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Position-defect-induced reflection, trapping, transmission, and resonance in quantum walks
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We investigate the scattering properties of quantum walks by considering single and double position defects
on a one-dimensional line. This corresponds to introducing, at designated positions, delta potential defects for
continuous-time quantum walks and phase-defect Hadamard coins for discrete time quantum walks. The delta
potential defects can be readily considered as potential barriers in discrete position space, which affect the time
evolution of the system in a similar way as the quantum wave-packet dynamics in a continuous position space
governed by Schrödinger’s equation. Although there is no direct analogy of potential barriers in the theoretical
formulation of discrete time quantum walks, in this paper we show that the phase defects in the coin space can be
utilized to provide similar scattering effects. This study provides means of controlling the scattering properties
of quantum walks by introducing designated position-dependent defects.

DOI: 10.1103/PhysRevA.87.012314 PACS number(s): 03.67.Lx, 05.40.Fb, 05.45.Mt

I. INTRODUCTION

Quantum walks are the quantum analog to the classical
random walk, extended to take into account superposition,
interference, and quantum correlations. It provides a compre-
hensive framework to study quantum dynamics in discrete
and structured space. Compared to the classical random
walk, quantum walks exhibit markedly different behavior; for
instance, a quantum walk can propagate quadratically faster
than its classical counterpart, is a time-reversible process rather
than a memoryless Markov process, and results in a probability
distribution drastically different from the classically expected
Gaussian [1]. As with classical random walks, there are two
related but fundamentally different formulations of quantum
walks—the discrete-time quantum walk (DTQW) [2] and the
continuous-time quantum walk (CTQW) [3]. Due to their
unintuitive dynamical behavior, quantum walks have been
extensively explored over the past decade, which may provide
methods of modeling complex biological systems [4,5] or hold
the key to radical new quantum algorithms [1,6–11].

Disorder is unavoidable in most quantum systems. The
evolution of quantum walks in a discrete environment with
static and dynamic disorders have been studied both theoreti-
cally and experimentally, demonstrating a variety of interesting
dynamics such as ballistic and diffusive spreading [12–16],
as well as Anderson and bound-state localization [15–23].
In CTQW, disorder can be represented by position- or time-
dependent potential defects in the diagonal elements of the
transition matrix. The position dependence can be chosen
as a random distribution within a certain range [19] or as a
function distribution such as a Cauchy distribution [15], while
time dependence can also be either random or regular [15].
In DTQW, disorder is introduced through the coin operator;
the position-dependent coin provides static disorder, while the
time-dependent coin gives rise to dynamic disorder [13,23]. In
this paper, we study the scattering properties of quantum walks,
including reflection, trapping, and resonance transmission for
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both CTQW and DTQW with a wide range of defect settings.
In particular, we investigate the roles played by the potential
defects in CTQW and the phase defects in DTQW with respect
to the control of quantum walk behaviors. Furthermore, we
extend the work of previous studies (which were primarily
concerned with quantum walkers initially localized at a defect)
to consider an initially free quantum walk interacting with
multiple defects.

In what follows we present, in Sec. II, an introductory
overview of CTQW and DTQW, and describe the single and
double point-defect model. In Sec. III, we give the evolution
properties of QW’s for three initial cases: (1) the particle lies
at the node containing the defect (the “distinguished node”),
(2) the particle lies to the side of the defect, and (3) the
particle lies between two defects. In Sec. III D, we investigate
resonance transmission when two defects are present with
specific separation. Finally, Sec. IV contains our conclusions.

II. QUANTUM WALK POINT-DEFECT MODEL

A. Continuous-time quantum walk

The continuous-time quantum walk was first posited by
Farhi and Gutmann [3], motivated by a desire to establish
a general framework to study coherent transport in discrete
systems. The continuous-time quantum walk can be regarded
as a quantization of the corresponding classical continuous-
time random walk, with the system now evolving as per
the Schrödinger equation rather than the Markovian master
equation. As a result, classical probabilities are replaced by
quantum probability amplitudes.

To illustrate, consider a continuous-time random walk on
the discrete graph G(V,E), composed of unordered vertices
j ∈ V and edges ei = (j,k) ∈ E connecting two vertices j

and k. The transition rate matrix H is defined as

Hjk

=

⎧⎪⎨
⎪⎩

−γjk for j �= k if node j is connected to node k,

0 for j �= k if node j is not connected to node k,

Sj for j = k,

(1)
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where γjk is the probability per unit time for making a
transition from node j to node k and for H to be conservative:

Sj =
N∑

k = 1,k �= j

γjk. (2)

Classically, the state of the random walker is fully described by
the probability distribution vector P(t), with its time evolution
governed by the master equation

dP(t)

dt
= HP(t),

which has the formal solution P(t) = exp(−Ht)P(0).
Extending the above description to the quantum realm

involves replacing the real valued probability distribution
vector P(t) with a complex valued wave function |ψ(t)〉, and
adding the complex notation i to the evolution exponent; i.e.,

|ψ(t)〉 = exp(−iH t)|ψ(0)〉. (3)

The quantum transition matrix H , often referred to as the
system Hamiltonian, is required to be Hermitian and thus the
above time evolution is unitary—guaranteeing that the norm
of |ψ(t)〉 is conserved under CTQWs. The complex-valued
state vector |ψ(t)〉 = ∑

j aj (t)|j 〉, where aj (t) = 〈j |ψ(t)〉 ∈
C, represents the probability amplitude of the walker being
found at node |j 〉 at time t , with |aj (t)|2 = |〈j |ψ(t)〉|2 the
resulting probability.

For CTQWs on an infinite line, if each node is assumed
to be connected only to its neighboring nodes by a constant
transition rate γ = 1, the action of the corresponding Hamil-
tonian H0 on the state vector |ψ(t)〉 leads to the inner product
relationship

〈j |H0|ψ〉 = 2〈j |ψ〉 − 〈j + 1|ψ〉 − 〈j − 1|ψ〉. (4)

Note that this equation is identical to the first-order finite
difference approximation of the continuous-space operator
−∇2, which generates the time evolution of a free particle. In
an analogous fashion we can regard the discrete position-space
Hamiltonian H0 given in Eq. (4) as the generator of a free
CTQW. The significant difference in propagation behavior
between these two systems arises due to the use of a discrete
position space for the CTQW. It was shown by Manouchehri
and Wang [24] that the discreteness of position space in
Eq. (4) is a necessary condition for a CTQW to display its
characteristic propagation behavior, as opposed to continuous-
space wave-packet dispersion.

Symmetries that are present in continuous-space quantum
systems, for instance invariance under spatial translation for
free particles, can also be formulated for discrete space systems
such as the continuous-time quantum walk on an infinite line.
For instance, consider the discrete translational operator T̂n,
which acts on the set of orthonormal vertex states |j 〉 such that
T̂n|j 〉 = |j + n〉. This operator is unitary, and as such can be
written in the form T̂n = eik̂n, where k̂ is an Hermitian operator
and the generator of the translation. In cases where the state
of a quantum walker is invariant under spatial translation, the
Hermiticity of k̂ indicates that its eigenstates |k〉 = ∑

j eikj |j 〉
form a complete orthonormal basis, satisfying the eigenvalue
equation H0|k〉 = 2(1 − cos k)|k〉 for −π � k < π . These
eigenstates are useful when investigating resonance scattering

in defect containing CTQW systems, as they provide a method
of producing biased walks (since the initial state |k〉 has a
well-defined “momentum” of k) similar to the continuous-
space propagation of a plane wave. This allows its interaction
multiple barriers to be considered in an analogous fashion.

Continuous-time quantum walks in the presence of absorb-
ing barriers have previously been studied by Mülken et al. [25]
and Agliari et al. [26]. Alternatively, walks in the presence of
reflecting barriers (or defects) have been considered by Keating
et al. [19] (using a Cauchy distributed defect) and Childs
et al. [27] (a single defect), in the context of decoherence
and algorithmic speedup, respectively. In this paper, we will
be primarily concerned with implementing reflecting barriers,
and characterizing the resulting behavior of quantum walking
systems.

Keeping with the case of the CTQW on an infinite line, let
us assume that there are defects present at particular nodes |m〉.
This breaks the translational symmetry, and as such the walker
can no longer be considered free. To account for these defects,
the Hamiltonian matrix is modified in the following way:

H = H0 + �, � =
∑
m

�m|m〉〈m|, (5)

where we have introduced a real diagonal matrix �, with
positive elements corresponding to defects or reflecting
barriers placed at vertex |m〉 with strength �m. The probability
of the walker being found at node |j 〉 at time t can thus be
given by |〈j |e−iH t |ψ(0)〉|2. In subsequent sections, we will
consider reflecting barriers placed at specific nodes in order
to investigate the scattering properties of quantum walks.

B. Discrete-time quantum walk

The discrete-time quantum walk also has a very similar
mathematical formalism to that of its classical counterpart, and
is implemented by a concatenation of coin operations and suc-
cessive position shifts. It takes place in the Hilbert spaceHP ⊗
HC where, in the case of an infinite line, the position Hilbert
space HP is spanned by the position basis states |i ∈ Z〉 and
the “coin” Hilbert space HC is spanned by the coin basis states
|c = 0,1〉. A single step time evolution operator is given by

U =
(∑

c

(|c〉〈c| ⊗ Sc)

)(
C ⊗

∑
i

|i〉〈i|
)

, (6)

where C is the coin operator, and Sc is a conditional translation
operator defined as Sc = ∑

i |i + (−1)c+1〉〈i|. As with the
continuous-time case, the system is described via the state
vector |ψ(t)〉 = ∑

i

∑
c fic(t)|i〉 ⊗ |c〉, with its evolution

from initial state |ψ(0)〉 for discrete time t calculated via
repeated use of the unitary operator given by Eq. (6), i.e.,

|ψ(t)〉 = Ut |ψ(0)〉.
The major point of difference between the classical and

quantum implementation of the discrete time walk is the use
of a quantum, rather than classical, coin operator—with the
result that the walker now has the possibility of being in a
superposition of possible coin states |c〉 at every step. It should
be noted that the resulting coherence is a source of most of the
counterintuitive behavior of the DTQW; if the coin operator is
applied randomly, or if we were to measure the coin state after
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each time step, the superposition is destroyed and we recover
the classical random walk.

When working with DTQWs, the coin degrees of freedom
offer a wide range of control over the evolution of the walk.
Of particular interest are position-dependent coin operators,
as they act to break down the translational symmetry of the
unitary operation in Eq. (6)—thus modification of the DTQW
coin operation on a small number of nodes may be used to
create an analogous system to the node-defect Hamiltonian
in CTQW. It has been shown that the full range of possible
DTQW evolutions obtained by different coin operators can
also be obtained by fixing the coin operator, and choosing
a range of different initial coin states [28]. Without loss of
generality, one often restricts the coin operator to one with
real coefficients; in the case of an unbiased quantum walk on
a line, this leaves the Hadamard coin

CH = 1√
2

[
1 1

1 −1

]

as the only possible choice. Taking this into account, the
unitary operation in Eq. (6) is modified as follows:

U =
( ∑

c

(|c〉〈c| ⊗ Sc)

)( ∑
j

Cj (⊗|j 〉〈j |
)

, (7)

where the phase-defect Hadamard coin Cj = eiφj CH is applied
at designated “defect nodes,”and Cj = CH otherwise.

III. LOCALIZATION, TRAPPING, AND REFLECTION

Localization and trapping by a single phase defect in
discrete-time quantum walks have been studied in the litera-
ture, especially with the quantum walker starting at the defect
position [13,23,29]. In this section we analyze the influence
of single and double defects on the dynamical evolution of
both discrete- and continuous-time quantum walks, with the
quantum walker initially located at the origin but the defects
at various positions. In particular, we investigate the physical
interpretation of these defects in both CTQW and DTQW.

A. Single defect—localization

Let us first consider the case where a defect is present at
the origin |j = 0〉 of an infinite line. Figure 1 shows that both
CTQW and DTQW have similar probability distributions, with
sharp peaks present at the origin. For comparison, the dashed
line depicts the probability distribution of the free quantum
walk without the defect. Further investigation shows that the
amplitude of the peak, or alternatively the slope of standard
deviation with time, is dependent on the strength of the defect
potential for the CTQW [Fig. 2(a)]; the stronger the defect
potential, the larger the probability amplitude at the origin.
The peak in the probability distribution can be understood
as bound-state localization, occurring due to the presence of
the defect which generically generates a bound state in its
surrounding [22,23]. The peak in the probability distribution
is the fingerprint of this bound state [30]. Besides this large
peak at the origin, two smaller peaks are also observed at
the same locations as the ballistic peaks of the free quantum
walk—inferring that the linear relationship between the states’

FIG. 1. Probability distribution at time t = 30 for (a) CTQW with
a defect potential �0 = 5; (b) DTQW with a phase defect φ0 = π

and initial state (|1〉 + i|0〉)/√2. The dashed line corresponds to a
quantum walk without a defect.

standard deviation with time, σ ∼ t , remains unchanged in
spite of a drastically reduced amplitude for the two smaller
peaks.

The similarity of the DTQW and CTQW probability
distributions in Fig. 1 suggests the possibility of manipulating
the DTQW coin degrees of freedom, in an attempt to reproduce
the CTQW physical effects attributed to the point defects. As
discussed in Sec. II B, a wide range of possible evolutions
of the DTQW can be produced by either varying the initial
state (and using a fixed coin operator), or by varying the coin
operator. Figure 2(b) displays the probability at the origin of
the DTQW as a function of φ in the phase-defect Hadamard
coin, for the initial coin states (|1〉 + i|0〉)/√2, |1〉, and |0〉. It
can be seen that the amplitude of the sharp peak depends
strongly on the initial coin state of the system as well as
the phase defect φ. For instance, using the initial coin state
(|1〉 + i|0〉)/√2, no localization is observed for any phase in
the domain φ ∈ (0,π/4), since its overlap with the stationary
bound state is close to zero. The probability at the origin
is symmetric about φ0 = 0 for initial coin state |0〉 and |1〉,
but not for initial state (|1〉 + i|0〉)/√2. Also note that, for a
given initial state, the phase defect φ appears to have the same
function as the defect potential � in CTQW; both act to change
the amplitude of the localization peak centered at the origin.
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FIG. 2. Probability at the origin at time t = 30 as a function of
(a) the defect potential �0 for CTQW and (b) phase defect φ0 for
DTQW. In (b), the solid line corresponds to the initial coin state
(|1〉 + i|0〉)/√2, while the dashed line corresponds to the coin initial
state |1〉 or |0〉.

B. Single defect—reflection

Next, we discuss the case where the single point defect
is located away from where the quantum walk starts. As
an example, consider the quantum walk initially located at
the origin with one defect �15 = 5 on an infinite line. The
resulting probability distribution over the discrete position
space at time t = 30 is shown in Fig. 3(a). Some important
features to note: (1) it evolves symmetrically in both the left
and right direction, which is identical to a “free”quantum walk
prior to its interaction with the barrier; (2) upon interacting
with the barrier, it is largely reflected with a small probability
of transmission; (3) the transmitted component continues to
evolve ballistically as per the free quantum walk; (4) the larger
the defect potential, the weaker the transmitted amplitude,
as shown in Fig. 4(a); and (5) the reflected component
interferes with the original propagating component, resulting
in a complex interference pattern and asymmetric distribution
compared to the free quantum walker.

Figure 3(b) shows very similar propagation behavior in
the case of DTQW, now using a phase-defect Hadamard coin
φ15 = π and starting with initial state (|1〉 + i|0〉)/√2. In this
case, the transmission amplitude through the reflecting barrier
can be manipulated by altering the phase value φ15 as shown
in Fig. 4(b). It can be seen that the transmission amplitude is
symmetric about φ15 = 0 for initial coin state |0〉 or |1〉, but
not for initial state (|1〉 + i|0〉)/√2.

The above observations are very similar to the wave-packet
dynamics in continuous position space when potential barriers

FIG. 3. Probability distribution for (a) CTQW at time t = 30 with
a defect potential �15 = 5, and (b) DTQW after t = 80 steps with a
phase defect φ15 = π and initial coin state (|1〉 + i|0〉)/√2.

are applied. In CTQW, the delta potential defects can be readily
considered as potential barriers in discrete space, which bring
about similar behaviors. Although there is no direct analogy
of potential barriers in the theoretical formulation of DTQW,
here we show that the additional coin degree of freedom can
be utilized to provide similar scattering effects.

C. Double defects—trapping

Another scenario we can consider is to start the quantum
walker at the origin between two reflecting barriers at nodes
j = ±15 on an infinite line. The resulting probability dis-
tributions for both CTQW and DTQW are shown in Fig. 5.
Both Figs. 5(a) and 5(b) demonstrate similar behavior with
the probability distribution mostly confined between the two
barriers. Smaller group peaks are observed outside the barriers,
which are symmetric about the origin, and their amplitudes
depend on the strength of the defect potential �j for CTQW
and the phase defect φj for DTQW. It is interesting to note that
the gap between the consecutively transmitted group peaks is
simply the distance between the two reflecting barriers, which
suggests that the walker is reflected each time it interacts with
a defect barrier and consequently bounces back and forth
in between. As shown in Fig. 6, the total probability of the
quantum walker trapped between the two barriers decreases
stepwise as the time increases, with almost constant step
time corresponding to the trapping time before significant
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FIG. 4. Transmission probability as a function of (a) the defect
potential �15 for CTQW after time t = 30 and (b) the phase defect φ

for DTQW after t = 80 steps. In (b) the solid line corresponds to the
coin initial state (|1〉 + i|0〉)/√2, whilst the dotted and dashed lines
correspond to the coin initial states |1〉 and |0〉, respectively.

transmission occurs. The steady emission of group peaks, as
shown in Fig. 5, may lead to potential applications such as
generating pulses with their magnitudes and time separation
controlled by altering the strength and position of the defect
barriers.

D. Double defects—resonance

In continuous position space, it has been well established
analytically that a quantum particle with energy E incident on
double rectangular, cosh, and delta barriers shows complete
transmission at particular values of E in the classically
forbidden region when E < V0 [31–34]. In this section, we
investigate similar resonance behaviors of CTQW in discrete
space, in particular on an infinite line with two delta barriers
of amplitude α and β placed at vertices |0〉 and |L〉. In this
case, the Hamiltonian matrix is

H =
∑

j

(2|j 〉〈j | − |j − 1〉〈j | − |j + 1〉〈j |)

+α|0〉〈0| + β|L〉〈L|. (8)

Let a momentum eigenstate |k〉 be incident on the barriers from
the left-hand side. The resulting time-independent scattered
state |ψs(k)〉 can then be written as [27]

|ψs(k)〉 =

⎧⎪⎨
⎪⎩

|k〉 + r1(k)| − k〉, j < 0,

t1(k)|k〉 + r2(k)| − k〉, 0 � j < L,

t2(k)|k〉, L � j,

(9)

FIG. 5. Probability distribution for a walker initially localized at
origin between two barriers for (a) CTQW at time t = 30 with the
defect potentials �±15 = 5, and (b) DTQW after t = 80 steps with
phase defects φ±15 = π and initial state (|1〉 + i|0〉)/√2.

where t1(k) and t2(k) give the proportion of the momentum
eigenstate transmitted through barriers 1 and 2, respectively,
and r1(k), r2(k) the proportion reflected at each interaction.
Recall that, in Sec. II A, it was shown that the orthogonal basis
|k〉 diagonalizes the free Hamiltonian matrix H0. In the case
of double delta barriers, the set of states |ψs(k)〉, k ∈ [−π,π )
given in Eq. (9) diagonalizes the Hamiltonian H = H0 + �.
Outside the barrier region (i.e., j �= −1,0,L − 1,L), it can be
easily shown that

〈j |H |ψs(k)〉
〈j |ψs(k)〉 = 2(1 − cos k).

Inside the barrier region (i.e., j = −1,0,L − 1,L), the re-
lationship E(k) = 〈j |H |ψs(k)〉/〈j |ψs〉 = 2(1 − cos k) must
also hold, which leads to the following system of equations:

t1(k) + r2(k) − r1(k) = 1, (10a)

e2ik[r1(k) + t1(k)] + r2(k) + 1

eik[r2(k) + t1(k)]
− α = 2 cos k, (10b)

( − 1 + 2eik)e2ikLt1(k) − e2ik(L + 1)t2(k) − e3ik( − 2 + eik)r2(k)

ei(2kL + k)t1(k) + e3ikr2(k)
= 2(1 − cos k), (10c)

r2(k)e−2ik(L−1) + e2ikt2(k) + t1(k)

eikt2(k)
− β = 2 cos k. (10d)
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FIG. 6. Trapping probability as a function of time t for (a) CTQW
with defect potential �±15 = 5, and (b) DTQW with phase defects
φ±15 = π and initial state (|1〉 + i|0〉)/√2.

Equation (10) can be solved to give analytic solutions to
t1(k), t2(k), r1(k), and r2(k)—thus producing a set of states
|ψs(k)〉 which are eigenstates of H with eigenvalues E(k) =
2[1 − cos(k)]. The transmission coefficient T (k) = |t2(k)|2 of
a momentum eigenstate on an infinite line, incident on two
barriers of amplitude α and β, respectively, and separated by
distance L ∈ N0, is therefore found to be

T (k) =
[

1 + csc2 k

4
(α2 + β2 + 2αβ cos 2kL)

+ csc3 k

4
αβ(α + β) sin 2kL + csc4 k

4
α2β2 sin2 kL

]−1

.

(11)

We also note that a Green’s function approach involving
transmission and reflection coefficients has been applied to
study scattering quantum walks on general graphs, which were
shown to be unitarily equivalent to the discrete-time quantum
walks [35–38] with the possibility of future work extending
this framework to the continuous-time quantum walks. Never-
theless, the above analytical derivation is straightforward and
provides the transmission and reflection coefficients in simple
forms for quantum walks on the line.

The transmission coefficient is plotted in Fig. 7 over
0 � k � π and for various values of L, α, and β. Oscillating
behavior is clearly visible, with the frequency of oscillation
increasing rapidly as L increases. It is also observed that
when β = 0 and L = 0 (i.e., there is only a single barrier
of amplitude α) the resonance behavior vanishes—multiple
barriers are a necessary condition for CTQW resonance on
the infinite line. When α = 0 as well, then we are simply
observing transmission of a momentum eigenstate in the case
of no defects (H = H0) and T (k) = 1∀k.

By solving the Schrödinger equation with Hamiltonian
H = −∇2 + αδ(x) + βδ(x + L) in continuous space, it can
be shown [39,40] that the transmission coefficient is given by

T (k) =
[

1 + α2β2

4k4
sin kL2 + 1

4k3
2αβ(α + β) sin 2kL

+ 1

4k2
(α2 + β2 + 2αβ cos 2kL)

]−1

. (12)

The above equation is identical to Eq. (11) when taking the
limit csc k → 1/k (the first-order approximation of sin k). The
significance of this is twofold. First, with this transforma-
tion, the eigenvalue equation Ĥ |k〉 = 2(1 − cos k)|k〉 becomes
Ĥ |k〉 = k2|k〉, and we recover the energy of a plane wave
in continuous space. Second, this relationship highlights the
similarity of resonant behavior between quantum dynamical
systems and continuous-time quantum walks. The marked
differences between the two systems are a result of the finite
domain of k, or equivalently the discrete nature of the CTQW
position space.

Returning to discrete space, of particular interest is the case
β = |α|, where oscillating resonant behavior is now possible.
Solving for T (k) = 1 with β = |α| in Eq. (11), we find that
the distances between defects at which resonance occurs are
given by the set

L =
{

nπ/k + 2
k

tan−1
[

1
2 csc(k)(α + √

α2 + 4 sin2 k)
]
, β = α,

nπ/k, β = −α,
(13)

where L,n ∈ N0. Resonant peaks are illustrated in Fig. 8 as a
function of barrier separation L, in the two cases α = β and
α = −β.

Special mention should be made of the case k = π/2,
corresponding to a CTQW momentum eigenstate with
the largest possible group velocity [∂E(k)/∂k = 2 sin k].
In this instance, the transmission oscillates between two

values for successive values of L. Note that when α =
β, there is never perfect transmission; the values oscillate
between T (π/2) = 1/(α2 + 1) and T (π/2) = 1/(1 + α4/4)
for even and odd L, respectively. However, when α = −β,
perfect transmission occurs for even L, with odd values
of L resulting in a reduced transmission of T (π/2) =
1/[1 + α2(α2 + 4)/4].
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FIG. 7. (Color online) Transmission coefficient vs momentum of a CTQW momentum eigenstate incident on two defects of amplitude α

and β, separated by distances L = 0 (solid, blue), L = 1 (dashed, red), L = 2 (dotted, black), and L = 5 (dot-dashed, green). The results are
shown for the cases (a) α = 1,β = 0 (i.e., a single defect), (b) α = 1,β = −1, (c) α = β = 1, and (d) α �= |β|, α,β �= 0.

Next consider the boundaries k → 0 and k → π . In this
case, if α = −β, transmission occurs only when the two
defects overlap and therefore “cancel”each other out, resulting
in a free CTQW. When α = β, we have the following: if α > 0,
then limk→π T (k) = δα,2/L and limk→0 T (k) = 0; if α < 0,
then limk→0 T (k) = δα,−2/L and limk→π T (k) = 0.

For other values of k, various forms of “enveloping” in the
transmission occur as shown in Fig. 8 for the case k = 1.45.

As the CTQW momentum eigenstates |k〉 form a com-
plete set for the discrete position space, any arbitrary ini-
tial state can be decomposed into momenta components—
opening the possibility for artificially placed multiple defects
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FIG. 8. (Color online) Transmission coefficient T (k) as a function of barrier separation L for momentum eigenstate |k〉 incident on a double
reflecting barrier. Top: α = β = 1; bottom: α = −β = 1.
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in CTQW systems to selectively control transmission and
reflection.

IV. CONCLUSIONS

The quantum walk formalism provides a powerful frame-
work to study the dynamics of quantum particles in a structured
discrete position space, while its time evolution can be
either discrete (CTQW) or continuous (DTQW). Although
the theoretical and physical models of CTQW and DTQW
are fundamentally different, their characteristic propagation
behavior are often similar. In this paper, detailed compar-
isons were made between the two models by propagating
the quantum walker in both continuous and discrete time
on an infinite line in the presence of single or double
“defects.”

As expected, the delta defect potentials in CTQW cause
localization, reflection, transmission, and trapping in a similar
way as the quantum wave-packet dynamics in a continuous
position space governed by Schrödinger’s equation. However,
there is no direct analogy of potential barriers in the theoretical
formulation of discrete-time quantum walks. In this paper,
we demonstrate that adding phase defects in the coin degree
of freedom in DTQW plays the same role as the potential
barriers in CTQW. We also demonstrate that the effect of
altering the phase parameter φ in the discrete-time quantum
walk is equivalent to changing the barrier strength (�) in
the continuous-time case. Other definitions of coin phase
defects can be equally effective, opening up a wide range

of possibilities for the design of efficient quantum-walk-based
algorithms.

Moreover, a detailed derivation of the transmission coeffi-
cient for the case of a CTQW with a double-point defect is
provided, and contrasted to the continuous-space case. It was
shown that resonance behavior well established in quantum
dynamics extends to the CTQW, with marked differences
contributed to the discrete nature of the position space; in
particular, under certain conditions only one value of defect
separation permits perfect transmission, with perfect reflection
occurring for all other integer values of separation.

The effects of disorder and defects on quantum walks
are an important field of study, highly relevant in the case
of experimental realizations—particularly those with inherent
imperfections, or quantum processes which may be unavoid-
ably affected by the environment. As a result of this research,
we hope to provide methods to control the spreading of
quantum walks, through the use of artificial defects which act
to break translational invariance; this could also prove useful
in fields such as quantum information processing.
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