. Different types of entanglement have
different features. But it is generally difficult to characterize
different types of multipartite entanglement and distinguish
them from each other completely. Entanglement witness and

the Bell inequality have been proposed to distinguish important
classes of qubit states [22–25].

In this paper we mainly deal with the separability of
quantum states and distinguish different entanglement in the
three-qubit system. We first express the bipartite entanglement
of the three-qubit pure state in terms of expectation values of
Pauli operators. Based on this, we derive some inequalities
which can be viewed as entanglement witness to detect the
separability of three-qubit pure states completely. Therefore,
one can recognize whether a three-qubit pure state is fully
separable, biseparable, or genuinely entangled by measuring
some particular expectation values. For the entanglement
detection of three-qubit mixed states, we propose two kinds
of inequalities in terms of the expectation values of com-
plementary observables. One inequality is able to detect
entanglement in the quantum state with positive partial
transpositions (PPT’s), and the other is able to detect gen-
uine entanglement. These inequalities may help experimental
entanglement detection and differentiation in the three-qubit
system.

The paper is organized as follows. In Sec. II, we express
the bipartite entanglement of the three-qubit pure state in
terms of expectation values of Pauli operators. Then necessary
and sufficient conditions to classify the fully separable,
biseparable, and genuine entangled states are explicitly given
for the three-qubit pure state. In Sec. III, we provide two
kinds of inequalities in terms of the expectation values of
complementary observables to detect entanglement in the
three-qubit mixed state. These inequalities are shown to have
the ability to detect some PPT entanglement and genuine
entanglement. Conclusions are given in Sec. IV.

II. ENTANGLEMENT DETECTION OF
THE THREE-QUBIT PURE STATE

Any pure three-qubit state |ψ〉 can be either fully separable,
biseparable, or genuinely entangled. A fully separable pure
three-qubit state |ψ〉 can be written as a tensor product of
three pure states, |ψ〉 = |φ1〉 ⊗ |φ2〉 ⊗ |φ3〉, while biseparable
states have three different kinds depending on the partitions.
If |ψ〉 is separable under partition of the first qubit and the
rest of the qubits, it has the form |ψ〉 = |φ1〉 ⊗ |φ23〉, with
|φ23〉 an entangled state of the second and third qubits. We
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denote this kind of biseparable state as a 1|23 separable state.
Analogously, there are 2|13 and 12|3 separable states. These
1|23, 2|13, and 12|3 separable states are biseparable ones. If
state |ψ〉 is neither fully separable nor biseparable, then it is
genuinely entangled. There are two kinds of genuine entangled
states under SLOCC classification [19]: |W 〉 = 1√

3
(|001〉 +

|010〉 + |100〉) and |GHZ〉 = 1√
2
(|000〉 + |111〉).

For the three-qubit mixed state ρ, it is fully separable if it
is a convex combination of fully separable pure states; ρ is
biseparable if it can be written as the convex combination of
biseparable pure states. Furthermore, a mixed state ρ is called
separable under partition 1|23 if it is a convex combination of a
1|23 separable pure state. Analogously, there are 2|13 and 12|3
separable mixed states. In this respect, a general biseparable
state ρ is also a convex combination of 1|23, 2|13, and 12|3
separable mixed states. ρ is genuinely entangled if it is neither
fully separable nor biseparable.

We first deal with the problem of identifying bipartite
entanglement of three-qubit pure states by realizing entan-
glement measure in terms of the expectation values of local
observables. Here we adopt concurrence as the bipartite
entanglement measure [26–31]. For a bipartite pure state
|ψ〉, its concurrence is defined by C(|ψ〉) =

√
1 − trρ2

1 with
ρ1 = tr2(|ψ〉〈ψ |) the reduced density matrix. For a three-qubit
state |ψ〉 = ∑1

i,j,k=0 aijk|ijk〉, ∑1
i,j,k=0 |aijk|2 = 1, if we view

it as a bipartite state under the partition of the first qubit and
the rest of the qubits, its squared concurrence is given by

C2
1|23(|ψ〉) =

⎛
⎝ 1∑

j,k=0

|a0jk|2
⎞
⎠

⎛
⎝ 1∑

j,k=0

|a1jk|2
⎞
⎠

−
∣∣∣∣∣∣

1∑
j,k=0

a0jka
∗
1jk

∣∣∣∣∣∣
2

. (1)

After a lengthy calculation, we get that the right-hand side of
Eq. (1) can be expressed as the quadratic polynomial of the
expectation values of Pauli operators,

〈G1〉|ψ〉〈ψ | ≡ 1
16 (3 − 〈IIσ3〉2 − 〈Iσ3I 〉2 − 3〈σ3II 〉2 + 〈σ3σ3I 〉2

+〈σ3Iσ3〉2 − 〈Iσ3σ3〉2 + 〈σ3σ3σ3〉2 − 3〈σ1II 〉2

+〈σ1Iσ3〉2 + 〈σ1σ3I 〉2 + 〈σ1σ3σ3〉2 − 3〈σ2II 〉2

+〈σ2Iσ3〉2 + 〈σ2σ3I 〉2 + 〈σ2σ3σ3〉2), (2)

where σ1 = |0〉〈1| + |1〉〈0|, σ2 = i(|0〉〈1| − |1〉〈0|), and σ3 =
|0〉〈0| − |1〉〈1| are Pauli operators, I is the identity operator,
〈IIσ3〉 stands for 〈I ⊗ I ⊗ σ3〉, and so on.

By permutation we can similarly get the squared concur-
rence C2

2|13(|ψ〉) of |ψ〉, denoted by

〈G2〉|ψ〉〈ψ | = 1
16 (3 − 〈IIσ3〉2 − 〈σ3II 〉2 − 3〈Iσ3I 〉2 + 〈σ3σ3I 〉2

+〈Iσ3σ3〉2 − 〈σ3Iσ3〉2 + 〈σ3σ3σ3〉2 − 3〈Iσ1I 〉2

+〈Iσ1σ3〉2 + 〈σ3σ1I 〉2 + 〈σ3σ1σ3〉2 − 3〈Iσ2I 〉2

+〈Iσ2σ3〉2 + 〈σ3σ2I 〉2 + 〈σ3σ2σ3〉2), (3)

and the squared concurrence C2
3|12(|ψ〉) of |ψ〉,

〈G3〉|ψ〉〈ψ | = 1
16 (3 − 〈σ3II 〉2 − 〈Iσ3I 〉2 − 3〈IIσ3〉2 + 〈Iσ3σ3〉2

+〈σ3Iσ3〉2 − 〈σ3σ3I 〉2 + 〈σ3σ3σ3〉2 − 3〈IIσ1〉2

+〈σ3Iσ1〉2 + 〈Iσ3σ1〉2 + 〈σ3σ3σ1〉2 − 3〈IIσ2〉2

+〈σ3Iσ2〉2 + 〈Iσ3σ2〉2 + 〈σ3σ3σ2〉2). (4)

Equations (2)–(4) give a realization of experimental mea-
surement of bipartite entanglement of three-qubit pure states.
One can obtain the value of concurrence by measuring the
expectation values of Pauli operators. If 〈Gi〉|ψ〉〈ψ | > 0, then
the three-qubit pure state |ψ〉 is not separable between the ith
qubit and the rest. If 〈Gi〉|ψ〉〈ψ | = 0, then the three-qubit pure
state |ψ〉 is at least biseparable, i = 1,2,3.

Note that any three-qubit pure state |ψ〉 is fully separable if
and only if its concurrence under all biseparable partitions is
zero; |ψ〉 is biseparable if and only if its concurrence between
one fixed qubit and the other two qubits is zero, while the
other two bipartite concurrences are not zero. At last, |ψ〉
is genuinely entangled if and only if its concurrence for all
bipartite partitions is nonzero. Therefore, employing the non-
linear operators Gj , j = 1,2,3, we have the following result
for experimentally identifying different kinds of entanglement
in arbitrary unknown three-qubit pure states.

Theorem 1. For any pure three-qubit state |ψ〉, we have
(i) |ψ〉 is fully separable if and only if 〈Gj 〉|ψ〉〈ψ | = 0, for

j = 1,2, or j = 2,3, or j = 1,3.
(ii) |ψ〉 is separable between the ith qubit and the rest if

and only if 〈Gi〉|ψ〉〈ψ | = 0 and 〈Gj 〉|ψ〉〈ψ | > 0, j ∈ {1,2,3} and
j 	= i, i = 1,2,3.

(iii) |ψ〉 is genuinely entangled if and only if 〈Gj 〉|ψ〉〈ψ | > 0,
j = 1,2, or j = 2,3, or j = 1,3.

In fact, to determine the type of entanglement existing
in the three-qubit pure state, one can resort to the Schmidt
decomposition across the bipartition 1|23, 2|13, and 12|3, and
then conclude whether it is fully separable, biseparable, or
genuinely entangled. However, this method works in theory
and requires that we have already known precisely all the
coefficients of the pure state. In contrast, Theorem 1 works
for any unknown pure three-qubit states, and it is operational
experimentally.

From the view of the entanglement witness, Gi , i = 1,2,3
can be regarded as nonlinear entanglement witness operators.
Theorem 1 shows that there exists a complete set of entan-
glement witnesses to identify all kinds of possible pure three-
qubit entanglement: fully separable, three types of biseparable
entanglement, and genuinely entangled states. Compared with
the usual Bell inequality, which requires infinitely many
measurements of observables, our local operators are fixed.
In other words, to detect and differentiate pure three-qubit
entanglement, one only needs to measure the coincidence
probabilities: σ3 ⊗ σ3 ⊗ σ3, σ3 ⊗ σ3 ⊗ σ1, σ3 ⊗ σ3 ⊗ σ2, σ3 ⊗
σ1 ⊗ σ3, σ3 ⊗ σ2 ⊗ σ3, σ1 ⊗ σ3 ⊗ σ3, σ2 ⊗ σ3 ⊗ σ3 in G1, G2,
and G3. These finite and deterministic measurements make the
experimental entanglement detection simpler.

For the multipartite high-dimensional pure state, there
are many different kinds of entanglement. For example, an
N -partite system can be genuinely entangled, ( N

2 ) different

biseparable, ( N
3 ) different tripartite separable, . . . , fully

separable. Different kinds of entanglement could be detected
by expanding the ( N

2 ) different bipartite concurrence, ( N
3 )

different tripartite generalized concurrence, . . . , and ( N
N − 1 )

different N − 1 partite generalized concurrence in terms of the
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expectation values of Hermitian operators. Hence all pure-state
entanglement could be detected completely by measuring the
expectation values of local observables.

III. ENTANGLEMENT DETECTION OF THREE-QUBIT
MIXED STATES

It is much more complicated to detect entanglement of
mixed states. Even for a known mixed state, one has no general
approach to judge its separability. In order to identify the
entanglement of a three-qubit mixed state ρ, here we give
two kinds inequalities to detect three-qubit entanglement in
terms of the expectation values of complementary observables.
First, let A, B, and C denote the observables acting on the
first, second, and third qubits, respectively. {Ai = 
ai · 
σ }3

i=1,
{Bj = 
bj · 
σ }3

j=1, and {Ck = 
ck · 
σ }3
k=1 are arbitrary complete

sets of complementary observables with the same orientations,
and 
σ is the vector composed by Pauli operators [9]. For a set of
three mutual complementary observables {Ai}3

i=1, we denote
μA = −iA1A2A3 as its orientation, which can assume only
two values ±1. If μA = 1 the orientation of the basis formed
by the three real vectors 
ai is right-handed; the same definition
of orientation applies to 
σ . The orientations of {Bj }3

j=1 and
{Ck}3

k=1 are defined similarly. In the following, when we
refer to the complementary observables {Ai}3

i=1, {Bj }3
j=1 and

{Ck}3
k=1, we mean that they have the same orientations as the

default.
Theorem 2. For any three-qubit mixed state ρ, if it is

separable under the partition 1|23 and 12|3, then it satisfies

〈T1〉ρ = 〈1 + B3 + A3C3 + A3B3C3〉2
ρ

−〈C3 + B3C3 + A3 + A3B3〉2
ρ

−〈A1C1 + A1B3C1 + A2C2 + A2B3C2〉2
ρ � 0 (5)

for all complementary local observables.
The proof of Theorem 2 can be derived analogously in

the light of the second part of the proof of the main result
in Ref. [10]. This theorem tells us that if 〈T1〉ρ < 0 for some
complementary local observables, then the quantum state ρ

is not separable under the partition 1|23 and 12|3 and it
is surely entangled. Similarly, if ρ is separable under the
partition 2|13 and 12|3, then it satisfies 〈T2〉ρ = 〈1 + A3 +
B3C3 + A3B3C3〉2

ρ − 〈C3 + A3C3 + B3 + A3B3〉2
ρ −

〈B1C1 + A3B1C1 + B2C2 + A3B2C2〉2
ρ � 0 for all comple-

mentary local observables, and if ρ is separable under the
partition 1|23 and 2|13, then it satisfies 〈T3〉ρ = 〈1 + C3 +
A3B3 + A3B3C3〉2

ρ − 〈B3 + B3C3 + A3 + A3C3〉2
ρ −

〈A1B1 + A1B1C3 + A2B2 + A2B2C3〉2
ρ � 0 for all comple-

mentary local observables. Next, we illustrate the capability
of Theorem 2 in detecting entanglement by some examples.

Example 1. For quantum state

ρ1 = 1
3 (|ψ+〉〈ψ+|AB ⊗ |0〉〈0|C + |ψ+〉〈ψ+|AC ⊗ |0〉〈0|B
+ |ψ+〉〈ψ+|BC ⊗ |0〉〈0|A),

with |ψ+〉 = 1√
2
(|00〉 + |11〉), it has 〈T1〉ρ1 = − 16

9 if we take

Bi = Ci = σi , and Ai = U1σiU
†
1 with U1 = |0〉〈1| − |1〉〈0|,

i = 1,2,3. So ρ1 is identified as an entangled state by
Theorem 2.

Example 2. For quantum state

σb = 7b

7b + 1
σinsep + 1

7b + 1
|φb〉〈φb|, (6)

where

σinsep = 2

7
(|ψ1〉〈ψ1| + |ψ2〉〈ψ2| + |ψ3〉〈ψ3|) + 1

7
|011〉〈011|,

|φb〉 = |1〉 ⊗
(√

1 + b

2
|00〉 +

√
1 − b

2
|10〉

)
,

|ψ1〉 = 1√
2

(|000〉 + |101〉),

|ψ2〉 = 1√
2

(|001〉 + |110〉),

|ψ3〉 = 1√
2

(|010〉 + |111〉),

σb is entangled and positive under arbitrary partial trans-
position for 0 � b � 1. So it is a PPT entangled state
in the three-qubit system. Now if we choose Ai =
U2σiU

†
2 , Bi = V2σiV

†
2 , Ci = σi , with U2 = |0〉〈1| − |1〉〈0|,

V2 = 1√
2
(|0〉〈0| + |0〉〈1| − |1〉〈0| + |1〉〈1|), i = 1,2,3, then

〈T1〉σb
= − 32b(−1+b+√

1−b2)
(1+7b)2 < 0 for 0 < b < 1. Therefore,

Theorem 2 has advantages in PPT entanglement detection in
the three-qubit system.

Example 3. For the quantum state

ρ3 = pσb + 1 − p

8
I,

with 0 � p, b � 1, which is a mixture of PPT states σb in
Eq. (6) with white noise, ρ3 is still a PPT state with two
parameters b and p. Below we plot the expectation value 〈T1〉ρ3

with the help of local observables given in Example 2 (see
Fig. 1). The dark (blue) region in the contour plot represents
the PPT entangled state ρ3 that Theorem 2 could detect.

Now we propose another kind of inequality to identify
different entanglement in the three-qubit system. Let

〈F1〉ρ = 〈1 + B3C3〉2
ρ − 〈B3 + C3〉2

ρ − 〈B1C1 + B2C2〉2
ρ,

〈F2〉ρ = 〈1 + A3C3〉2
ρ − 〈A3 + C3〉2

ρ − 〈A1C1 + A2C2〉2
ρ,

〈F3〉ρ = 〈1 + A3B3〉2
ρ − 〈A3 + B3〉2

ρ − 〈A1B1 + A2B2〉2
ρ,

(7)

then we have the following result.
Theorem 3. For any three-qubit mixed state ρ, we have
(i) if it is fully separable, then it satisfies 〈Fl〉ρ � 0 for

all complementary local observables {Ai}3
i=1, {Bj }3

j=1, and
{Ck}3

k=1, l = 1,2,3.
(ii) if it is biseparable, then

3∑
l=1

〈Fl〉ρ � −2 (8)

for all complementary local observables {Ai}3
i=1, {Bj }3

j=1, and
{Ck}3

k=1.
(iii) if it violates inequality (8), then it is genuine entangled.
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FIG. 1. (Color online) Here we select Ai = U2σiU
†
2 , Bi =

V2σiV
†

2 , Ci = σi , with U2 = |0〉〈1| − |1〉〈0|, V2 = 1√
2
(|0〉〈0| +

|0〉〈1| − |1〉〈0| + |1〉〈1|), i = 1,2,3. The first plot describes the
expectation value 〈T1〉ρ3 with respect to p and b. The second plot
is the contour plot of the first.

Proof. Let ρ = ∑
k pk|ψk〉〈ψk|,

∑
k pk = 1, pk � 0 be an

arbitrary three-qubit mixed state.
(i) If ρ is fully separable, then {|ψk〉} are all fully

separable, at least in one such pure-state decomposition.
Hence the reduced bipartite state ρ

(k)
l

= Trl(|ψk〉〈ψk|) is also

separable for all k, l = 1,2,3, and l denotes the absence
of l in the set {1,2,3}. In the light of the main results
in Ref. [9], one gets 〈Fl〉|ψk〉〈ψk | � 0 if and only if ρ

(k)
l

is separable. Therefore, if |ψk〉 is fully separable, then
〈Fl〉|ψk〉〈ψk | � 0, l = 1,2,3, ∀k. Note that if a2

i � b2
i + c2

i + x

holds for arbitrary real numbers bi and ci , non-negative
ai and x, i = 1, . . . ,n, then (

∑n
i=1 piai)2 � (

∑n
i=1 pibi)2 +

(
∑n

i=1 pici)2 + x for 0 � pi � 1 and
∑n

i=1 pi = 1. This
observation makes 〈Fl〉ρ � 0, l = 1,2,3, for all complemen-

tary local observables and for the fully separable quantum
state ρ.

(ii) Suppose {|ψk〉} are all biseparable. Without loss of
generality, we assume |ψ1〉 is 1|23 separable, then it satisfies
〈F2〉|ψ1〉〈ψ1| � 0 and 〈F3〉|ψ1〉〈ψ1| � 0 for all complementary
local observables. Taking into account that the minimum of
〈F1〉|ψ1〉〈ψ1| for arbitrary complementary local observables is
two times the minimal eigenvalue of the partial transposed ma-
trix of ρ

(1)
23 [9], one has 〈F1〉|ψ1〉〈ψ1| � −2 for all complementary

local observables. Therefore we get
∑3

l=1〈Fl〉|ψk〉〈ψk | � −2
for all complementary local observables and for the arbitrary
biseparable state |ψk〉. Consequently, for the biseparable mixed
state ρ, we have

∑3
l=1〈Fl〉ρ � −2 for all complementary local

observables.
(iii) The result is obvious. �
As an example, we consider a state of a mixture of

|W 〉 = 1√
3
(|001〉 + |010〉 + |100〉) with white noise, ρw =

p|W 〉〈W | + 1−p

8 I , 0 � p � 1. It is detected as genuinely
entangled by the entanglement witness in Ref. [14] when p >

0.62. If we take Ak = Bk = Ck = σk in the local operators in
Eq. (7), k = 1,2,3, we have

∑3
l=1〈Fl〉ρw

> −2 when p > 0.92
and 〈Fl〉ρw

< 0 when p > 0.56, l = 1,2,3. Hence we know
that ρw is genuinely entangled when p > 0.92 and entangled
when p > 0.56 by Theorem 3. Our entanglement witness can
better detect the entanglement of ρw. Although we cannot
detect all genuine entanglement in the mixed state ρw by
Theorem 3, the advantage of our method here is that it may be
experimentally implemented.

IV. CONCLUSIONS

In summary, we have expressed the bipartite entanglement
of three-qubit pure states in the form of expectation values
of Pauli operators. With the aid of this expression, we have
completely solved the problem of entanglement identification
for three-qubit pure states by giving the necessary and
sufficient conditions for fully separable states, biseparable
states, and genuinely entangled states. This approach can
be generalized to multipartite high-dimensional cases. There-
fore, one can recognize the separability of pure states both
theoretically and experimentally. Additionally, we have also
derived two inequalities in the form of the expectation values
of complementary observables to detect PPT entanglement
and genuine entanglement for the three-qubit mixed state.
These results may help experimental entanglement detection
and identification.
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[15] F. Mintert, M. Kuś, and A. Buchleitner, Phys. Rev. Lett. 95,
260502 (2005).

[16] S. P. Walborn, P. H. Souto Ribeiro, L. Davidovich,
F. Mintert, and A. Buchleitner, Nature (London) 440, 1022
(2006).

[17] S. P. Walborn, P. H. Souto Ribeiro, L. Davidovich, F. Mintert,
and A. Buchleitner, Phys. Rev. A 75, 032338 (2007).

[18] S. M. Fei, M. J. Zhao, K. Chen, and Z. X. Wang, Phys. Rev. A
80, 032320 (2009).

[19] W. Dür, G. Vidal, and J. I. Cirac, Phys. Rev. A 62, 062314
(2000).

[20] A. Acı́n, A. Andrianov, E. Jané, and R. Tarrach, J. Phys. A:
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