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We present an optical scheme to conditionally generate even or odd squeezed superpositions of coherent
states (SSCSs). The optical setup consists of an unbalanced beam splitter whose transmittance tends to unity,
and additional balanced beam splitters and photodetectors in auxiliary modes. Squeezed coherent states with
different amplitudes are the input states in the optical scheme. The single-qubit operations are probabilistic and
employ two- and three-photon subtractions from initial beams as the driving force. Generation of the even or
odd SSCSs is observed in a wide diapason of values of used parameters. We consider a possibility to realize a
one-way Hadamard gate for the squeezed coherent states when the base states are transformed into superposition
states. States approximating the output states of a Hadamard gate with high fidelity can be realized by imposing
restrictions on the values of used parameters. Higher-order subtractions from input beams are necessary to generate
the SSCSs with larger amplitudes and higher fidelities. The problem is resolved in a Wigner representation to
take into account imperfections of the optical devices.
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I. INTRODUCTION

Optical quantum information processing (QIP) in traveling
fields is a serious contender among the various physical
implementation systems [1]. The optical QIP initially relies on
states of single photons [2]. Photons are the base for “flying”
qubits which are used for construction of optical quantum
networks [1]. Photon qubits have high speed, robustness
against decoherence, and can easily be manipulated with
optical devices at room temperature. Yet perfect single-photon
sources are demanding and photon-photon gates are hard to
implement due to extremely weak direct interaction between
single photons. An alternative approach is to encode quantum
information by macroscopically distinguishable fields or by
the states that may give macroscopically distinguishable
outcomes, for example, by coherent states with opposite
amplitudes rather than using discrete degrees of freedom
(e.g., the polarization or spatial modes) of single photons.
The original proposal for quantum computing with coherent
states [3] suggested that elementary quantum gates for the
base coherent states could be implemented by displacement
operators and mixing on unbalanced beam splitters followed
by projection onto the computational subspace. Interest in
quantum computing with coherent states gave rise to the
development of the quantum protocols with the states [4–7].
The problem of the realization of quantum protocols with
coherent states would be resolved provided that a gigantic
Kerr nonlinearity existed. Extremely weak Kerr nonlinearity
of modern crystals to rotate the coherent states before they
finally decohere within the medium [8] is known to be the main
reason holding back quantum information processing with
coherent states. Strong interaction with the environment [8]
rapidly transforms aborning superposition of coherent states
(SCSs) into statistical mixtures.

Conditional quantum operations based on photon detection
is an important tool that enables the replacement of weak
Kerr nonlinearity in optical QIP. A typical example is the
photon subtraction operation, in which an input state is
split by a highly transmissive beam splitter (BS) and the
reflected state is measured. Selecting some event registered

by photodetectors, one may generate desired states. Thus, an
unbalanced beam splitter and avalanche photodetectors are the
key elements to provide the conditional quantum operations
and to generate non-Gaussian states from initially Gaussian
ones [9]. This method became the base for many different
proposals to approximate either regular or squeezed SCSs to
any degree of accuracy by the conditionally generated states
[10–18]. All the considerations were based on decomposition
of the SCSs in terms of the number states, because the
even or odd SCSs always contain an even or odd number
of photons. In the following, we are going to present an
alternative method of realization of the single-qubit operations.
The main feature of the method is the decomposition of an
arbitrary one-mode pure state in free-traveling fields in terms
of the displaced number states with arbitrary amplitude of
displacement [19,20]. We show that the proposed approach is
useful to simplify the setup for the conditional generation of
arbitrary squeezed superpositions of coherent states (SSCSs).
The used approach enables us to show that arbitrary SSCSs can
be generated in a wide diapason of values of used parameters.
To realize single-qubit gates, in particular the Hadamard gate
for the base squeezed coherent states, we need to impose
some restrictions on the values of the parameters. The gates
are probabilistic, relying on projective measurements (two-,
three-, and higher-order photon subtractions) to deliver the
nonlinear effect comparable with one of Kerr nonlinearity.
It is worth noting we consider a possibility to realize a
one-way Hadamard gate for the squeezed coherent states
when the base states are transformed into superposition
states. The inverse operation transforming the superposition
states back into the original basis states is not considered.
A new method of implementation of elementary quantum
gates for coherent qubits based on single-photon subtractions
was developed in [17]. We investigate a possibility to use a
higher-order photon subtraction technique to demonstrate that
by just in-line linear-optics devices the necessary one-qubit
quantum gates for the squeezed coherent states can be realized.
Moreover, we show that use of higher-order photon subtraction
technique enables us to realize a one-way Hadamard gate
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FIG. 1. (Color online) Optical scheme to generate two-photon
subtracted squeezed coherent states that can approximate displaced
SSCSs under a certain choice of values of used parameters. Only
the amplitude of squeezed coherent states is varied to generate the
states that approximate the output states of one-way Hadamard gate,
provided that two photodetectors fixed two simultaneous clicks. Mode
1 is principal while modes 2 and 3 are auxiliary. (BBS) balanced beam
splitter, (UBS) unbalanced beam splitter, (PD) photodetector.

with output superpositions of larger amplitudes and higher
fidelities.

II. TWO-PHOTON SUBTRACTION FROM THE BASE
SQUEEZED COHERENT STATES

Figure 1 illustrates the optical scheme for two-photon
subtraction from initial squeezed coherent states. The modes
1 and 2 are mixed on an unbalanced beam splitter (UBS) that
is described by the operator

B12 (Q) = exp (QX12) , (1)

where X12 = a
†
1a2 − a

†
2a1, a1 and a

†
1 (a2 and a

†
2) are the bosonic

annihilation and creation operators for modes1 and 2, and the
BS’s parameter Q defines both transmittance T = cos2 Q and
reflectivity R = sin2 Q of the BS. Initially, mode 1 is in a
squeezed coherent state while mode 2 is in vacuum state.
Consider the following base states,

|ϕ±〉 = S (r±) |αIn±〉 = S (r±) D (αIn±) |0〉, (2)

with corresponding amplitudes αIn+ and αIn+, where |αIn±〉 =
D(αIn±)|0〉 are the coherent states, D(α) = exp(αa† − α∗a) is
a displacement operator [21], a (a†) is the bosonic annihilation
(creation) operator, respectively, and

S (r±) = exp[r±(a†2 − a2)/2] (3)

is a squeezing operator [21] with r± being the squeezing
parameters of the squeezing operator (3).

We are interested in building the following transformation
U :

U |ϕ±〉 = US (r±) |αIn±〉 → |φ±〉
= N± (αSCS) D (α±) S (r1±) (|αSCS〉 + |−αSCS〉)
= D (α±) |SSCS± (αSCS)〉 , (4)

where squeezed superpositions of the coherent states are
defined by

|SSCS± (αSCS)〉 = N± (αSCS) S (r1±) (|αSCS〉 ± |−αSCS〉) ,

(5)

with N±(αSCS) = 1/
√

2[1 ± exp(−2|αSCS|2)] being a normal-
ization factor. Here, αSCS is an amplitude of the SSCSs that
is considered to be positive αSCS > 0, magnitudes r1± are the
squeezing parameters of the SSCSs, and α± are the amplitudes
of shift of the output superpositions on the phase plane. Here, ±
signs refer to even or odd SSCSs. It follows from the definition
of transformation U [Eq. (4)] that the output superpositions are
shifted relative to each other by αd = α+ − α−. Note, in the
general case, the initial amplitudes αIn± are not equal to αSCS

(αIn+ �= αSCS and αIn− �= αSCS) and the squeezing parameters
of the initial states r± do not coincide with the squeezing
parameters r1± of the output states of the transformation (4)
(r+ �= r1+ and r− �= r1−). In the general case, the operation U

(4) is nonunitary, but it can resemble a one-way Hadamard
transformation in a partial case when αd = α+ − α− = 0
(α+ = α− = α), r1+ = r1− = r1, and r+ = r− = r . Indeed,
then, output states of the operation U (4) are the squeezed
superpositions of the coherent states (5) shifted by the same
value α+ = α− = α. The output states of the operation U (4)
are orthogonal in the case of αd = 0, while the base states (2)
may be asymptotically orthogonal with overlap:

|〈ϕ− |ϕ+〉|2 = |〈αIn−|S+(r)S(r)|αIn+〉|2 = |〈αIn− |αIn+〉|2
= exp(−2|αIn+ − αIn−|2). (6)

The overlap (6) approaches zero, when the difference between
amplitudes of the base states αdIn = αIn+ − αIn− grows. So, if
we introduce an input computational basis |0〉 = |ϕ+〉, |1〉 =
|ϕ−〉 and output base states |0′〉 = D(α)S(r1)|αSCS〉, |1′〉 =
D(α)S(r1)|−αSCS〉, then direct Hadamard transformation,

H |0〉 → (|0′〉 + |1′〉)/√2,

H |1〉 → (|0′〉 − |1′〉)/√2,

follows from (4) in the partial case of αd = 0, αSCS → ∞, and
αdIn → ∞. It is worth noting that input and output computa-
tional base states differ from each other. The transformation (4)
in the partial case can be named a one-way Hadamard gate (not
full) since only transformation of the base squeezed coherent
states into the corresponding superpositions is considered.

To perform transformation (4), we use the method of
two-photon subtraction from input beams to approximate the
SSCSs under some values of used parameters. The output state
of the beam splitter in Fig. 1 is

ρ12± = B12 (ρ1± ⊗ |0〉 〈0|2) B+
12, (7)

where ρ1± = S (r±) |αIn±〉 〈αIn±| S+ (r±) is a density matrix
of the squeezed coherent states and ⊗ means the tensor product
of the operators. The transmitted beam of the beam splitter is
the output signal to be recorded by the homodyne detector
with some efficiency. The reflection (mode 2) is sent towards
an avalanche photodiode that may mean that two photons have
been subtracted from the squeezed coherent mode provided
that two photons are fixed under detection. Indeed, the operator
of the beam splitter (7) can be decomposed as

B12 (Q) = exp (QX12)

= 1 + QX12 + Q2X2
12/2! + Q3X3

12/3! + . . . . (8)

The term X2
12 proportional to Q2 contains the term a2

1a
†2
2 ,

being responsible for the two-photon subtraction a2 in the first
mode provided that two photons are registered in the second
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auxiliary mode. Thus, if we choose beam splitter parameter
Q � 1 in Fig. 1, a small fraction of the input beam is tapped
off via a beam splitter to successfully provide two-photon
subtraction from the initial squeezed coherent state when
projective measurement onto the state |2〉 is done in mode
2. If we suppose that it is possible to perform the projective
measurement in the auxiliary mode of the BS, then the density
operator ρ± of mode 1 conditioned on a two-photon click of
the photodetector measuring auxiliary mode 2 becomes

ρ± = tr2 (ρ12±�2)

tr12 (ρ12±�2)
, (9)

where tr2 is the trace over mode 2, tr12 is the trace over modes
1, 2, and �2 = |2〉 〈2| is an operator of projective measurement
onto state |2〉 in the second mode.

The level of modern technology does not enable one to re-
alize the projective measurement. A more realistic description
of the optical scheme must be based on the photodetectors that
cannot resolve the number of photons in the mode as is shown
in Fig. 1. But before general consideration, it is logical to
consider a simplified version of the optical scheme in Fig. 1, in
which the operator of the beam splitter (1) is substituted by the
operator a2

1a
†2
2 [B12 (Q) → a2

1a
tr2
2 ] followed by the projective

measurement onto the state |2〉 in the auxiliary mode. It enables
us to deal with pure states instead of treating the density matrix
(9). In the case, we have the following:

a2S (r±) |αIn±〉 → |�±2〉
= N±D (β±) S (r±) (|0〉 + a±1 |1〉 + a±2 |2〉) , (10)

where the wave amplitudes are given by

a±1 = 2 sinh r±(αIn± cosh r± + α∗
In± sinh r±)

A±
, (11a)

a±2 =
√

2 sinh2 r±
A±

, (11b)

and

A± = sinh r± cosh r±(2 |αIn±|2 + 1)

+α2
In± cosh2 r± + α∗2

In± sinh2 r±, (11c)

β± = αIn± cosh r± + α∗
In± sinh r±, (11d)

and the normalization factor

N± = 1/
√

1 + |a±1|2 + |a±2|2. (11e)

It is worth noting that we made use of the following relations
[21]:

S+ (r) a+S (r) = a+ cosh r + a sinh r, (12a)

S+ (r) aS (r) = a cosh r + a+ sinh r, (12b)

to derive formulas (10) and (11).
The states |�±2〉 (10) are the approximate ones to the target

states |φ±〉 [Eq. (4)]. The measure which shows how close the
approximating states are to the target states is called “fidelity.”
The fidelity between the pure and mixed states is defined as

F± = tr (ρ±ρ±SSCS) , (13)

where ρ± is a density matrix of the generated states (9) and
ρ±SSCS = |ϕ±〉 〈ϕ±|. The fidelity can be calculated as follows

for the simplified case:

F± = |〈φ± |�±2〉|2

= |〈SCS±(αSCS)|S+(r1±)D+(α±)N±D(β±)

× S(r±)(|0〉 + a±1|1〉 + a±2|2〉)|2

= |〈SCS±(αSCS)|D(γ±)N±S(r± − r1±)(|0〉 + a±1|1〉
+ a±2|2〉)|2

= |〈SCS±(αSCS,γ±)|N±S(r± − r1±)(|0〉 + a±1|1〉
+ a±2|2〉)|2, (14)

where γ± = (β± − α±) cosh r1± − (β± − α±)∗ sinh r1± and
SCS± (αSCS,γ±) is a γ±− representation of the even or odd
SCSs [19,20]. Here, we made use of the γ±− representation of
the SCSs given in [19,20], where the method of decomposition
of coherent states into a series of displaced number states was
presented. The fidelity (14) is unity when the states |φ±〉 and
|�±2〉 are identical, while it is zero when they are orthogonal
to each other.

The next step is to search for the values of the used
parameters that provide maximal fidelities F± max (14). The
fidelities depend on the parameters of the target states αSCS,
r1±, α± and the ones of the approximating states r±, αIn±.
Numerical analysis shows that maximal possible fidelities
F± max are achieved when parameters αIn± and α± are pure
imaginary, i.e., αIn± = i |αIn±|, α± = i |α±|. We use only pure
imaginary values of the parameters αIn± and α± in further
consideration. Figures 2(a) and 2(b) show dependencies of
maximum possible fidelities F± max on absolute values of the
seed coherent amplitudes αIn± = |αIn±| and amplitudes of
the shift α± = |α±| for the case of αSCS = 1.5. The degrees
of squeezing r± and r1± that optimizes the fidelities are not
represented here. Figure 2 shows that there is large diapason
of the values of the parameters αIn± and α± that provide
performance of operation (4) with high fidelity. Numerical
analysis shows that values of maximal possible fidelities F+ max

are larger than maximal possible ones F− max (F+ max > F− max)
in a wider range of the values of the parameters αIn+ and α+.
But there also are values of the parameters αIn− and α− for
which the condition F+ max < F− max is performed. Similar
plots can be constructed for other values of αSCS.

Using the values of the parameters, we can discuss a
possibility to build a one-way Hadamard gate for the base
squeezed coherent states. To do it, we have to impose the
following restrictions, α+ = α− = α, r1+ = r1− = r1, and
r+ = r− = r , on the parameters which also provide maximal
possible fidelities of the generated states. Analysis shows that
construction of such Hadamard transformation is possible at
the expense of reduction of the fidelities of the generated states
compared with those presented in Figs. 2(a) and 2(b) due to
requirements that are taken to create the single-qubit operation.
So, the curves 1 and 2 in Fig. 3(a) show the dependency of
the fidelities between approximating and target states on αSCS

in the case of αd = 0. The next plots show dependencies of
squeezing parameters r (curve 1), r1 (curve 2) [Fig. 3(b)], the
absolute value of α+ = α− = α [Fig. 3(c)], and the absolute
values αIn+ (curve 1), αIn− (curve 2) [Fig. 3(d)]—that provide
the fidelities in Fig. 3(a)—on αSCS. Moreover, the parameters
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FIG. 2. (Color online) Dependencies of maximal possible fidelities (a) F+ max, (b) F− max on absolute values of the parameters αIn± = |αIn±|
and α± = |α±|, respectively, in scheme with two-photon subtraction in the case of αSCS = 1.5.

are chosen to provide performance of condition F+ ∼= F−
(curves 1 and 2 in Fig. 1). Numerical analysis shows that
there is a wide diapason of values of used parameters around

those presented in Figs. 3(b)–3(d) for which either F− � F+ or
F+ � F− are held with αd = 0 (one-way Hadamard gate). We
can weaken restrictions on the used parameters r1+ = r1− = r1

(a) (b)

(d)(c)

FIG. 3. (Color online) (a) Fidelities F± between generated states and output states of the one-way Hadamard gate and parameters: (b)
squeezing amplitudes r , r1, (c) absolute amplitudes of the shift α± = |α±|, and (d) absolute amplitudes of seed coherent states αIn± = |αIn±|
which provide the fidelities, against an amplitude αSCS of the SSCSs.
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and r+ = r− = r but α+ �= α− (αd �= 0). It enables us to
increase the fidelities of the generated states [19,20], but
such operation may be conditionally named displacing the
Hadamard gate for the base states as it displaces its output
states by αd �= 0.

III. PRACTICAL REALIZATION OF ONE-WAY
HADAMARD GATE FOR THE BASE SQUEEZED

COHERENT STATES

A simplified model of the optical scheme in Fig. 1 consid-
ered in the previous section must be modified to involve a more
realistic description of the scheme. At first, an unbalanced
beam splitter is used. A balanced beam splitter is inserted into
the second auxiliary mode of the unbalance BS to split the
mode into two auxiliary modes 2 and 3 that are followed by
two photodetectors. The squeezed coherent state is mixed with
vacuum on the unbalanced BS and, after that, two auxiliary
modes 2 and 3 are mixed with vacuum on the balanced BS
forming the following state:

ρ123± = B23B12 (ρ1± ⊗ |0〉 〈0|2 ⊗ |0〉 〈0|3) B+
12B

+
23, (15)

where B12 means unbalanced BS and B23 is the balanced
one. Now, we start with the covariance matrix V (3) [22]
of three-mode state (15) to use it for construction of the
Wigner function of the states. Using the covariance matrix,
we can construct the Wigner function of three-mode state (15)
with the help of the general form of the Gaussian Wigner
function [22]:

W123 = exp[−0.5ξT (V (3))−1ξ ]

(2π )2
√

det V (3)
, (16)

where the matrix (V (3))−1 is the inverse of the covariance
matrix V (3), det V (3) is a determinant of the matrix, and ξ

is a column vector of the positions and momentums of the
corresponding particles. Leaving out details of the calculation,
it is possible to write the Wigner functions of the states (15) as

W123± (α1,α2,α3) = W1±
[
αs

1± cos Q− (
αs

2±− αs
3±

)
sinQ

/√
2
]

×W2[α1 sin Q + (α2 − α3) cos Q/
√

2]

×W3[(α2 + α3)/
√

2], (17a)

where

W1±
[
αs

1± cos Q − (
αs

2± − αs
3±

)
sin Q

/√
2
] = (2/π )

× exp

{
−2

[
x1 cos Q − (x2 − x3) sin Q/

√
2

exp (r±)
− xIn±

]2}

× exp

{
−2

[
p1 cos Q − (p2 − p3) sin Q/

√
2

exp (−r±)
− pIn±

]2}
,

(17b)

W2[α1 cos Q − (α2 − α3) sin Q/
√

2]

= (2/π ) exp{−2[x1 sin Q + (x2 − x3) cos Q/
√

2]2}
× exp{−2[p1 sin Q + (p2 − p3) cos Q/

√
2]2}, (17c)

W3[(α2 + α3)/
√

2] = (2/π) exp{−2[(x2 + x3)/
√

2]2}
× exp{−2[(p2 + p3)/

√
2]2}, (17d)

and αs
1± = α1 cosh r± − α∗

1 sinh r±, αs
2± = α2 cosh r± − α∗

2
sinh r±, αs

3± = α3 cosh r± − α∗
3 sinh r±.

The on (off) photodetector with quantum efficiency η can
be described by the positive-operator valued measure (POVM)
{�off (η) ,�on (η)} with

�off (η) =
∞∑

k=0

(1 − η)k |k〉 〈k|, (18a)

�on (η) = I − �off (η) , (18b)

where I is an identity operator. Applying the two-mode on
(off) observable,

M23 = [�on (η)]2 ⊗ [�on (η)]3 , (18c)

to the state (15), one obtains the final state

ρ± = tr23 (ρ123±M23)

tr123 (ρ123±M23)
. (19)

It is possible to show that the Wigner function of observable
M23 (18c) is given by

WM (α2,α3) = (1/π2)
{
1 − [2/(2 − η)] exp

[−2A
(
x2

2 + p2
2

)]}
× {

1 − [2/(2 − η)] exp
[−2A

(
x2

3 + p2
3

)]}
,

(20)

where A = (2 − η)/η and here we suppose that quantum
efficiencies of both detectors in the auxiliary modes are equal
to each other, η1 = η2 = η. The Wigner functions of the final
states (19) can be calculated as

W± (α1) = N±π2
∫

d2α2W123± (α1,α2,α3)WM (α2,α3) ,

(21)

where N± are the normalization factors corresponding to
the term tr123 (ρ123±M23) in formula (19). We can see from
formula (21) the Wigner function (17a) is multiplied by the
Wigner function corresponding to the detection operation
M23 (20) and integrated over modes 2 and 3 to obtain the
Wigner function of the final state. It is possible to show that
integral (21) is expressed as a sum of four Gaussian integrals
with modified covariance matrices. Performing the integration
over α2, α3 and leaving out details of the calculations, we
have the following Wigner functions of two-photon subtracted
squeezed coherent states:

W± (α1) = N± [W1± (α1) + W2 (α1) + W3 (α1) + W4 (α1)] ,

(22a)
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where

W1± (α1) = 2/(π
√

A21xA21p) exp{−2A11xtot [x1 − xIn± exp(r±) cos Q]2} exp{−2A11ptot [p1 − pIn± exp(−r±) cos Q]2}, (22b)

W2 (α1) = −8A/[2ηπ (2A + 1)
√

A22xA22p] exp[−2A12xtot (x1 − B12xtot /A12xtot )
2] exp[−2A12ptot (p1 − B12ptot /A12ptot )

2]

× exp
[−2

(
C12xtot − B2

12xtot

/
A12xtot

)]
exp

[−2
(
C12ptot − B2

12ptot

/
A12ptot

)]
, (22c)

W3(α1) = −8A/[2ηπ (2A + 1)
√

A23xA23p] exp[−2A13xtot (x1 − B13xtot /A13xtot )
2] exp[−2A13ptot (p1 − B13ptot /A13ptot )

2]

× exp
[−2

(
C13xtot − B2

13xtot

/
A13xtot

)]
exp

[−2
(
C13ptot − B2

13ptot

/
A13ptot

)]
, (22d)

W4(α1) = 8A/[(2η)2π (A + 1)
√

A24xA24p] exp[−2A14xtot (x1 − B14xtot /A14xtot )
2] exp[−2A14ptot (p1 − B14ptot /A14ptot )

2]

× exp
[−2

(
C14xtot − B2

14xtot

/
A14xtot

)]
exp

[−2
(
C14ptot − B2

14ptot

/
A14ptot

)]
, (22e)

where the corresponding coefficients and normalization factors
N± are not presented here due to their complexity. As
operator M23 is non-Gaussian, it transforms initially Gaussian
states into non-Gaussian ones while BS transformations are
Gaussian completely positive maps, and the resulting state
ρ123± [Eq. (15)] is still a Gaussian state.

To estimate how close the generated states (22a) are to
the target ones (5), we present the Wigner functions of the
displaced squeezed superpositions of coherent states. The
Wigner functions of the SCSs are given by

W±SCS (α) = N± (αSCS) [W0 (α) + W−0 (α) ± 2XαSCS (α)],

(23a)

where αSCS = xSCS + ipSCS and

W0 (α) = 2

π
exp[−2 (x − xSCS)2 − 2 (p − pSCS)2], (23b)

W−0 (α) = 2

π
exp[−2 (x + xSCS)2 − 2 (p + pSCS)2], (23c)

XαSCS (α) = 2

π
exp(−2x2 − 2p2) cos [4 (xpSCS − pxSCS)] ,

(23d)

where αSCS = xSCS + ipSCS. Displaced and squeezed versions
of the same states can be obtained with the help of the following
transformation:

W (x,p) → W

[
x − xξ

exp (r)
,

p − pξ

exp (−r)

]
, (24)

where r is a squeezing parameter and ξ is an arbitrary
amplitude of the displacement. The fidelities between the
generated and target states (13) can be calculated with the
help of the Wigner functions as

F± = π

∫
d2α1W± (α1)W±DSSCS (α1) , (25)

where W± (α1), W±DSSCS (α1) are the Wigner functions of
the generated states and displaced squeezed superposition
of coherent states, respectively. When inserting the Wigner
functions into (25) and carrying out the integrations, we get
corresponding fidelities. Corresponding dependencies of the

fidelities (25) on αSCS are presented in Fig. 4. We used the
following parameters: quantum efficiency η = 0.8 for both
photodetectors, BS’s parameter Q = 0.01 (curves 1 and 2), and
Q = 0.1 (curves 3 and 4). Parameters used for the construction
of the curves are taken from the plots 3(b)–3(d). Similar
dependencies are observed for other values of the parameters
η and Q. As can be seen from Fig. 4, increase of the BS’s
parameter Q leads to decrease of the fidelities of the generated
states. Influence of quantum efficiencies of the photodetectors
used in the optical scheme in Fig. 1 is negligible. Thus, the
model in which the BS operator (1) is substituted by the
operator a2

1a
†2
2 can work only in the case of small values

FIG. 4. (Color online) Dependencies of fidelities between gener-
ated states and output states of a one-way Hadamard gate on αSCS

in a realistic case. Values of the parameters for calculation of the
fidelities are taken from Figs. 3(b)–3(d), where a simplified model
of the optical scheme in Fig. 1 is used, in which the BS operator is
replaced by the operator a2

1a
†2
2 followed by projective measurement

onto the state |2〉 in the second auxiliary mode. The beam splitter
parameter is taken to be Q = 0.01 (curves 1 and 2 are for F+ and F−,
respectively) and Q = 0.1 (curves 3 and 4 are for F+ and F−). The
quantum efficiency of detectors is η = 0.8 for all curves. The fidelities
decrease when BS’s parameter Q grows, while the influence of the
quantum efficiency of detectors η on the quality of the generated
states is negligible.
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of Q � 1 when only a negligible part of incident beam is
reflected and detected.

IV. POSSIBLE WAYS TO INCREASE AMPLITUDES
OF THE GENERATED SSCSs AND FIDELITIES OF

OUTPUT STATES OF ONE-WAY HADAMARD GATE

In the previous section we have shown that nonunitary
single-qubit operation (4) can be realized in a wide diapason of
the values of used parameters [Figs. 2(a) and 2(b)]. The states
corresponding to the outcome of the one-way Hadamard gate
can be generated by imposing restrictions on used parameters.
The restrictions lead to a decrease of the fidelities of the
generated states. Moreover, our analysis shows the method
with two-photon subtraction from squeezed coherent states
is applicable to generate SSCSs with amplitude αSCS < 1.7.
Let us consider possible ways to increase the fidelities of the
output states and their amplitudes αSCS > 1.7. One of the
possible way to increase fidelities of the generated states is
to consider the case α+ = α− = α, r+ �= r−, and r1+ �= r1−.
Then, the base states (2) may be asymptotically orthogonal
under specified values of the parameters with overlap,

|〈ϕ− |ϕ+〉|2 = |〈αIn−|S+(r−)S(r+)|αIn+〉|2
= 2/

√
2 {1 + cosh [2 (r+ − r−)]}

× exp

{
−2

[xIn+ exp (r+ − r−) − xIn−]2

1 + exp [2 (r+ − r−)]

}

× exp

{
−2

[pIn+ exp (r+ − r−) − pIn−]2

1 + exp [2 (r+ − r−)]

}
,

(26a)

where αIn± = xIn± + ipIn±. The overlap (26a) reduces to

|〈ϕ− |ϕ+〉|2 = |〈αIn−|S+(r−)S(r+)|αIn+〉|2
= 2/

√
2{1 + cosh[2(r+ − r−)]}

× exp

{
−2

[pIn+ exp (r+ − r−) − pIn−]2

1 + exp [2 (r+ − r−)]

}
,

(26b)

in our case since αIn± = ipIn±. The overlap (26b) may
decrease to zero even when r1+ �= r1−. Moreover, the states (5)
with r1+ �= r1− may also be asymptotically orthogonal under
defined values of αSCS. Investigation of the problem deserves
a separate investigation.

Another possible way to increase amplitudes of the gen-
erated states with high fidelity is to consider a possibility to
generate three-photon subtracted states. To do it, we have to
extend the optical scheme in Fig. 1 by using an additional
balanced BS, as is shown in Fig. 5. Then, if three simultaneous
clicks are fixed by photodetectors, it means that three-photon
subtraction from the initial state is realized in the principal
mode of the unbalanced BS. Indeed, it follows from the
simplified model of the optical scheme in Fig. 1 when the
BS operator (1) is substituted by the term B12 (Q) → a3

1a
†3
2

together with projection measurement onto the state |3〉 in
the auxiliary second mode. Then, we have the following

FIG. 5. (Color online) Optical scheme to realize three-photon
subtraction from input beam. The optical scheme enables one to
realize one-way Hadamard transformation under a certain choice of
values of used parameters. Generated states approximate even or
odd SSCSs with larger amplitude αSCS and higher fidelity. The same
notations are used as in Fig. 1.

states:

a3S (r±) |αIn±〉 → |�±3〉
= N±D (β±) S (r) (|0〉 + b±1 |1〉 + b±2 |2〉 + b±3 |3〉) ,

(27a)

where

b±1 = [a±2

√
2 cosh r± + a±1(αIn± cosh r± + α∗

In± sinh r±)

+A± sinh r±]/B±, (27b)

b±2 = [a±2(αIn± cosh r± + α∗
In± sinh r±)

+ a±1

√
2 sinh r±]/B±, (27c)

b±3 = (a±2

√
2 sinh r±)/B±, (27d)

and

B± = a±1 cosh r± + A±(αIn± cosh r± + α∗
In± sinh r±),

(27e)

where parameters a±1, a±2, A±, and β± are given
by Eqs. (11a)–(11d), respectively, and N± = 1/√

1 + |b±1|2 + |b±2|2 + |b±3|2.
It follows from the expressions for the wave amplitudes

(27a)–(27e) that three-photon subtracted states depend on
the same parameters that are used in the case of two-photon
subtraction. Numerical analysis shows maximal possible
fidelities F± max can be obtained when pure imaginary values
of input amplitudes of the base states αIn± = i |αIn±| and
amplitudes of shift of the SSCSs α± = i |α±| are used. It
is important to stress such conditions αIn± = i |αIn±| and
α± = i |α±| hold for both two- and three-photon subtraction to
achieve maximal possible fidelities F± max. High fidelities are
also observed in a wide diapason of values of used parameters
as in the case of two-photon subtraction. It is worth noting that
condition F− max > F+ max is performed in most cases unlike
the two-photon subtraction. The biggest values of F− max are
observed with |αIn−| � 1 and |α−| � 1, while achievement
of the largest values of F+ max requires the following values
of |αIn+| ≈ 1 and |α−| ≈ 1. This is diametrically opposite
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(a)

(c)

(b)

(d)

(e)

FIG. 6. (Color online) (a) Fidelities F± between generated states and output states of the one-way Hadamard gate and parameters: (b)
squeezing amplitudes r , r1, (c) absolute amplitudes of the shift α± = |α±|, and (d) absolute amplitudes of seed coherent states αIn± = |αIn±|
which provide the fidelities, against an amplitude αSCS of the SSCSs. (e) Dependency of absolute difference of input amplitudes of coherent
states |αdIn| = αIn+ − αIn− on αSCS.

to results connected with two-photon subtraction from the
initial beam. As examples, we present some maximal possible
fidelities F± max that can be attained under certain choice of
values of used parameters: F+ max (αSCS = 1.7) = 0.991 402,
F− max (αSCS = 1.7) = 0.998 21, F+ max (αSCS = 1.8) =
0.987 595, F− max (αSCS = 1.8) = 0.995 931, F+ max(αSCS =
1.9) = 0.982 338, F− max (αSCS = 1.9) = 0.991 608, F+ max

(αSCS = 2) = 0.974 791, F− max (αSCS = 2) = 0.984 989.
Now we are interested in searching for maximal possible

fidelities of the generated states with the following restrictions
on the values of the parameters α+ = α− = α, r1+ = r1− = r1,

and r+ = r− = r . Such values can be used to realize one-way
Hadamard transformation. So, Fig. 6(a) shows dependency
of fidelities F+ ∼= F− on αSCS. Next, Figs. 6(b)–6(d) show
dependencies of r,r1 [Fig. 6(b)], α+ = α− = α [Fig. 6(c)], and
αIn+, αIn+ [Fig. 6(d)] on αSCS. The values of the parameters
provide performance of condition F+ ∼= F− in Fig. 6(a).
Comparing the fidelities in Figs. 3(a) and 6(a), we can see that,
indeed, the method of three-photon subtraction enables one to
generate states that can approximate the output states of the
Hadamard gate with larger amplitudes and higher fidelities.
Especially, the difference between the fidelities in methods
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of two- and three-photon subtractions is visible starting with
amplitudes αSCS > 1.3. Figure 6(e) shows the dependency of
the difference of initial amplitudes modulo |αdIn| = αIn+ −
αIn− that correspond to the fidelities in Fig. 6(a) on αSCS. In the
case, the difference is small and can hardly be used to construct
inverse transformation transforming the superposition states
back into the original basis states. Nevertheless, it is worth
noting that value α+ = α− = α is crucial in defining the values
of the fidelities F±. So, if we take values α+ = α− = α to
be less than those presented in Fig. 6(c), then the condition
F− > F+ is performed and vice versa. The difference between
initial amplitudes αIn+ − αIn− can also change, in particular
increase, when the values of parameter α+ = α− = α become
different from those given in Fig. 6(c). The increase of initial
amplitudes |αdIn| = αIn+ − αIn− can be used to accomplish
transformation inverse to (4), which can be the subject of
future investigation. Thus, a simplified model of the optical
scheme in Fig. 5 enables us to look for the values of the
parameters to realize transformation (4) and, in particular,
one-way Hadamard transformation. Analysis of a simplified
model of the optical scheme in Fig. 5 shows the utility
of the method of three-photon subtraction as it gives a
possibility to approximate the superposition states with larger
amplitudes and higher fidelities. This may hold even when
inefficient photodetectors, such as the standard avalanche
photodiodes, are employed in auxiliary modes as is shown in
Fig. 5.

The studied methods employ two- and three-photon sub-
tractions as the driving force for realization of a one-way
Hadamard gate. The operations are probabilistic and, for
example, there are four possible outcomes when no clicks are
fixed, when one click by either detectors is fixed, and when
clicks by both detectors are observed. Success probabilities
to fix the simultaneous clicks can be calculated as Ps± =
tr123 (ρ123±M23). The success probability is low since only
a negligible part of the input beam is reflected and registered
by photodetectors. The success probability can be estimated
as follows. The probability of reflection of two photons by an
unbalanced beam splitter is proportional to Q2. The probability
of registration of three photons is proportional to Q3. We
can take values of Q that were used to calculate fidelities in
Fig. 4 to estimate the probability ∼10−4 − 10−2 in the case
of two-photon subtraction. Success probabilities to generate
different conditional superpositions may be also estimated by
same magnitudes. Small success probabilities to engineer the
conditional single-qubit operations are related with fidelities
of generated states. Indeed, it follows from Fig. 4, decrease of
the BS parameter Q leads to higher fidelities while increase of
the parameter Q decreases the quality of generated states but
increases success probability.

Applying the displacement operator D (iε), where ε is real
and � 1, to the base states S (r) |αIn±〉, we have the following:

D (iε) S (r) |αIn±〉 = S (r) S+ (r) D (iε) S (r) |αIn±〉
= S(r)D(iε′) |αIn±〉 , (28)

where ε′ = ε exp(r) and we made use of the relations (12a),
(12b). According to results [3,6], the displacement operator
acts like z rotation exp(iQ′/2)Uz (Q/2) by an angle Q =
(Q+ − Q−)/2 for the qubit composed of the base states

S (r) |0,αIn±〉, where Q′ = (Q+ + Q−)/2, Q+ = 2αIn+ε′,
and Q− = 2αIn−ε′. Using the Hadamard gate and unitary
matrices Uz (±π/4), it is possible to construct other unitary op-
erations defined by exponentials Ux (Q1/2) = exp (iQ1σ1/2)
and Uy (Q2/2) = exp (iQ2σ2/2), where σi (i = 1 − 3) are the
Pauli matrices and Qi (i = 1 − 3) are the rotation angles
around corresponding spatial axes x, y, and z [23], as

Ux (Q1/2) = HUz (Q1′/2) H, (29a)

Uy (Q2/2) = Uz (−π/4) HUz (Q2/2) HUz (π/4) . (29b)

Thus, building of a Hadamard gate, rotations around the z axis
by π/2 and −π/2, and arbitrary rotation Uz (Q3/2) enable us to
realize single-qubit operations for the base squeezed coherent
states.

In conclusion, we have shown that the optical schemes
(Figs. 1 and 5), consisting of an unbalanced BS in which the
transmittance T of the beam splitter is sufficiently close to
unity and additional BSs in auxiliary modes, are sufficient
to successfully realize output states of a one-way Hadamard
gate with high fidelity without use of Kerr nonlinearity. When
an unbalanced BS diverts a tiny fraction of the beam passing
through the beam splitter towards the photodetectors and they
fix simultaneous clicks in auxiliary modes it means either two
or three photons have been subtracted from the input beam.
We have shown that the optical schemes in Figs. 1 and 5
work with either two or three typical avalanche photodetectors
provided that the parameter of the unbalanced BS Q is chosen
sufficiently small. The optical schemes (Figs. 1 and 5) enable
us to realize operation (4) in a wide diapason of values of
used parameters. To build a one-way Hadamard transformation
for input squeezed coherent states, we are forced to impose
restrictions on values of the parameters that lead to decrease
of the fidelities of the generated states (Figs. 3 and 5).
The optical schemes allow for one to realize also displacing the
Hadamard gate [19,20] where output states are shifted relative
to each other by some value αd �= 0.

The developed approach is promising due to its simplicity
since only beam splitters and detectors are used. Calculations
show the approach has a potential to be extended to involve
higher-order photon � 4 subtractions. Moreover, possible
extension can give a possibility to realize a one-way Hadamard
gate with larger amplitudes αSCS � 2 and higher fidelity.
Possible realization of the optical schemes to produce higher-
order photon subtractions from input beam looks simple. It is
sufficient to use the basic optical scheme presented in Fig. 1
and introduce additional beam splitters and photodetectors as
is demonstrated in Fig. 5. Only the values of parameters that
provide realization of a one-way Hadamard gate can differ for
two-, three-, and higher-order photon subtractions. Thus, the
optical scheme in Fig. 1 may become a base for others. Let us
note that preparation of the base squeezed coherent states may
be somehow challenging given current technology. To avoid
the use of squeezed coherent states as a computational basis,
the base optical scheme in Fig. 1 can be slightly modified [16].
Let us use coherent states with corresponding amplitudes in
the principal mode of the unbalanced BS as base. Then we
have to use squeezed vacuum in the second auxiliary mode
that is mixed up with base coherent states on the unbalanced
BS. After that, the same optical devices are used as is shown
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in Fig. 1. Such consideration can be useful from a practical
point of view and deserves separate investigation. Building
of total Hadamard transformation with the states requires
realization of inverse transformation when superposition states
are converted back into coherent states. The natural way to
perform this is to use photon addition; it directly follows from
Eq. (14). Values of |αdIn| = αIn+ − αIn− presented in Fig. 6(e)
are hardly useful for construction of inverse transformation.
But nevertheless, use of other values of the parameters allows
us to increase the value of the parameter |αdIn| = αIn+ − αIn−

that may be prospective to realize a full conditional Hadamard
gate for squeezed coherent states and, as a consequence,
single-qubit transformations.
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