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We consider a group covariant quantum state set with a group in which each element corresponds to a unitary
or antiunitary operator. This type of quantum state set can express a broad class of quantum state sets, including
geometrically uniform state sets and self-symmetric state sets. We derive that for any quantum measurement for
a group-covariant state set (both with and without a certain fraction of inconclusive results), a group covariant
quantum measurement exists with respect to the same group with the same performance, that is, the same
probability of correct detection and the same rate of inconclusive results. We then show that a group covariant
optimal measurement exists for any group-covariant state set. In some cases, we derive an optimal measurement
for a group-covariant state set.
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I. INTRODUCTION

One of the fundamental problems in quantum information
is quantum state discrimination. The problem consists in
identifying the quantum state that belongs to a given finite
set of known states with given prior probabilities. In quantum
mechanics, there is no way to discriminate perfectly between
nonorthogonal states. Thus, it is of importance to obtain
measurement strategies that can discriminate between them
as accurately as possible.

The subject of quantum state discrimination was pioneered
in the 1970s by Helstrom, Holevo, and Yuen et al. [1–3].
Necessary and sufficient conditions for obtaining an optimal
measurement that minimizes the probability of a detection
error, which we call a minimum error measurement, were
formulated by Holevo and Yuen et al. [2,3]. However, it
is generally very difficult to obtain a closed-form analytical
solution for the optimal measurements that satisfy these
conditions. Several works have been reported to tackle the
problems of finding minimum error measurements (see, e.g.,
[4–7]).

In recent years, other types of optimal measurements have
also been considered, such as a measurement that maximizes
the probability of correct detection with zero probability of a
detection error, which we refer to as an optimal unambiguous
measurement [8,9], and a measurement that maximizes the
probability of correct detection with a fixed rate of inconclusive
results, which we call an optimal inconclusive measurement
[10]. Minimum error measurements and optimal unambiguous
measurements can be considered as the special cases of optimal
inconclusive measurements.

Recently, many research efforts have been made to express
optimal measurements for some state sets. There are some
state sets in which analytical solutions for minimum error
measurements are known, for example, cyclic pure state sets
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[4,5], three mirror-symmetric state sets [11], linear codes with
binary letter states [6], and pseudocyclic codes with q-ary
letter states [12]. In the case of a geometrically uniform
(GU) state set, which is defined over a finite group of unitary
operators, Eldar et al. derived that an optimal GU measurement
exists [13]. In the special case of a GU state set, the square
root measurement (SRM) is a minimum error measurement
for a pure state set [7,13]. In some cases of mixed GU state
sets, analytical solutions of an optimal measurement have been
found [13–17]. For a GU state set, Eldar also derived that
there exist both an optimal inconclusive measurement and
an optimal unambiguous measurement that are GU [18,19].
A self-symmetric state set, in which each density operator is
invariant over a certain regular normal operator, is another case
of a symmetric state set. We showed that for a self-symmetric
state set, a minimum error measurement with self-symmetry
exists [20].

A GU state set and a self-symmetric state set have different
types of symmetries. In addition, state sets having other types
of symmetry exist such as three mirror-symmetric state sets
[11]. These symmetries can be formulated as the invariance
of the corresponding collection of quantum states under
the action of a group. We call a state set with some of these
symmetries a group covariant quantum state set. To the best of
our knowledge, however, for group-covariant state sets there
has been no attempt to systematically study the above optimal
measurements.

In this paper, we consider a group covariant quantum
state set with a group in which each element corresponds to
unitary or antiunitary operators. First, we introduce a group
covariant quantum state set and provide some examples in
Sec. III. Next, in Sec. IV, we show that for any quantum
measurement for a group-covariant state set both with and
without a certain fraction of inconclusive results, a group
covariant measurement exists with respect to the same group
with the same performance. In particular, we show that a group
covariant optimal measurement exists. We also show that there
exists a Lagrange operator for an optimal measurement with
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the same symmetry. Then we derive optimal measurements
for several special cases, which are extensions of the results
of Refs. [13,18,19]. Finally, in Sec. V, we illustrate group
covariant optimal measurements for some group-covariant
state sets.

II. QUANTUM MEASUREMENTS

Suppose that {ρ̂ ′
m} (m ∈ IM ) is a set of M density operators

describing quantum states where Ik = {0,1, . . . ,k − 1}. Each
density operator ρ̂ ′

m is positive (denoted ρ̂ ′
m � 0) and has unit

trace (Trρ̂ ′
m = 1). We refer to {ρ̂m = ξmρ̂ ′

m} as a quantum state
set with prior probabilities {ξm}, instead of {ρ̂ ′

m}. {ρ̂m} satisfies
ρ̂m � 0, Trρ̂m > 0, and

∑M−1
m=0 Trρ̂m = 1. For given {ρ̂m}, {ξm},

and {ρ̂ ′
m} are uniquely determined as ξm = Trρ̂m and ρ̂ ′

m =
ξ−1
m ρ̂m. Let us call the Hilbert space that is spanned by the

supports of the operators ρ̂0, . . . ,ρ̂M−1 the state space H.
A state with a rank 1 density operator is called a pure state;

otherwise, it is a mixed state. A pure state set has only pure
states. A mixed state set has at least one mixed state.

We consider a quantum measurement {�̂m} (m ∈ IM+1)
defined in H. The operator �̂m for each m ∈ IM corresponds
to detection of the state ρ̂m and the operator �̂M corresponds
to an inconclusive result. Let M be the entire set of quantum
measurements, each of which consists of M + 1 detection
operators. Any measurement {�̂m} ∈ M satisfies

�̂m � 0, ∀m ∈ IM+1,

M∑
m=0

�̂m = 1̂, (1)

where 1̂ is the identity operator. {�̂m} is referred to as a positive
operator-valued measure (POVM).

The probabilities of correct detection PC({�̂m}) and a
detection error PE({�̂m}) are defined by

PC({�̂m}) =
M−1∑
m=0

Tr(ρ̂m�̂m),

(2)

PE({�̂m}) =
M−1∑
m=0

M−1∑
k=0

(m�=k)

Tr(ρ̂m�̂k).

The probability of an inconclusive result PI({�̂m}) can be
expressed as

PI({�̂m}) = 1 − PC({�̂m}) − PE({�̂m}). (3)

PI({�̂m}) can also be expressed as PI({�̂m}) = Tr(Ĝ�̂M ),
where

Ĝ =
M−1∑
m=0

ρ̂m. (4)

Any measurement with PI({�̂m}) = 0 satisfies �̂M = 0.
An optimal inconclusive measurement maximizes the prob-

ability of correct detection PC({�̂m}) given a fixed probability
of an inconclusive result, PI({�̂m}) = p (0 � p < 1). A
minimum error measurement is a special case of an optimal
inconclusive measurement, which satisfies p = 0. An optimal
unambiguous measurement maximizes the probability of
correct detection PC({�̂m}) and discriminates unambiguously

between the states ρ̂m, i.e., satisfies PE({�̂m}) = 0, which is
also a special case of an optimal inconclusive measurement
with sufficiently large p. If

∑M−1
m=0 rankρ̂m = dimH holds,

then the minimum error measurement is a von Neumann
measurement and uniquely determined as described in [21]
(see also [1,22] in the pure state case), whereas an inconclusive
measurement with p > 0 is in general not a von Neumann
measurement and is not uniquely determined.

A necessary and sufficient condition for unambiguous
measurements to exist for the state set {ρ̂m} is that there exists
m ∈ IM such that the kernel of the state ρ̂m does not contain
the intersection of the kernels of the others, that is [23],

Kerρ̂m �⊇
⋂

k∈IM,k �=m

Kerρ̂k. (5)

In particular, in the case in which {ρ̂m = |ψm〉 〈ψm|} is a pure
state set, unambiguous detection between {ρ̂m} is possible if
and only if {|ψm〉} are linearly independent [24].

III. GROUP-COVARIANT STATE SET

We consider a quantum state set with group symmetry, that
is, it is invariant under the action of a group in which each
element corresponds to a unitary or antiunitary operator. This
type of state set, which we call a group-covariant state set,
generalizes a GU state set [13] and a self-symmetric state
set [20]. Note that Davies derived a measurement maximizing
the mutual information for a group-covariant state set with an
irreducible representation [25]. Decker generalized Davies’
result to reducible representations [26], but only in the case of
unitary operators. In this paper, we assume that a group can be
reducible and that each element of the group corresponds to a
unitary or antiunitary operator.

First, we define a group-covariant state set. Let us consider
the following operations from a positive operator T̂ to another:

πÛ (T̂ ) = Û T̂ Û †, (6)

where Û is a unitary or antiunitary operator and where denotes
conjugate transpose. (The antiunitary operator is described in
detail by Wigner [27].) Note that if Û is an antiunitary operator,
then πÛ (T̂ ) is also expressed as πÛ (T̂ ) = ÛuniT̂

∗Û †
uni when

using a unitary operator Ûuni corresponding to Û . T̂ ∗ denotes

T̂ ∗ =
N−1∑
n=0

N−1∑
n′=0

{〈φn|T̂ |φn′ 〉}∗ |φn〉 〈φn′ | , (7)

where {|φn〉} (n ∈ IN,N = dimH) is some complete or-
thonormal basis of H and where z∗ denotes the complex
conjugate of the complex number z. Let F be the entire set of
operations πÛ (T̂ ).

A group-covariant state set is defined as the following group
action.

Definition 1. A state set P = {ρ̂m} (m ∈ IM ) is a group-
covariant state set with respect to G, which we refer to as a
G-symmetric state set, if there is a finite group G with |G| � 2
(|G| is the number of elements in the group G) that satisfies the

012308-2



QUANTUM MEASUREMENT FOR A GROUP-COVARIANT . . . PHYSICAL REVIEW A 87, 012308 (2013)

0ˆ

1ˆ

xc

xs

Û
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FIG. 1. Phase-space representation of examples of group-covariant state sets: (a) a GU state set; (b) a self-symmetric state set; (c) another
type of state set. Each line segment represents a coherent state. A state expressed by multiple line segments is a mixed state in which the
corresponding coherent states are uniformly mixed.

following properties:
(1) There is an operation πg ∈ F for each g ∈ G such that

πg �= πh for any g,h ∈ G (g �= h).
(2) πg(ρ̂m) ∈ P for any g ∈ G and m ∈ IM .
(3) πe(ρ̂m) = ρ̂m for any m ∈ IM , where e is the identity

element of G.
(4) πgh(ρ̂m) = πg(πh(ρ̂m)) for any g,h ∈ G and m ∈ IM .
The group G is said to act on P .
Let τg(m) ∈ IM (g ∈ G,m ∈ IM ) be a number that satisfies

ρ̂τg(m) = πg(ρ̂m). We denote g ◦ T̂ = πg(T̂ ) and g ◦ m = τg(m)
to simplify the notation. Thus, if P is a G-symmetric state set,
then we have

g ◦ ρ̂m = ρ̂g◦m, ∀g ∈ G, m ∈ IM. (8)

Note that ξg◦m = Trπg(ρ̂m) = Trρ̂m = ξm for any g ∈ G and
m ∈ IM .

Next, we show three examples of group-covariant state sets:
GU or compound GU (CGU) state sets [13], self-symmetric
state sets, and other state sets.

Example 1 (GU or CGU state set). Let us consider the
unitary operators Ûk that form a group G = {Ûk} (k ∈ IS, S =
|G| � 2). A CGU state set is defined as a quantum state set
P = {ρ̂k,j } (k ∈ IS, j ∈ IJ ) satisfying

πk(ρ̂0,j ) = Ûkρ̂0,j Û
†
k = ρ̂k,j , (9)

where J is a natural number [13]. It is easy to verify that a
CGU state set is a G-symmetric state set. A GU state set is a
special class of CGU state sets in which J = 1.

The phase-space representation of an example of a GU
state set {ρ̂0,ρ̂1,ρ̂2} where Û 3 = 1̂ is shown in Fig. 1(a). ρ̂m =
|αm〉 〈αm| /3 is a coherent state of light where |αm〉 is the
eigenvector of the annihilation operator corresponding to the
eigenvalue αm = α exp(i2πm/3) (α �= 0, i = √−1).

The action ofG onP is called free if, for all m ∈ IM , g ◦ m =
m (g ∈ G) implies g = e [28]. The action of G is transitive if
for any m,n ∈ IM , g ∈ G exists such that g ◦ m = n [28]. P is
a CGU state set if and only if G exists such that the action of G
on P is free. As a special case, P is a GU state set if and only
if G exists such that the action of G on P is free and transitive.

Example 2 (self-symmetric state set). A self-symmetric state
set P = {ρ̂m} (m ∈ IM ) is defined as a quantum state set such
that there exists a regular normal operator Â of the space H

satisfying

Âρ̂mÂ−1 = ρ̂m, ∀m ∈ IM. (10)

We exclude the trivial case where Â is expressed by Â = c1̂
(c �= 0 is a complex number).

Here we show that a self-symmetric state set is also a
group-covariant state set. Let {P̂l} (l ∈ IL) be the entire set
of orthogonal projection operators onto the eigenspaces of Â.
We consider the following unitary operator:

Û =
L−1∑
l=0

exp

(
i
2πl

L

)
P̂l . (11)

Û has the same eigenspaces as Â and satisfies Û ρ̂mÛ−1 = ρ̂m

for any m ∈ IM and ÛL = 1̂. Since G = {Û l} (l ∈ IL) is a
group and πÛl (ρ̂m) = Û l ρ̂mÛ−l = ρ̂m, a state set P satisfying
Eq. (10) is a {Û l}-symmetric state set.

The phase-space representation of an example of a self-
symmetric state set is shown in Fig. 1(b). ρ̂m is a mixed
state of coherent light expressed as ρ̂m = ξm(|αm〉 〈αm| +
Û |αm〉 〈αm| Û−1 + Û 2 |αm〉 〈αm| Û−2)/3, where Û |αm〉 =
|exp(i2πm/3)αm〉. Equation (10) holds with Â = Û .

The action of G on P is called faithful if for any g,h ∈ G
(g �= h) there exists m ∈ IM such that g ◦ m �= h◦m [28]. When
πg is a unitary operation for any g ∈ G, P is a self-symmetric
state set if and only if G exists such that the action of G on P
is not faithful.

Example 3 (another type of state set). An example of a
group-covariant state set P that is neither a CGU state set nor
a self-symmetric state set is shown in Fig. 1(c). It is easy to
verify that the action is faithful but not free. In this example
a unitary operator Û exists such that Û 3 = 1̂ and a group
G = {1̂,Û ,Û 2} acts on P as reported in Table I.

TABLE I. The group action of G on P with respect to the state
set in Fig. 1(c).

g ∈ G g ◦ 0 g ◦ 1 g ◦ 2 g ◦ 3

1̂ 0 1 2 3
Û 0 2 3 1
Û 2 0 3 1 2
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IV. QUANTUM MEASUREMENTS FOR
GROUP-COVARIANT STATE SETS

A. Optimal measurements

Definition 2. A POVM {�̂m} ∈ M satisfying

g ◦ �̂m = �̂g◦m, ∀g ∈ G, m ∈ IM (12)

is group covariant with respect to G, which we call G
symmetric. M(G) is the entire set of G-symmetric POVMs,
each of which consists of M + 1 detection operators.

First, we introduce the following lemma.
Lemma 3. For any positive operators Ŝ,T̂ , any c ∈ R0 (R0

is the entire set of non-negative real numbers), and any g ∈ G,
any operation πg ∈ F expressed by Eq. (6) satisfies

g ◦ (ŜT̂ ) = (g ◦ Ŝ)(g ◦ T̂ ), (13)

g ◦ (Ŝ + T̂ ) = g ◦ Ŝ + g ◦ T̂ , (14)

g ◦ (cT̂ ) = c(g ◦ T̂ ), (15)

g ◦ 0 = 0, (16)

g ◦ 1̂ = 1̂, (17)

Tr(g ◦ T̂ ) = TrT̂ , (18)

g ◦ (T̂ +) = (g ◦ T̂ )+, (19)

where T̂ + denotes the Moore-Penrose inverse operator of T̂ .
Moreover, we have that for any positive regular operator T̂ and
any c ∈ R (R is the entire set of real numbers),

g ◦ (T̂ c) = (g ◦ T̂ )c. (20)

It is easy to prove Lemma 3 from Eq. (6) (proof
omitted). It follows that if {�̂m} ∈ M(G), then g ◦ �̂M =
g ◦ (1̂ − ∑M−1

m=0 �̂m) = 1̂ − ∑M−1
m=0 �̂g◦m = �̂M holds since

{g ◦ 0,g ◦ 1, . . . ,g ◦ (M − 1)} = IM . For simplicity, let g ◦ M =
τg(M) = M . By using Lemma 3, we obtain the following
theorem.

Theorem 4. We consider a G-symmetric state set P = {ρ̂m}
(m ∈ IM ). For any POVM {X̂m} ∈ M, a G-symmetric POVM
{�̂m} ∈ M(G) exists such that PC({�̂m}) = PC({X̂m}) and
PE({�̂m}) = PE({X̂m}).

Proof. We consider the operators {X̂(g)
m } (m ∈ IM+1) defined

as
X̂(g)

m = g−1 ◦ X̂g◦m. (21)

It follows that {X̂(g)
m } ∈ M for any g ∈ G. Indeed, from

Eq. (21), X̂
(g)
m � 0 and

M∑
m=0

X̂(g)
m =

M∑
m=0

(g−1 ◦ X̂g◦m) = g−1 ◦

(
M∑

m=0

X̂g◦m

)

= g−1 ◦ 1̂ = 1̂. (22)

Moreover, we have that for any m ∈ IM and k ∈ IM+1,

Tr(ρ̂mX̂
(g)
k ) = Tr[ρ̂m(g−1 ◦ X̂g◦k)] = Tr{g−1 ◦ [(g ◦ ρ̂m)X̂g◦k]}

= Tr(ρ̂g◦mX̂g◦k). (23)

Thus, PC({X̂(g)
m }) = PC({X̂m}) and PE({X̂(g)

m }) = PE({X̂m})
hold.

Consider the operators {�̂m} (m ∈ IM+1) expressed as

�̂m = 1

|G|
∑
g∈G

X̂(g)
m . (24)

{�̂m} is obviously a POVM with PC({�̂m}) = PC({X̂m}) and
PE({�̂m}) = PE({X̂m}). We have that for any g ∈ G and m ∈
IM+1,

g ◦ �̂m = 1

|G|
∑
h∈G

g ◦ X̂(h)
m = 1

|G|
∑
h∈G

g ◦ h−1 ◦ X̂h◦m

= 1

|G|
∑
k∈G

k−1 ◦ X̂k◦g◦m = 1

|G|
∑
k∈G

X̂(k)
g◦m = �̂g◦m, (25)

where k = h◦g−1. Therefore, {�̂m} ∈ M(G). �
Corollary 5. We consider a G-symmetric state set P =

{ρ̂m} (m ∈ IM ). A G-symmetric minimum error measurement
and a G-symmetric optimal inconclusive measurement exist.
Moreover, if P satisfies Eq. (5), then a G-symmetric optimal
unambiguous measurement exists.

Proof. Let {X̂m} ∈ M be an optimal measurement, i.e., a
minimum error measurement or an optimal inconclusive mea-
surement or an optimal unambiguous measurement. From The-
orem 4, {�̂m} ∈ M(G) exists such that PC({�̂m}) = PC({X̂m})
and PE({�̂m}) = PE({X̂m}). Thus, {�̂m} is also optimal. �

Theorem 6. We consider a G-symmetric state set P = {ρ̂m}
(m ∈ IM ). Let Q be a set whose elements are pairs of
the probabilities of correct detection and a detection error
(PC,PE). Assume that Q is convex, that is, for any two
pairs (PC1,PE1), (PC2,PE2) ∈ Q, and any t ∈ R satisfying
0 � t � 1, (tPC1 + (1 − t)PC2,tPE1 + (1 − t)PE2) ∈ Q. Let
M(G)

Q be the entire set of G-symmetric POVMs {�̂m} that

satisfy (PC({�̂m}),PE({�̂m})) ∈ Q. Then M(G)
Q is a convex set

(possibly empty). That is, for any POVMs {�̂m},{�̂′
m} ∈ M(G)

Q
and any t ∈ R satisfying 0 � t � 1, we have

{t�̂m + (1 − t)�̂′
m} ∈ M(G)

Q . (26)

Let Qi = {(PC,PE) : PC � 0,PE � 0,PC + PE = 1 − p}
and Qu = {(PC,0) : 0 � PC � 1}. It is easy to verify that both
Qi and Qu are convex. Thus, the problem of obtaining an
optimal measurement clearly remains in convex programming
even if we restrict the solution domain from M to M(G)

Qi
or

M(G)
Qu

.

Proof. Suppose that {�̂m} and {�̂′
m} are in M(G)

Q . Both
(PC({�̂m}),PE({�̂m})) and (PC({�̂′

m}),PE({�̂′
m})) are ele-

ments of the setQ. Consider {�̂′′
m = t�̂m + (1 − t)�̂′

m} ∈ M.
From Eq. (2), PC({�̂′′

m}) = tPC({�̂m}) + (1 − t)PC({�̂′
m})

and PE({�̂′′
m}) = tPE({�̂m}) + (1 − t)PE({�̂′

m}) hold. Thus,
(PC({�̂′′

m}),PE({�̂′′
m})) ∈ Q. Moreover, we have that for any

g ∈ G and m ∈ IM+1,

g ◦ �̂′′
m = g ◦ (t�̂m + (1 − t)�̂′

m)

= t(g ◦ �̂m) + (1 − t)(g ◦ �̂′
m)

= t�̂g◦m + (1 − t)�̂′
g◦m = �̂′′

g◦m. (27)

Therefore, {�̂′′
m} ∈ M(G)

Q . �
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B. Dual problems

It was shown in Ref. [18] that necessary and sufficient
conditions for an optimal inconclusive measurement {�̂m} are
that a positive operator 
̂, which is called a Lagrange operator,
and λ ∈ R exist satisfying


̂ − ρ̂m � 0, ∀m ∈ IM+1, (28)

(
̂ − ρ̂m)�̂m = 0, ∀m ∈ IM+1, (29)

where ρ̂M = λĜ. Summing Eq. (29) over m = 0, . . . ,M gives
[29]


̂ =
M∑

k=0

ρ̂k�̂k. (30)

Necessary and sufficient conditions for a minimum error
measurement, which have been derived in Refs. [2,3], can be
interpreted as that 
̂ � 0 exists such that Eqs. (28) and (29)
hold for λ = 0 and �̂M = 0. It is known that only Eqs. (28) and
(30) are also necessary and sufficient conditions for a minimum
error measurement [30]. [Note that if Eq. (28) holds, then 
̂

is a Hermitian operator since 
̂ � 0.] The following remark
shows that an optimal inconclusive measurement has similar
properties.

Remark 7. Necessary and sufficient conditions for an
optimal inconclusive measurement {�̂m} ∈ M for a quantum
state set {ρ̂m} (m ∈ IM ) are that λ ∈ R exists such that Eqs. (28)
and (30) hold where ρ̂M = λĜ.

Proof. It was shown in Refs. [18] and [29] that Eqs. (28)
and (30) are necessary conditions for optimality. Now we prove
that these equations are also sufficient conditions. Assume that
λ ∈ R exists satisfying Eqs. (28) and (30). Consider another
POVM, {�̂′

m} ∈ M, with the probability of an inconclusive
result, Tr(Ĝ�̂′

M ) = p = Tr(Ĝ�̂M ). We have

PC({�̂m}) − PC({�̂′
m})

= [PC({�̂m}) + λp] − [PC({�̂′
m}) + λp]

=
M∑

k=0

Tr(ρ̂k�̂k) −
M∑

m=0

Tr(ρ̂m�̂′
m)

=
M∑

m=0

Tr{(
̂ − ρ̂m)�̂′
m} � 0, (31)

where the inequality follows from 
̂ − ρ̂m � 0 and �̂′
m � 0.

Thus, the POVM {�̂m} is an optimal inconclusive measure-
ment. �

The following theorem shows that a symmetric Lagrange
operator associated with an optimal inconclusive measurement
for a G-symmetric state set exists.

Theorem 8. We consider a G-symmetric state set P = {ρ̂m}
(m ∈ IM ). A Lagrange operator 
̂ associated with an optimal
inconclusive measurement satisfying g ◦ 
̂ = 
̂ (g ∈ G) exists.

Thus, 
̂ is obtained by minimizing Tr
̂ subject to the
constraints 
̂ � ρ̂m and g ◦ 
̂ = 
̂, which is also a convex pro-
gramming problem. Assalini et al. showed that the symmetry
of a Lagrange operator 
̂ permits computationally efficient
calculation of a minimum error measurement in the cyclic
case [31]. Theorem 8 can also be used to obtain a minimum

error measurement and an optimal inconclusive measurement
efficiently.

Proof. Let {�̂m} be a G-symmetric optimal inconclusive
measurement, which always exists from Corollary 5. Since
g ◦ ρ̂M = ρ̂M and g ◦ �̂M = �̂M ,

g ◦ 
̂ = g ◦
M∑

m=0

ρ̂m�̂m =
M∑

m=0

(g ◦ ρ̂m) (g ◦ �̂m)

=
M∑

m=0

ρ̂g◦m�̂g◦m = 
̂. (32)

�
Now we consider an optimal unambiguous measurement.

Suppose that Eq. (5) holds. Let �̂m (m ∈ IM ) be the orthogonal
projection operator onto ∩j �=mKerρ̂j = Kerσ̂m where σ̂m =
Ĝ − ρ̂m. [Note that KerÂ ∩ KerB̂ = Ker(Â + B̂) for positive
operators Â and B̂.] In Ref. [23], necessary and sufficient
conditions for an optimal unambiguous measurement are that
there exists a Lagrange operator Ẑ � 0 satisfying �̂m(Ẑ −
ρ̂m)�̂m � 0 (m ∈ IM ) and TrẐ = PC({�̂m}). It can be shown
that a Lagrange operator Ẑ associated with an optimal
unambiguous measurement for a G-symmetric state set exists
such that g ◦ Ẑ = Ẑ (g ∈ G) as the following theorem.

Theorem 9. We consider a G-symmetric state set P = {ρ̂m}
(m ∈ IM ) satisfying Eq. (5). A Lagrange operator Ẑ associated
with an optimal unambiguous measurement satisfying g ◦ Ẑ =
Ẑ (g ∈ G) exists.

Proof. Let {�̂m} be a G-symmetric optimal unambiguous
measurement (which always exists). Let Ẑ′ � 0 be a Lagrange
operator associated with {�̂m}. Ẑ is defined by

Ẑ = 1

|G|
∑
g∈G

g ◦ Ẑ′. (33)

It is easy to verify that Ẑ � 0, TrẐ = |G|−1 ∑
g∈G TrẐ′ =

TrẐ′ = PC({�̂m}), and g ◦ Ẑ = Ẑ. Now we show that �̂m(Ẑ −
ρ̂m)�̂m � 0. �̂m is expressed by �̂m = 1̂ − σ̂mσ̂+

m . We have

g ◦ �̂m = 1̂ − (g ◦ σ̂m)(g ◦ σ̂+
m ) = 1̂ − σ̂g◦mσ̂+

g◦m = �̂g◦m,

(34)

since g ◦ σ̂m = G − g ◦ ρ̂m = σ̂g◦m. Thus,

�̂m(Ẑ − ρ̂m)�̂m = 1

|G|
∑
g∈G

�̂m(g ◦ Ẑ′ − ρ̂m)�̂m

= 1

|G|
∑
g∈G

g ◦ [�̂g−1◦m(Ẑ′ − ρ̂g−1◦m)�̂g−1 ◦ m]

� 0, (35)

where the inequality follows from �̂m(Ẑ′ − ρ̂m)�̂m � 0 for
any m ∈ IM . �

C. Decomposing into the direct sum of measurements

Suppose that a group G does not act faithfully on P . It is
known that a subgroup G ′ of G that acts faithfully on P can be
obtained [28]. Consider K = {h ∈ G : h◦m = m(∀m ∈ IM )}.
K is a normal subgroup of G (|K| � 2), and the action of
the quotient group G ′ = G/K is faithful. Since a G-symmetric
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state set P is also K symmetric and G ′ symmetric, any POVM
{�̂m} ∈ M(G) satisfies

h◦�̂m = �̂m, ∀h ∈ K, m ∈ IM+1, (36)

g ◦ �̂m = �̂g◦m, ∀g ∈ G ′, m ∈ IM+1. (37)

In some cases, a G-symmetric POVM may be easily
analyzed by dividing the group G into subgroups K and G ′. In
particular, if the group K has an element h in which πh(T̂ ) is
represented as πh(T̂ ) = Û T̂ Û † (Û is a unitary operator), then
each state ρ̂m can be expressed as the following direct sum of
operators defined in the eigenspaces {Xl} (l ∈ IL) of Û :

ρ̂m =
L−1⊕
l=0

Wlρ̂m;l , ρ̂m;l = P̂l ρ̂mP̂l/Wl, (38)

where P̂l is the orthogonal projection operator onto the space
Xl and Wl = ∑

m Tr(P̂l ρ̂mP̂l) is the normalizing constant such
that

∑
m Trρ̂m;l = 1.

Note that Theorem 4 and Corollary 5 hold if the operation
πg satisfies Equations (13)–(15), even if πg cannot be described
by Eq. (6). [Eqs. (16)–(20) can be derived from Eqs. (13)–(15).]
For example, if each ρ̂m satisfies Eq. (10), i.e., ρ̂m commutes
with a regular normal operator Â, then an operation expressed
as

πP̂ ,Û (T̂ ) = Û{P̂ T̂ P̂ + (1̂ − P̂ )T̂ ∗(1̂ − P̂ )}Û † (39)

also satisfies Eqs. (13)–(15) for any positive operator T̂

commuting with Â, where P̂ and Û are, respectively, an or-
thogonal projection operator and a unitary operator satisfying
P̂ Â = ÂP̂ and Û Â = ÂÛ . πP̂ ,Û (T̂ ) of Eq. (39) indicates a
unitary operation in the support space of P̂ and an antiunitary
operation in the kernel space of P̂ . Such a ρ̂m can even be
easily analyzed by expressing it as the direct sum in Eq. (38).

We explained in our previous paper [20] that the problem
of finding a minimum error measurement for a self-symmetric
state set can be replaced by the equivalent problem of finding
a minimum error measurement for the state set {ρ̂m;l} for
each l. A similar proposition can be obtained for an optimal
unambiguous measurement as follows.

Proposition 10. Suppose that {ρ̂m} (m ∈ IM ) satisfies
Eq. (5) and can be expressed as Eq. (38). For each l ∈ IL, let
{�̂m;l} (m ∈ IM+1) be an optimal unambiguous measurement
for {ρ̂m;l} in its state space Xl . (If unambiguous detection
between {ρ̂m;l} is not possible, then let �̂m;l = 0̂ for all m ∈ IM

and �̂M;l = P̂l .) Then the following POVM {�̂m} ∈ M is an
optimal unambiguous measurement for {ρ̂m}:

�̂m =
L−1⊕
l=0

�̂m;l . (40)

Proof. From Theorem 4, there exists an unambiguous
measurement {X̂m} that is expressed as {X̂m = ⊕L−1

l=0 X̂m;l},
with X̂m;l defined in Xl . For each l ∈ IL, let PC;l({Ŷm;l}) be the
probability of correct detection of the POVM {Ŷm;l} for {ρ̂m;l}.
We have

PC

({
L−1⊕
l=0

Ŷm;l

})
=

L−1∑
l=0

WlPC;l({Ŷm;l}). (41)

Since {�̂m;l} is an optimal unambiguous measurement for
{ρ̂m;l}, PC;l({�̂m;l}) � PC;l({X̂m;l}). Therefore, from Eq. (41),
PC({�̂m}) � PC({X̂m}). Since {X̂m} is an optimal unambigu-
ous measurement, PC;l({�̂m;l}) = PC;l({X̂m;l}) holds. Thus,
{�̂m} is also an optimal unambiguous measurement. �

D. SRM, SIM, and EPM

Here we consider some suboptimal measurements, that is,
the SRM, the scaled inverse measurement (SIM), and the equal
probability measurement (EPM). Eldar et al. derived that the
SRM, the SIM, and the EPM for a GU (CGU) state set are also
GU (CGU) and that these measurements are optimal under
certain constraints [13,18,19]. Here we extend these results to
a group-covariant state set.

The SRM {�̂(SRM)
m } ∈ M is defined by

�̂(SRM)
m = Ĝ− 1

2 ρ̂mĜ− 1
2 , m ∈ IM, �̂

(SRM)
M = 0. (42)

A sufficient condition for the SRM to be a minimum error
measurement is given in Ref. [13].

The SIM {�̂(SIM)
m } ∈ M is defined by

�̂(SIM)
m = 1 − p

N
Ĝ−1ρ̂mĜ−1, m ∈ IM,

(43)

�̂
(SIM)
M = 1̂ −

M−1∑
m=0

�̂(SIM)
m .

It follows that PI({�̂(SIM)
m }) = p holds. To satisfy Eq. (1),

p � pmin = 1 − Nλmin is required, where λmin is the smallest
eigenvalue of Ĝ. Eldar showed a sufficient condition for the
SIM to be an optimal inconclusive measurement [18].

The SIM with p = pmin, which is called the EPM, is
known to be an optimal unambiguous measurement for any
GU linearly independent pure state set [19].

Proposition 11. Let P = {ρ̂m} (m ∈ IM ) be a G-symmetric
state set. The SRM and the SIM for P are both G symmetric.

According to Proposition IV D, the EPM, which is a special
case of the SIM, is also G symmetric.

Proof. From Eq. (20) and g ◦ G = G, we ob-
tain g ◦ (Ĝ−1/2) = (g ◦ Ĝ)−1/2 = Ĝ−1/2 and g ◦ (Ĝ−1) = Ĝ−1.
Therefore, the SRM {�̂(SRM)

m } and the SIM {�̂(SIM)
m } satisfy, for

any m ∈ IM ,

g ◦ �̂(SRM)
m = Ĝ− 1

2 ρ̂g◦mĜ− 1
2 = �̂(SRM)

g◦m , (44)

g ◦ �̂(SIM)
m = 1 − p

N
Ĝ−1ρ̂g◦mĜ−1 = �̂(SIM)

g◦m . (45)

Thus, {�̂(SRM)
m } and {�̂(SIM)

m } are both G symmetric. �
Consider a G-symmetric state set P = {ρ̂m} (m ∈ IM ).

{g ◦ ρ̂m : ∀g ∈ G} is called the orbit of ρ̂m ∈ P under G. Let
{Ok} (k ∈ IO) be the entire set of orbits of ρ̂m under G, where
O is the number of orbits. Note that G is transitive if and only
if O = 1.

Theorem 12. Consider a G-symmetric state set P = {ρ̂m}
(m ∈ IM ). Let sk ∈ IM (k ∈ IO) be a number such that ρ̂sk

is an
element of the orbitOk . Let rm = rankρ̂m. ψm denotes the N ×
rm matrix such that ρ̂m = ψmψ

†
m via the eigendecomposition

of ρ̂m. The following properties are satisfied.
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(1) If, for any k ∈ IO ,

ψ†
sk
Ĝ−1/2ψsk

= α1̂, (46)

where α ∈ R0 is a constant independent of m, then the SRM
is a minimum error measurement.

(2) If, for any k ∈ IO ,

ψ†
sk
Ĝ−1ψsk

= β1̂, (47)

where β ∈ R0 is a constant independent of m and p �
pmin = 1 − Nλmin, then the SIM is an optimal inconclusive
measurement.

(3) Let q be the number of distinct singular values of the
matrix of columns ψ0, . . . ,ψM−1. Suppose that P is a linearly
independent pure state set. If, for any k ∈ IO and any natural
number t satisfying t � q,

ψ†
sk
Ĝt/2−1ψsk

= γt , (48)

where γ1, . . . ,γq ∈ R0 are constants independent of m, then
the EPM is an optimal unambiguous measurement.

(4) If P is a pure state set and G is transitive, then
the SRM and the SIM are a minimum error measurement
and an optimal inconclusive measurement with p � pmin,
respectively. Moreover, if P is linearly independent, then the
EPM is an optimal unambiguous measurement.

Proof. According to Theorem 1 of Ref. [13], the fact that
Eq. (46) is satisfied for any m ∈ IM , not only m ∈ {sk} (k ∈
IO), means that the SRM is a minimum error measurement. In
a similar fashion, according to Theorem 3 of Ref. [18] and also
Theorem 3 of Ref. [19], if Eq. (47) is satisfied for any m ∈ IM

then the SIM is an inconclusive measurement, and if Eq. (48)
is satisfied for any m ∈ IM then the EPM is an unambiguous
measurement.

Now suppose that for some u ∈ R, we have that, for any
k ∈ IO ,

ψ†
sk
Ĝuψsk

= cu1̂, (49)

where cu ∈ R0 is a constant independent of m. To prove that
properties 1–3 of Theorem 12 hold, it is sufficient to show
that ψ

†
mĜuψm = cu1̂ for any m ∈ IM . Premultiplying by ψsk

and postmultiplying by ψ
†
sk

on both sides of Eq. (49) gives
ρ̂sk

Ĝuρ̂sk
= cuρ̂sk

. Since m ∈ IM can be expressed by m =
g ◦ sk (g ∈ G) by using k ∈ IO such that ρ̂m ∈ Ok , we have

ρ̂mĜuρ̂m = ρ̂g◦sk
Ĝuρ̂g◦sk

= g ◦
(
ρ̂sk

Ĝuρ̂sk

)
= g ◦

(
cuρ̂sk

) = cuρ̂m. (50)

Let φm = ψm(ψ†
mψm)−1. Since ψ

†
mφm = 1̂ and Eq. (50),

ψ†
mĜuψm = φ†

mρ̂mĜuρ̂mφm = cuφ
†
mρ̂mφm = cu1̂. (51)

We finally show that property 4 of Theorem 12 holds.
Suppose that P is a pure state set and G is transitive, i.e.,
O = 1. Equations (46)–(48) are satisfied, since ψ

†
mĜuψm is

scalar and {sk} contains only one element. �

V. EXAMPLES

We now consider two examples of group-covariant state
sets.

0ˆ

1ˆ

xc

xs

3ˆ

2ˆ

FIG. 2. Phase-space representation of an example of a group-
covariant state set with respect to a transitive group G = {e,g1,g2,g3}.
{ρ̂m} is the set of the coherent states of light expressed by
Eq. (52). Each element in G corresponds to one of the operations of
Eq. (53).

A. Generalized GU state set

Consider a group-covariant state set consisting of four
coherent states of light P = {ρ̂m} (m ∈ I4) expressed by

ρ̂0 = |α〉 〈α| /4, ρ̂1 = |α∗〉 〈α∗| /4,
(52)

ρ̂2 = |−α〉 〈−α| /4, ρ̂3 = |−α∗〉 〈−α∗| /4,

where |α〉 is the eigenvector of the annihilation operator
corresponding to the eigenvalue α /∈ R. The phase-space
representation of an example of the state set P is illustrated in
Fig. 2.

P is a G-symmetric state set where G = {e,g1,g2,g3}. The
corresponding operations in F are

πe(T̂ ) = T̂ , πg1 (T̂ ) = T̂ ∗,
(53)

πg2 (T̂ ) = Û T̂ Û †, πg3 (T̂ ) = Û T̂ ∗Û †,

where the asterisk indicates the operation satisfying
(|α〉 〈α|)∗ = |α∗〉 〈α∗| and where Û is the unitary operator
satisfying Û |β〉 = |−β〉 for any coherent state |β〉. The group
action of G, g ◦ m (g ∈ G,m ∈ IM ), is reported in Table II.

Since the action of G on P is free and transitive, P
can be regarded as a generalized GU state set in Ref. [13]
(or a GU state set with respect to unitary and antiunitary
operators). According to Theorem 12, the SRM and the SIM
are a minimum error measurement and an optimal inconclusive
measurement with p � pmin, respectively. Moreover, since P
is linearly independent, the EPM is an optimal unambiguous

TABLE II. The group action of G on the generalized GU state set
expressed by Eq. (52).

g ∈ G g ◦ 0 g ◦ 1 g ◦ 2 g ◦ 3

e 0 1 2 3
g1 1 0 3 2
g2 2 3 0 1
g3 3 2 1 0
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TABLE III. The group action of G ′ on the three mirror-symmetric
state set expressed by Eq. (54).

g ∈ G g ◦ 0 g ◦ 1 g ◦ 2

K 0 1 2
g2K 1 0 2

measurement. Note that a closed-form analytical expression
for an optimal inconclusive measurement for a generalized
pure GU state set with arbitrary p was derived [32].

B. Three mirror-symmetric state set

We give an example of a mirror-symmetric state set
consisting of three states P = {ρ̂m = ξm |νm〉 〈νm|} (m ∈ I3)
expressed as

|ν0〉 = cos θ |+〉 + sin θ |−〉 ,
(54)

|ν1〉 = cos θ |+〉 − sin θ |−〉 , |ν2〉 = |+〉 ,

where 0 < θ < π/2, ξ0 = ξ1 = ξ , and ξ2 = 1 − 2ξ (0 < ξ <

1/2). {|+〉 , |−〉} are orthonormal basis. A minimum error
measurement of the mirror-symmetric state set is derived by
Andersson et al. [11].

Let G = {e,g1,g2,g3}.P is aG-symmetric state set in which
the corresponding operations in F are given by the same
expression as Eq. (53), except that U = |+〉 〈+| − |−〉 〈−| and
that the operation denoted by the asterisk satisfies (|+〉 〈+|)∗ =
|+〉 〈+| and (|−〉 〈−|)∗ = |−〉 〈−|. The action of G on P is not
faithful since any state is invariant under the action of the
group K = {e,g1}. As described in Sec. IV C, the action of the
quotient group G ′ = G/K = {K,g2K} is faithful. The group
action of G ′, g ◦ m (g ∈ G ′,m ∈ I3), is reported in Table III.

Let us consider group covariant optimal measurements for
the state set. Since P is a pure state set that is not linearly
independent, unambiguous detection between the states is
not possible. Eldar showed that an optimal inconclusive
measurement, {�̂(i)

m }, satisfies rank�̂(i)
m � rankρ̂m (m ∈ I3)

[18]. Thus, �̂(i)
m can be expressed as �̂(i)

m = |πm〉 〈πm| (m ∈ I3).
Since every �̂(i)

m is invariant under the action of the group K,
we have �̂(i)∗

m = �̂(i)
m for any m ∈ I4. Since {�̂(i)

m } ∈ M(G ′), it
follows that Û�̂

(i)
0 Û † = �̂

(i)
1 and Û�̂

(i)
2 Û † = �̂

(i)
2 are satisfied.

Therefore, |πm〉 is expressed as

|π0〉 = a1 |+〉 + a2 |−〉 ,
(55)

|π1〉 = a1 |+〉 − a2 |−〉 , |π2〉 = a3 |+〉 ,

where a1 ∈ R and a2,a3 ∈ R0. (Note that whereas |π2〉 =
a4 |−〉 (a4 ∈ R) also satisfies the above symmetry conditions,
no optimal inconclusive measurement satisfies |π2〉 = a4 |−〉
since 〈ν2|−〉 = 0.] From Eq. (1) we obtain a2 � 1/

√
2 and

a3 �
√

1 − 2a2
1 .

A minimum error measurement, {�̂(e)
m }, can be considered

as a special case of an optimal inconclusive measurement with
p = 0. Thus, �̂(e)

m (m ∈ I3) can also be expressed as �̂(e)
m =

|πm〉 〈πm|, satisfying Eq. (55). Moreover, since
∑2

m=0 �̂(e)
m =

1̂, we obtain a2 = 1/
√

2 and a3 =
√

1 − 2a2
1 . These results are

the same as those found by Andersson et al. [11].

VI. CONCLUSION

In this paper we have considered a group covariant quantum
state set where each element in a group corresponds to the
operation represented by a unitary or antiunitary operator. This
class of quantum state sets includes the GU state sets and the
self-symmetric state sets. We have shown that for any quantum
measurement for a group-covariant state set with a certain
fraction of inconclusive results, a group covariant quantum
measurement exists with respect to the same group with the
same probabilities of correct detection and a detection error.

We have also shown that for any group-covariant state
set, there exists a minimum error measurement, an optimal
inconclusive measurement, and an optimal unambiguous mea-
surement, all of which are group covariant. We then derived
that, for a group-covariant state set, a Lagrange operator having
the same symmetry associated with an optimal measurement
exists. We have described sufficient conditions under which
the SRM, SIM, or EPM is optimal, which are extensions of
the results of Eldar et al. [13,18,19].
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