
PHYSICAL REVIEW A 87, 012310 (2013)

Faster quantum number factoring via circuit synthesis

Igor L. Markov1,* and Mehdi Saeedi2
1Department of EECS, University of Michigan, Ann Arbor, Michigan 48109-2121, USA

2Department of Electrical Engineering, University of Southern California, Los Angeles, California 90089-2562, USA
(Received 5 July 2012; revised manuscript received 10 September 2012; published 14 January 2013)

A major obstacle to implementing Shor’s quantum number-factoring algorithm is the large size of modular-
exponentiation circuits. We reduce this bottleneck by customizing reversible circuits for modular multiplication to
individual runs of Shor’s algorithm. Our circuit-synthesis procedure exploits spectral properties of multiplication
operators and constructs optimized circuits from the traces of the execution of an appropriate greatest-common-
divisor algorithm. Empirically, gate counts are reduced by four to five times, and circuit latency is reduced by
larger factors.

DOI: 10.1103/PhysRevA.87.012310 PACS number(s): 03.67.Ac, 03.67.Lx, 89.70.Eg

I. INTRODUCTION

Shor’s number factoring remains the most striking al-
gorithm for quantum computation as it quickly solves an
important task [1] for which no conventional fast algorithms
were found in the past 2300 years.1 Today, a scalable imple-
mentation of Shor’s technique would have dire implications
for Internet commerce. Laboratory demonstrations circa 2000
factored 15 = 3 × 5 [2], but further progress was slow [3–5]
as factoring sizable semiprimes requires very large circuits.
The bottleneck of Shor’s number factoring is in modular
exponentiation—a reversible circuit computing (bz mod M)
for known coprime integers b and M . This computation is per-
formed as a sequence of conditional modular multiplications
(CMs) [6] by precomputed powers of a randomly selected base
value (b), controlled by the bits of z (Fig. 1). In most cases,
b = 2 or b = 3 suffice [7]. Such CM blocks are assembled
from unmodified unconditional modular multiplication (UM)
blocks using pre- and postprocessing: since multiplication
always preserves the integer 0, a UM block can be “turned
off” by conditionally swapping a 0 with its inputs and
then restoring the inputs by an identical swap. Conditional
swaps can be simplified, and further circuit optimizations
focus on UM blocks. These steps are reviewed in detail
in Ref. [7].

II. PRIOR WORK

UM blocks are assembled from modular additions and
multiplications by two, scheduled according to the binary
expansion of the constant multiplicand and its modular
inverse [6] (see a contemporary summary in Ref. [7]). In one
popular approach, the input value x is copied into a zero-
initialized register to obtain (x,x). To compute 13x, follow the
binary expansion 13 = b1101 : (x,x)-(2x,x)-(3x,x)-(6x,x)-
(12x,x)-(13x,x). Now the second register must be restored

*Corresponding author: imarkov@eecs.umich.edu
1Euclid studied number factorization, circa 300 B.C.E., as a way to

compute the greatest common divisor (GCD), which is required to
add fractions. Failing to find a fast algorithm, he developed what is
now known as Euclid’s GCD algorithm.

to 0 for the next UM block to use it. However, this requires
dividing 13x by 13, i.e., multiplying by the modular inverse of
13. For M = 101 113 = 569 × 1777, the inverse of C = 13 is
77 778, (10 010 111 111 010 0102), requiring a large circuit. In
Ref. [7], we constructed alternative circuits without computing
modular inverses. To accomplish this, we introduced circuit
blocks for modular multiplication and division by two that
restore their ancillae to 0. We then estimated costs of circuit
blocks for modular addition, subtraction, multiplication, and
division by two, and several others [[7], Table 2]. Using these
blocks, we found optimal UM circuits for each C,M up to
15 bits. The same procedure can be used for different cost
estimates, but an optimal search does not scale well beyond
15 bits. Numerical results demonstrated that traditional circuits
based on binary expansion are far from optimal, thus asking
for scalable constructions beyond 15 bits.

Researchers optimizing circuits for Shor’s algorithm [8,9]
adapted these circuits to use only nearest-neighbor quantum
couplings [10] and restructured them to leverage parallel
processing [11]. Applying multiple quantum couplings in
parallel allows one to finish computation faster. The smaller
required lifespan of individual qubits additionally reduces
the susceptibility of qubits to decoherence and decreases
the overall need for quantum error correction. The run time
(latency) of parallel quantum computation is estimated by
the depth of its quantum circuit, i.e., the maximum number
of gates on any input-output path. Depth reductions in the
literature sharply increase the required number of qubits, e.g.,
by 50 times or more, making them impractical for modern
experimental environments where controlling 50–100 qubits
remains a challenge. Vice versa, prior circuits with 1–2 fewer
qubits use more gates [12]. Rosenbaum has shown [13] how to
adapt unrestricted circuits to nearest-neighbor architecture us-
ing teleportation, while asymptotically preserving their depth.
For Shor’s algorithm, the range of practical interest is currently
between several hundred and a thousand logical qubits, where
fast Fourier transform (FFT)-based multiplication needs more
gates than simpler techniques.

Our circuits moderately increase qubit counts to signifi-
cantly decrease gate counts and circuit depth. Built from stan-
dard components, they are readily adapted to nearest-neighbor
quantum architectures by optimizing these components to each
particular architecture [10].

012310-11050-2947/2013/87(1)/012310(5) ©2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.87.012310

IGOR L. MARKOV AND MEHDI SAEEDI PHYSICAL REVIEW A 87, 012310 (2013)

. . . •

• . . .• . . .

\ b2
0

%M b2
1

%M . . . b2
2n−1

%M

. . . • •

• • . . .• • . . .

\
SWAP

b2
0

%M

SWAP SWAP
b2

1
%M

SWAP
. . .

SWAP
b2

2n−1
%M

SWAP
\ . . .

(a) (b)

FIG. 1. (a) Modular exponentiation using conditional modular multiplications [6]. (b) Conditional multiplications implemented using
unmodified unconditional modular multiplication blocks and conditional swaps with a zero register [7].

III. NEW CIRCUITS

We propose two-register UM circuits to compute
(Cx mod M) for coprime C and M , where the greatest
common divisor (GCD) (C,M) = 1. These circuits transform
(x,0) into (x,x) using parallel controlled-NOT (CNOT) gates
and then compute (Cx mod M,0). Clearing ancillae in
the second register allows the next circuit module to use
them again. As reversible building blocks, we use modular
addition and subtraction between the two registers (a,b) �→
(a ± b mod M,b) and (a,b) �→ (a,a ± b mod M), as well as
circuits from Ref. [7] for modular multiplication by two that
clear their ancillae a �→ 2a mod M .

Our key insight is to use the coprimality of C and
M (guaranteed in Shor’s algorithm) to read off a circuit
from the execution trace of an appropriate GCD algorithm.
Recall that the Euclidean GCD algorithm for (A,B) proceeds
by replacing the larger number A with (A mod B) until
the result evaluates to 0. For C = 13 and M = 21, this
produces the Fibonacci sequence (21,13)-(8,13)-(8,5)-(3,5)-
(3,2)-(1,2)-(1,0). For convenience, one may consider the
last configuration to be (1,1), so that each step performs a
subtraction—a simpler operation than modular reduction. As
a result, we obtain GCD (C,M) = 1. By reversing the order
of operations, interpreting each number as a multiple of x

starting with (1x,1x), and mapping each step into a mod-21
addition, we obtain (x,x)-(2x,x)-(2x,3x)-(5x,3x)-(5x,8x)-
(13x,8x)-(13x,21x) = (13x,0). Since 21x mod 21 = 0, the
second register is restored to 0. This UM circuit bypasses
Bennett’s construction based on modular inverses (Sec. II)
and is smaller than prior art [1,6].

Unfortunately, some modular reductions in the Euclidean
GCD algorithm may require a large number of gates. Consider
(11x mod 21) and its Euclidean GCD trace (21,11)-(10,11)-
(10,1)-(1,1). Implementing the last mod operation by nine
subtractions produces a sequence of nine mod-21 additions
(x,x)-(2x,x)-(3x,x)-· · ·-(10x,x). To improve efficiency, we
replace the Euclidean GCD algorithm by a binary GCD
algorithm that avoids the mod operation and uses a shortcut for
the case of odd GCD. Given a pair of odd numbers, the larger
one is replaced by their difference, which must be even. Any
even number is divided by two, which can be implemented by
a controlled bit shift (as shown in Ref. [7]).

For even A and B, (A,B) = (A/2,B/2).
For even A and odd B, (A,B) = (A/2,B).
For odd A and even B, (A,B) = (A,B/2).
For odd A and B, if A < B, then (A,B) = (A,B − A), else

(A,B) = (A − B,B).
One stops when A = B = GCD = 1 (assuming co-

prime inputs). The sequence of operations performed for

our example, (21,11)-(10,11)-(5,11)-(5,6)-(5,3)-(2,3)-(1,3)-
(1,2)-(1,1), can be improved by (2,3)-(2,1)-(1,1). To obtain a
circuit, such sequences are reversed and interpreted as modular
multiplications by two and modular additions, with the initial
state (1x,1x). Further improvements are obtained by allowing
both subtractions and additions, e.g., 15x = 16x − x versus
15x = 8x + 4x + 2x + 1x (here, 16x, 8x, etc. are computed
by doubling).

In a more involved example (7x mod 1017), the addition
leading to (7,1024) is a better first step than the subtraction
leading to (7,1010) because (7,1024) enables eight successive
divisions by two, which reduce the values down to (7,4) faster
than subtractions would. Then, subtractions become the best
operators: (3,4)-(3,1)-(2,1)-(1,1). This optimization relies on a
three-step lookahead. To select each next operator, we consider
all possible irredundant three-step sequences of operators
(modular addition, subtraction, and division by two), find their
final states, and score the remaining circuit according to the
trace of the binary GCD algorithm (without lookahead). The
cost of each operator, or step, can be specific to the quantum
machine. Taking the best three-step sequence, we commit to
its first operator. The remaining two steps are ignored, and the
next operator is chosen by a separate round of lookahead. For
(11x mod 21), we obtain (21,11)-(10,11)-(5,11)-(5,6)-(5,1)-
(4,1)-(2,1)-(1,1).

IV. EMPIRICAL VALIDATION

Our algorithms for on-demand construction of modular
multiplication circuits2 were embedded into the framework of
Fig. 1. The number of ancillae in the resulting mod-exp circuits
was 5n + 2 (as in Ref. [7]), but several optimizations from
Ref. [7] were not used, and the number of mod-mult blocks was
exactly as in Ref. [6]. Our software was written in C++ using
the GNU MP library (for multiprecision arithmetic) supplied
with the GCC 4.6.3 compiler on LINUX. We used a workstation
with an Intel R©CoreTM2 Duo 2.2 GHz CPU and 2 GB of
memory.

To evaluate our optimizations of Shor’s number-factoring
algorithm, we studied all odd n-bit semiprime values of the
modulus (M = pq) for 7 � n � 15, and a subset of n-bit M

values for n = 16–512 that are products of the first and tenth
largest n/2-bit primes. Circuit sizes for n < 16 were averaged

2A small fraction of C values are positive or negative modular
powers of two, or their modular negations. These rare cases are
enumerated directly for each M , so that our GCD-based algorithm
can skip them.

012310-2

FASTER QUANTUM NUMBER FACTORING VIA CIRCUIT . . . PHYSICAL REVIEW A 87, 012310 (2013)

TA
B

L
E

I.
C

ir
cu

its
pr

od
uc

ed
by

ou
r

te
ch

ni
qu

e
an

d
pr

io
r

ar
t,

co
m

pa
re

d
by

To
ff

ol
i

ga
te

co
un

ts
.

C
ir

cu
it

si
ze

s
fo

r
n

<
16

ar
e

av
er

ag
ed

ov
er

al
l
M

-c
op

ri
m

e
C

va
lu

es
.

R
es

ul
ts

fo
r

n
=

16
in

cl
ud

e
al

lc
op

ri
m

e
C

va
lu

es
fo

r
th

e
gi

ve
n

M
.F

or
24

-,
32

-,
48

-,
an

d
64

-b
it

M
va

lu
es

,r
es

ul
ts

ar
e

av
er

ag
ed

ov
er

th
e

fir
st

50
00

co
pr

im
e

C
va

lu
es

.F
or

la
rg

er
n

va
lu

es
in

m
od

-m
ul

tc
ir

cu
its

,o
nl

y
C

=
−1

/
17

m
od

M
(e

.g
.,

47
67

9
09

5
56

8
30

6
58

8
23

5
29

4
11

7
64

7
05

8
82

3
52

9
41

1
76

4
70

5
88

2
35

2
94

1
17

6
47

0
58

8
23

5
29

4
11

7
64

7
fo

rn
=

25
6)

ar
e

sh
ow

n.
Fo

rm
od

ul
ar

ex
po

ne
nt

ia
tio

n,
re

su
lts

in
cl

ud
e

al
lC

va
lu

es
ap

pe
ar

in
g

in
U

M
bl

oc
ks

fo
r
b

=
2.

A
ll

re
su

lts
re

po
rt

ed
ar

e
ci

rc
ui

ts
iz

es
(T

of
fo

li
ga

te
co

un
ts

),
ex

ce
pt

fo
r

va
lu

es
in

th
e

de
pt

h
co

lu
m

n.
Fo

r
“A

vg
.r

at
io

”
in

m
od

-m
ul

t,
w

e
us

ed
ou

r
av

er
ag

e
di

vi
de

d
by

th
at

of
R

ef
.

[7
]

an
d

th
e

av
er

ag
e

of
R

ef
.

[6
]

di
vi

de
d

by
ou

rs
.

T
he

nu
m

be
r

in
sq

ua
re

br
ac

ke
ts

in
th

e
lo

w
er

pa
rt

of
th

e
ta

bl
e

un
de

r
“M

od
ul

ar
ex

po
ne

nt
ia

tio
n”

re
pr

es
en

ts
th

e
po

w
er

of
10

.

M
od

ul
ar

m
ul

tip
lic

at
io

n
(c

ir
cu

it
si

ze
)

M
od

ul
ar

ex
po

ne
nt

ia
tio

n

B
its

N
o.

of
se

m
ip

ri
m

es
O

pt
im

al
[7

]
O

ur
s

B
ec

km
an

[6
]

A
vg

.r
at

io
O

ur
s

B
ec

km
an

A
vg

.r
at

io

n
[S

m
al

le
st

,l
ar

ge
st

]
M

ax
.

A
vg

.
M

ax
.

A
vg

.
M

ax
.

A
vg

.
/

[7
]

[6
]/

N
o.

of
ga

te
s

D
ep

th
[6

]
[6

]/
O

ur
s

7
7

in
[6

5,
11

9]
18

2
13

4.
3

21
0

13
8.

3
12

40
85

2
1.

03
6.

16
12

92
10

83
11

15
4

8.
63

8
16

in
[1

33
,2

53
]

25
7

19
4.

3
29

2
20

2.
8

17
00

11
62

1.
04

5.
73

22
88

21
20

17
41

5
7.

61
9

34
in

[2
59

,5
11

]
32

6
25

8.
0

38
6

27
1.

3
22

32
15

20
1.

05
5.

60
37

31
30

59
25

67
0

6.
88

10
72

in
[5

15
,1

00
7]

41
8

32
7.

3
48

1
34

7.
6

28
36

19
26

1.
06

5.
54

52
86

38
85

36
19

5
6.

84
11

15
2

in
[1

02
7,

20
47

]
51

8
40

5.
0

62
6

43
4.

5
35

12
23

80
1.

07
5.

48
74

47
49

59
49

26
6

6.
61

12
29

9
in

[2
05

1,
40

87
]

63
5

48
8.

8
76

5
52

3.
8

42
60

28
82

1.
07

5.
50

10
00

2
60

75
65

15
9

6.
51

13
62

1
in

[4
09

7,
81

89
]

75
0

58
0.

3
93

0
62

7.
3

50
80

34
32

1.
08

5.
47

13
36

4
74

72
84

15
0

6.
29

14
12

12
in

[8
19

7,
16

37
9]

88
2

67
8.

6
11

20
73

8.
9

59
72

40
30

1.
08

5.
45

16
85

4
86

17
10

65
15

6.
32

15
24

29
in

[1
63

87
,3

27
65

]
13

40
86

8.
0

69
36

46
76

5.
39

21
52

3
99

85
13

25
30

6.
16

16
M

=
(2

8
−

5)
×

(2
8
−

59
)

14
25

99
0.

3
79

72
53

70
5.

42
28

58
1

15
88

4
16

24
71

5.
68

24
M

=
(2

12
−

3)
×

(2
12

−
77

)
42

37
27

05
.9

18
85

2
12

65
0

4.
67

10
94

05
39

67
1

57
64

55
5.

27
32

M
=

(2
16

−
15

)×
(2

16
−

12
3)

60
23

50
24

.0
34

34
0

23
00

2
4.

57
26

83
87

86
11

0
14

00
67

9
5.

21
48

M
=

(2
24

−
3)

×
(2

24
−

16
7)

13
44

7
11

85
2.

4
79

14
0

52
92

2
4.

46
95

46
62

20
10

65
48

45
11

8
5.

07
64

M
=

(2
32

−
5)

×
(2

32
−

26
7)

24
02

8
21

35
4.

8
14

23
72

95
13

0
4.

45
23

58
53

1
42

20
70

11
62

62
38

4.
92

96
M

=
(2

48
−

59
)×

(2
48

−
25

7)
46

40
0

32
41

32
21

64
10

4.
66

8.
15

[6
]

1.
00

[6
]

3.
97

[7
]

4.
87

12
8

M
=

(2
64

−
59

)×
(2

64
−

36
3)

82
20

7
57

96
20

38
68

42
4.

71
1.

97
[7

]
2.

03
[6

]
9.

47
[7

]
4.

81
19

2
M

=
(2

96
−

17
)×

(2
96

−
34

7)
18

93
27

13
11

78
0

87
51

62
4.

62
6.

91
[7

]
4.

63
[6

]
3.

22
[8

]
4.

65
25

6
M

=
(2

12
8
−

15
9)

×
(2

12
8
−

11
93

)
33

11
26

23
38

85
2

15
60

09
0

4.
71

1.
65

[8
]

9.
25

[6
]

7.
64

[8
]

4.
63

38
4

M
=

(2
19

2
−

23
7)

×
(2

19
2
−

11
43

)
74

62
12

52
77

73
2

35
19

77
0

4.
71

5.
64

[8
]

2.
09

[7
]

2.
59

[9
]

4.
58

51
2

M
=

(2
25

6
−

18
9)

×
(2

25
6
−

18
83

)
13

24
28

9
93

96
26

0
62

65
88

2
4.

73
1.

34
[9

]
4.

12
[7

]
6.

15
[9

]
4.

56

012310-3

IGOR L. MARKOV AND MEHDI SAEEDI PHYSICAL REVIEW A 87, 012310 (2013)

 4.5

 4.6

 4.7

 4.8

 4.9

5

 5.1

 5.2

 5.3

0 50 100 150 200 250 300 350 400 450 500 550

ra
tio

s

bits

FIG. 2. Asymptotic behavior of circuit-size ratios between Beck-
man et al. [6] and our constructions.

over all M-coprime C values. Results for n = 16 include all
coprime C values for the given M . For 24-, 32-, 48-, and 64-bit
M values, results were averaged over the first 5000 coprime C

values. For larger n values in modular multiplication circuits,
only C = −1/17 mod M are shown. Results for modular
exponentiation include all C values appearing in unconditional
modular multiplication blocks for b = 2 (Fig. 1). These are
C = b20

%M , C = b21
%M , . . ., C = b22n−1

%M . For n � 15,
Table I shows that circuits found by our heuristic are closer
to optimal circuits [7] than to scalable circuits from Ref. [6].
Beyond the reach of optimal techniques (n � 24), Fig. 2 shows
that our circuits are at least 4.5 times smaller and retain their
advantage as n increases. Our run times ranged from negligible
(n � 32) to 30 min for one 512-bit (M,C) pair.

To compare our circuits with latency(depth)-optimized
constructions in Ref. [11], we note that the most accurate data
in Ref. [11] are given for n = 128. Our smallest 128-bit mod-
exp circuits use 1.97 × 107 Toffoli gates with 642 ancillae.
To reduce the latency of our circuits, we replaced linear-depth
Cuccaro adders with log n-depth adders from Ref. [14] also
used in Ref. [11]. Accordingly, circuit depth is reduced to
2.03 × 106 Toffoli gates with ∼900 ancillae. This process
is outlined in the next section, but here we summarize the
results. A circuit with 660 ancillae [11] (Table II, Algorithm
G) exhibits latency 1.50 × 107 Toffoli gates.

The best circuit in Ref. [11] (Table II, Algorithm E) has
latency 1.71 × 105 Toffoli gates but uses 12 657 ancillae,
which is far less practical with technology under development
today. Circuit depths of our modular exponentiation circuits
for all attempted n values are reported in Table I. A quantum
machine with only some limited form of parallelism may
still benefit from our techniques, given strong results for both
parallel and sequential cases.

V. REDUCING CIRCUIT LATENCY

Our circuits can be adapted to quantum architectures with
a high degree of parallelism by replacing building blocks by
parallelized variants. Circuit-size calculations in Table I are

based on the costs of circuit modules (addition, subtraction,
modular multiplication by 2, etc.) from Table 2 of Ref. [7].
Cuccaro adders used in Ref. [7] are small, but exhibit linear
latency. To optimize latency for comparisons to Ref. [11],
we replaced Cuccaro adders with quantum carry-lookahead
(QCLA) adders from Ref. [14] (also used in Ref. [11]), whose
depth is (4 log2 n + 3, 4, 2) in terms of (T,C,N) gates. As in
Ref. [11], we measure latency in Toffoli gates. This results
in circuit latency (depth) 4 log2 n + 3 for additive operators
(∼1,∼2,+1,+2,−1,−2) in Table 2 of Ref. [7]. The operators
that perform modular multiplication (d1,d2) and division by
two (h1,h2) exhibit latency 6 log2 n + 12. To count the number
of ancillae in our modular exponentiation circuits, note that
QCLA adders from Ref. [14] need 2n − log n − 2 ancillae
(versus 1 for Cuccaro adders). Given that QCLA adders clear
all ancillae, the number of ancillae in our mod-exp circuits
grows to �7n.

We also restructure n one-bit controlled-SWAP gates with
shared control to reduce latency from n to log2 n. The control
bit is temporarily copied to n zero-initialized ancillae (with
log2 n latency) [15]. We use n parallel one-bit controlled-SWAP

gates, and then clear the n ancilla (also with log2 n latency).
Because these ancillae are cleared immediately, we can share
them with the QCLA ancillae. Thus, the overhead is 2 log2 n

latency and 2n CNOT gates used to copy and clear ancillae.

VI. CONCLUSIONS

The n-bit multiplication circuits developed in this work
significantly simplify the implementation of Shor’s algorithm,
but use �(n2) gates, as do traditional circuits. Circuit sizes
are improved by large constant factors. These factors appear
exaggerated for small qubit arrays because, for b = 2, our
construction implements a nontrivial fraction of modular
multiplications using �(n) gates, using circuit blocks from
Ref. [7]. In contrast, prior work typically uses generic �(n2)
circuits, regardless of b. We have experimented with several
enhancements to our technique, but the resulting improvement
was not justified by the increased run time and programming
difficulty.

Connections between number factoring and GCD compu-
tation were known to Euclid around 300 B.C.E. Today, the
two problems play similar roles in their respective complexity
classes. Number factoring is in NP (problems whose solutions
can be checked in polynomial time), not known to be in P
(problems solvable in polynomial time), but is not believed to
be NP complete (most difficult problems in NP). GCD is in
P, not known to be in NC (problems that can be solved very
efficiently when many parallel processors are available), but is
not believed to be P complete (inherently sequential). Unlike
provably-hard problems (such as Boolean satisfiability), or
problems for which fast serial and parallel algorithms are
known (such as sorting), number factoring and GCD appear
to be good candidates for demonstrations of physics-based
computing that exploits parallelism.

Our use of GCD algorithms to speed up modular expo-
nentiation and number factoring incurs only small overhead.
All of the invocations of our GCD-based circuit construction
for one run of Shor’s algorithm can run in parallel because

012310-4

FASTER QUANTUM NUMBER FACTORING VIA CIRCUIT . . . PHYSICAL REVIEW A 87, 012310 (2013)

they are independent. Thus, the classical-computing overhead
of our technique for one run of Shor’s algorithm is limited
to 1-2 GCD-based circuit constructions. This overhead is
acceptable because Shor’s algorithm performs multiple GCD-
like computations after quantum measurement.

ACKNOWLEDGMENTS

I.M.’s work was sponsored in part by the Air Force Research
Laboratory under Agreement No. FA8750-11-2-0043. Héctor
J. Garcı́a helped with Fig. 1.

[1] M. Nielsen and I. Chuang, Quantum Computation and Quantum
Information (Cambridge University Press, New York, 2000).

[2] L. M. K. Vandersypen, M. Steffen, G. Breyta, C. S. Yannoni,
R. Cleve, and I. L. Chuang, Phys. Rev. Lett. 85, 5452 (2000).

[3] B. P. Lanyon et al., Phys. Rev. Lett. 99, 250505 (2007).
[4] C.-Y. Lu, D. E. Browne, T. Yang, and J.-W. Pan, Phys. Rev. Lett.

99, 250504 (2007).
[5] A. Politi, J. C. F. Matthews, and J. L. O’Brien, Science 325,

1221 (2009).
[6] D. Beckman, A. N. Chari, S. Devabhaktuni, and J. Preskill, Phys.

Rev. A 54, 1034 (1996).
[7] I. L. Markov and M. Saeedi, Quantum Inf. Comput. 12, 361

(2012).

[8] E. Knill, Los Alamos National Laboratory Technical Report No.
LAUR-95-3350, 1995 (unpublished).

[9] D. McAnally, arXiv:quant-ph/0112055.
[10] A. G. Fowler, S. J. Devitt, and L. C. L. Hollenberg, Quantum

Inf. Comput. 4, 237 (2004).
[11] R. Van Meter and K. M. Itoh, Phys. Rev. A 71, 052320

(2005).
[12] Y. Takahashi, S. Tani, and N. Kunihiro, Quantum Inf. Comput.

10, 872 (2010).
[13] D. Rosenbaum, arXiv:1205.0036.
[14] T. G. Draper, S. A. Kutin, E. M. Rains, and K. M. Svore,

Quantum Inf. Comput. 6, 351 (2006).
[15] C. Moore and M. Nilsson, SIAM J. Comput. 31, 799 (2002).

012310-5

http://dx.doi.org/10.1103/PhysRevLett.85.5452
http://dx.doi.org/10.1103/PhysRevLett.99.250505
http://dx.doi.org/10.1103/PhysRevLett.99.250504
http://dx.doi.org/10.1103/PhysRevLett.99.250504
http://dx.doi.org/10.1126/science.1173731
http://dx.doi.org/10.1126/science.1173731
http://dx.doi.org/10.1103/PhysRevA.54.1034
http://dx.doi.org/10.1103/PhysRevA.54.1034
http://arXiv.org/abs/arXiv:quant-ph/0112055
http://dx.doi.org/10.1103/PhysRevA.71.052320
http://dx.doi.org/10.1103/PhysRevA.71.052320
http://arXiv.org/abs/arXiv:1205.0036
http://dx.doi.org/10.1137/S0097539799355053

