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In this paper, we study the tunneling and traversal of ultracold two-level atoms through the potential induced
by the vacuum cavity mode. In particular, we discuss the effects of off-resonant interaction between the cavity
mode and atomic transition on tunneling time of the ultracold atoms through a high-Q mazer cavity. The phase
time which may be considered as an appropriate measure of the time required for the atom to cross the cavity,
exhibits some interesting features in the presence of off-resonant interaction. For example, switching between the
sub and superclassical behaviors in phase time occurs for proper choice of detuning. Similarly, negative phase
time appears for the transmission of atoms in both excited and ground states in the presence of off-resonant
interaction.
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I. INTRODUCTION

Tunneling is one of the most fundamental and important
phenomenon in quantum mechanics, which provides the
physical basis for many useful semiconductor devices and
scanning tunneling microscope. Soon after the stimulating
work of MacColl and Hartman [1,2] on the dynamics of
wave packets through potential barriers, many tunneling time
definitions were introduced [3–5]. Among all, phase time
[2,6,7] is widely studied and well established, which measures
how long it takes for the peak of the transmitted wave packet
to emerge from the exit of the barrier. It is related to the
energy derivative of the phase shift, and has been studied using
numerical, experimental, and analytical methods [5,8–15], in
quite detail.

More recently, interesting effects related to the tunneling
problem were studied. These include bounds and enhancement
for the Hartman effect derived from the causality principle
[16], superluminal tunneling as a weak measurement effect
[17], the speedup effect due to the entanglement between the
spin and the spatial degree of freedom in a magnetic field [18],
and the reshaping mechanism of quantum tunneling [19].

The interaction of ultracold atoms with a high-Q microwave
cavity has been a problem of considerable interest in recent
years. The quantum theory of induced emission due to the
quantized motion of the ultracold atoms passing through a
micromaser cavity was established in a seminal paper by Scully
et al. [20]. The drastic change in the atom-field coupling which
results when the cold atom enters the cavity leads to an entirely
different kind of emission known as microwave amplification
via z-motion-induced emission of radiation (mazer). The
dressed state analysis of the problem shows that the interaction
of cold atoms with a single-mode cavity is equivalent to a
combination of potential barrier and a well [21–23].

Recently, Arun and Agarwal [24] discussed the tunneling
of ultracold two-level atoms through the vacuum-induced
potential. It was shown that phase tunneling time for ultracold
atoms exhibit both superclassical and subclassical behaviors
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which can be understood in terms of the momentum depen-
dence of the transmission amplitudes. The passage of the
atoms through the cavity involves a coherent addition of the
transition amplitudes corresponding to both barrier and well;
as a result it is unique. In our earlier study [25] we discussed
the passage of ultracold three-level atoms through a high-Q
bimodal cavity. It was shown that the presence of dark states
and interference effects in cascade atomic configuration affect
the phase tunneling time.

In some recent studies, the effects of detuning have also
been investigated in the context of the emission probability for
two-level ultracold atoms passing through a high-Q microwave
cavity [26]. It was shown that detuning adds a potential step
effect that is not present for the resonant case. It results in a
well-defined acceleration or deceleration (depending upon the
sign of the detuning) of the excited atom that contributes a
photon inside the cavity. The use of positive detuning provides
a well-controlled cooling mechanism. It was also shown that
the photon emission can be completely blocked by appropriate
choice of the detuning [26]. The problem of mazer action is
closely related to the velocity selection of ultracold atoms [27].
It was shown that the velocity selection for ultracold atoms
can be very easily tuned and enhanced using off-resonant
interaction [28–30].

In the earlier studies, the tunneling times of ultracold
atoms were discussed in the resonant cases where the mode
frequency is equal to the atomic transition frequency [24,25].
In this paper we discuss the effects of off-resonant interaction
on the tunneling or traversal time for ultracold two-level
atoms passing through a high-Q cavity. The atoms, which are
assumed to be initially in their excited state, after interaction
with the cavity field (initially in a vacuum state) may be
transmitted or reflected while remaining in the same state
or making a transition to the ground state. We calculate the
phase tunneling time for both situations using stationary phase
approximation. Our results show some interesting features of
phase time in the presence of off-resonant interaction. For
example, negative phase time is obtained for transmission
of the atoms in both excited as well as in the ground state.
In particular, for a proper set of parameters, we find that
change in the sign of detuning switches the tunneling time
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from subclassical to superclassical. Although the results are
obtained using stationary phase approximation, however, the
actual envelope of the wave function corresponding to the
ground state was also solved using numerical integration
techniques. It is shown that the peak of the transmitted wave
packet appears at the same time, which is obtained using
stationary phase approximation.

The paper is organized in the following manner. In Sec. II
we discuss our system and study the interaction of ultra cold
atoms with the vacuum field in a high-Q mazer cavity. In
Sec. III we discuss the phase tunneling time. In Sec. IV we
present our numerical results for the phase tunneling time
against mean atomic momentum. Finally, we conclude our
results in Sec. V.

II. MODEL AND DYNAMICS

We consider a beam of ultracold two-level atoms having |e〉
and |g〉, as excited and ground states, respectively, as shown in
Fig. 1. The atoms are supposed to be moving along z direction
and are injected into a mazer cavity of length L. We assume
that the cavity mode frequency ω is detuned from the atomic
transition frequency ω0 by an amount �, i.e., � = ω − ω0,
where ω0 = (�e − �g). The atoms are prepared initially in
their excited states, which interact with the single mode of the
cavity field.

The atomic center-of-mass (c.m.) motion is treated quantum
mechanically and the corresponding Hamiltonian of the atom-
field system under dipole and rotating wave approximations is
given by

H = p2
z

2m
+ h̄�e|e〉〈e| + h̄�g|g〉〈g|

+ h̄ωa†a + h̄gu(z)(a†σ + σ †a). (1)

Here pz is the atomic center-of-mass momentum along the z

axis, m is mass of the atom, σ = |g〉〈e|(σ † = |e〉〈g|) are the
lowering (raising) operators of the atom, a(a†) corresponds
to annihilation (creation) operators of the field, and g is the
atom-field coupling strength. The parameter u(z) is the cavity
mode function, which is assumed to be a mesa mode function
and is given by

u(z) = 1 for 0 < z < L

= 0 elsewhere. (2)

It is clear that coupling is uniform within the cavity and is zero
everywhere outside.

While passing through the cavity, the atoms interact with
the field and are transmitted (reflected) being in the final state

FIG. 1. (Color online) Schematic energy-level diagram of a
two-level atom having angular frequency ω0 with atom-field
detuning �.

|i〉(i = e,g). The corresponding transmission and reflection
amplitudes for excited (ground) states are τ e

n (τ g

n+1) and
ρe

n(ρg

n+1), respectively. Here the subscript (n) represents the
occupation number of the cavity field while the superscripts
(e) and (g) denote excited and ground states, respectively. In
the case of detuning �, the atom found in the ground state |g〉
propagates with a momentum h̄kg instead of the initial value
h̄k. It should be noted that the change in momentum does not
take place for the resonant case [24]. Here, in the presence of
detuning, the atom-field-induced transition |e,n〉 → |g,n + 1〉
is responsible for the change in momentum. Thus the exchange
of energy between the atom and the field causes the atom to
be speed up for � < 0 or to slow it down for � > 0. These
are the consequences of the energy conservation.

The photon number in the cavity field is increased by 1 if
the atom leaves the cavity in the ground state |g〉 after making
a transition from the upper level |e〉. During this process, the
atom-field internal energy changes by an amount h̄�. The
change in the internal energy is counterbalanced by the kinetic
energy of the atom. In case the initial kinetic energy of the atom
h̄2k2/2m is less than the change in the internal energy h̄�, the
transition from the |e,0〉 → |g,1〉 is no longer possible. Thus
the emission process is blocked completely as the required
energy is not available in the system. Such type of behavior was
discussed earlier in the context of emission and transmission
probabilities and the velocity selection for nonresonant two
and three-level atoms [26,28,29].

The atom initially in the excited state |e〉, after interaction
with the cavity which is in a vacuum state (i.e., n = 0), can
be transmitted in the same excited state or in the ground state
with transmission probabilities given by [28]

Te,n = ∣∣τ e
n (k)

∣∣2
(3)

and

Tg,n+1 =
{

kg

k

∣∣τ g

n+1(k)
∣∣2

if

(
k

k0

)2

> �̃,

= 0 otherwise; (4)

where

k2
g = k2 − k2

0�̃, (5)

k2
0 = 2mg

h̄
, (6)

and

�̃ = �

g
. (7)

The expressions for τ e
n (k) and τ

g

n+1(k) are the same as given in
Appendix.

In order to calculate the transmission probabilities, the
Schrödinger equation needs to be solved over the entire z

axis, which is rather cumbersome inside the cavity. How-
ever, for the special case of mesa mode function defined
through Eq. (2), the problem is considerably simplified. The
normalized eigenstates of the operator H − p2

z/2m are given
by [26]

|γ +
n (θ )〉 = cos θ |e,n〉 + sin θ |g,n + 1〉, (8)

|γ −
n (θ )〉 = −sin θ |e,n〉 + cos θ |g,n + 1〉. (9)
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Here the parameter θ is arbitrary. For θ = 0, the state |γ ±
n (θ )〉

coincides with the uncoupled states |e,n〉 and |g,n + 1〉 and
for θ = θn with dressed states and is given by

cot 2θn = − �

�n

(10)

with

�n = 2g
√

n + 1. (11)

Therefore, in the basis |γ β
n 〉(β = ±) and in the z representation,

the Schrödinger equation takes the form

ih̄
∂

∂t
ψβ

n (z,t) =
(

− h̄2

2m

∂2

∂z2
+ V β

n

)
ψβ

n (z,t), (12)

with

ψβ
n (z,t) = eiEet/h̄

〈
z,γ β

n

∣∣ψ(t)
〉
, (13)

Ee = h̄ω0 + nh̄ω, (14)

V +
n = sin2θnh̄� + h̄g

√
n + 1 sin 2θn, (15)

V −
n = h̄� − V +

n . (16)

The general solution of Eq. (12) related to the energy eigenstate
|φk〉 is given by

ψβ
n (z,t) = e−i(h̄k2/2m)tϕβ

n (z), (17)

with

ϕβ
n (z) = Aβ

neik
β
n z + Bβ

n e−ik
β
n z. (18)

Here, A
β
n and B

β
n are complex variables and(

kβ
n

)2 = k2 − 2m

h̄2 Vβ
n . (19)

Inside the cavity, components of the wave function can
be written over the noncoupled state basis. The transmission
coefficients τ e

n (τ g

n+1) and A
β
n (Bβ

n ) are then derived by applying
the continuity conditions of the wave function itself and of its
first derivative at the cavity interfaces (i.e., z = 0 and z = L).

III. THE PHASE TUNNELING TIME

In order to derive an expression for phase tunneling
time, we take the transmission amplitude say in excited
state τ e

0 (k) ≡ |τ e
0 (k)|eiφ(k). It is given by Eq. (A1), which

incorporates the effects of detuning and depends upon the
vacuum coupling energy as h̄g ≡ h̄2k2

0/2m. Here k0 is the
momentum for which the kinetic energy of the incoming
atom becomes equal to the height of the potential barrier.
We consider a Gaussian wave packet associated with the
atom having amplitude A(k) = exp[−(k − k)2/σ 2], with k

and σ as mean momentum and width of the wave packet,
respectively. Therefore, the transmitted wave function for
z � L and for two-level atom (initially prepared in the excited
state) interacting off-resonantly with the cavity field is given by

|�T (z,t)〉 = 1

(2π )3/4

√
2

σ

∫ ∞

−∞
dk exp[−(k − k)2/σ 2]

× e−i(h̄k2/2m)t
∣∣τ e

0 (k)
∣∣eiφ(k)eikz|e,0〉. (20)

If the width of the wave packet σ is small, then the integrand
in Eq. (20) survives only in a small range of wave numbers
k centered about the mean momentum k. Therefore the
envelope of the transmitted wave packet |〈e,0|�T (z,t)〉|2
reaches a maximum when the total phase �(k) of the integrand
exhibits extremum at the wave number k = k. Now, under the
assumption that the peak of the incident wave packet enters
the cavity at time t = 0 and by using the stationary phase
condition, the time at which the wave packet peaks at the exit
of the cavity z = L can be obtained as [24]

∂�(k)

∂k

∣∣∣∣
k=k

= ∂

∂k
[kL + φ(k) − (h̄k2/2m)t]

∣∣∣∣
k=k

= 0. (21)

The phase tunneling time comes out to be

tph = m

h̄k

(
∂φ

∂k
+ L

)∣∣∣∣
k=k

. (22)

The integral in Eq. (20) can be calculated approximately
by using the Taylor expansion of the phase associated with
the transmission amplitude about the mean wave number
k = k. An approximate expression for the transmitted wave
function is obtained by Arun and Agarwal [24] by keeping
the terms up to second order in the Taylor expansion and
assuming σ � k. The phase time has no significance when the
Taylor expansion of the phase does not converge or additional
terms more than the second order are important in the
expansion.

In free space, the time taken by the peak of the wave packet
to travel a distance L is given by tcl ≡ mL/h̄k, which is the
classical traversal time. In the absence of the cavity there will
be no reflection; therefore transmission probability gets to its
peak value, i.e., |τ e

0 (k)|2 = 1, with invariant phase ∂φ

∂k
= 0. As

a result, in free space, as clear from Eq. (22), the phase time
becomes equal to the classical time.

IV. DISCUSSION

Here we consider the transmission of ultracold two-level
atoms initially prepared in their excited state, passing through
a high-Q mazer cavity which is prepared initially in a vacuum
state. The atoms which are assumed to be detuned from the
cavity mode frequency undergo reflection or transmission after
interaction with the cavity. In case of transmission in the
excited |e〉 or ground |g〉 state, the atoms may contribute
zero or one photon inside the cavity mode. In Fig. 2 we
show the plots of the phase time for atoms transmitted in
their excited state |e〉 as a function of mean momentum k/k0

for two different choices of detuning. Here we consider the
cavity length k0L = 10π . The solid line represents phase time
while the dashed line is for the transmission probability. For
zero detuning, we obtain the same results [see Fig. 2(a)] as
discussed in Ref. [24]. Here it is important to note that the phase
time follows resonances of the transmission probability and
remains positive for all values of momentum. The resonances
in the transmission probability appear whenever the de Broglie
wavelength associated with the ultracold atoms satisfies the
condition for the standing wave in a high-Q mazer cavity,
i.e., L = m(λdB)/2, where m = 1,2,3, . . . as mentioned in
Ref. [21]. It is interesting to mention here that a similar
resonant behavior was observed in the evolution of phase time
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0/k k

/ph clt t

/ph clt t

(a)

(b)

FIG. 2. (Color online) Dimensionless phase time (solid curve)
for transmission of a two-level atom in excited state vs the mean
momentum for the parameters k0L = 10π (a) �̃ = 0 and (b) �̃ =
+10. The transmission probability Te,0 of the atom in excited state is
shown in dashed curves.

associated with the passage of electrons or photons through a
finite superlattice by Pereyra [31].

The results for the off-resonant case with �̃ = 10, using
the same parameters as in Fig. 2(a), is shown in Fig. 2(b).
A comparison of this result with Fig. 2(a) indicates a clear
change in the behavior of phase tunneling time. For example,
here we obtain a negative phase time corresponding to smaller
values of the mean momentum. Furthermore, phase time
increases and approaches to the classical time due to the
increase in mean momentum. The transmission probability
asymptotically reaches toward the maximum value of 1, which
is a consequence of the fact that due to the increase in the mean
momentum, the atomic center of mass energy increases and
becomes larger than the atom field interaction energy. The
appearance of negative phase time is an important feature of
our results. This indicates that the transmitted wave packet
emerges even before the entrance of the incident wave packet.
It may be a consequence of the interference between the
incoming wave and the wave which is reflected from the inner
wall of the cavity, as discussed in [24]. In an earlier study, such
a behavior was reported for the propagation of electromagnetic
pulses through dielectric media [32].

In Fig. 3 we consider a different choice of the cavity length,
i.e., k0L = π/2, and detuning �̃ = ±3. For positive detuning
(�̃ = +3), the phase time is negative or superclassical and
approaches the classical time with the increase in the mean
momentum as shown in Fig. 3(a). It is interesting to note
that as the sign of detuning is reversed, i.e., �̃ = −3, phase
time becomes positive or subclassical as shown by solid curve

0/k k

/ph clt t

/ph clt t

(b)

(a)

FIG. 3. (Color online) Dimensionless phase time (solid curve)
for transmission of a two-level atom in excited state vs the mean
momentum for the parameters k0L = π/2 (a) �̃ = +3 and (b) �̃ =
−3. The transmission probability Te,0 of the atom in excited state is
shown in dashed curves.

in Fig. 3(b). This shows that detuning plays an important
role in tunneling and traversal of ultracold atoms through the
vacuum-induced potential. A change in the sign of the detuning
switches the phase time from superclassical to subclassical.

We have discussed so far the results for phase time for
atoms transmitted in their excited state. Next we consider
the behavior of the phase tunneling time for transmission
of the atoms in their ground state. In Fig. 4 we show the
results of the transmission probability and phase time for the
same set of parameters as in Fig. 3, except that the atoms
are now transmitting in their ground state after undergoing
a transition from the initial excited state and contributing a
single photon inside the cavity. The transition from excited to
the ground state does not take place if the initial kinetic energy
of the atoms is smaller than h̄�, as clear from Eq. (4). Thus
the emission process is completely blocked for (k/k0)2 < �̃,
because the required energy is no more available. Therefore
the transmission probability of the atoms in their ground state
remains zero; as a result, phase time becomes meaningless until
(k/k0)2 > �̃ is satisfied, as shown by the inset in Fig. 4(a).
The corresponding phase time for (k/k0)2 > �̃ is shown in
Fig. 4(a), which exhibits subclassical behavior and approaches
the classical value with the increase in mean momentum. For
negative detuning �̃ = −3, phase time remains subclassical,
as shown in Fig. 4(b).

Next we show the plots of phase time for transmission of
two-level atoms in their ground state for cavity length k0L =
3π/2 and �̃ = +2 (see Fig. 5). Here the dimensionless phase
time is shown in Fig. 5(a), while transmission probability is
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0/k k

/ph clt t

/ph clt t

(b)

(a)

FIG. 4. (Color online) Dimensionless phase time (solid curve)
for transmission of a two-level atom in ground state vs the mean
momentum for the parameters k0L = π/2, (a) �̃ = +3 and (b) �̃ =
−3. The transmission probability in the ground state Tg,1 is shown in
the inset of (a) and with a dashed curve in (b).

shown in Fig. 5(b). In order to show the results more clearly, the
two graphs are plotted in separate figures. In Fig. 6 we present
the results for phase time and the corresponding transmission
probability when �̃ = −2, while the rest of the parameters
are the same as in Fig. 5. We obtain negative phase time for
both positive and negative values of detuning for transmission
of the atoms in their ground state. In an earlier study it was
shown that the phase time remains positive for atoms leaving
the cavity in their ground state after resonantly interacting with
the vacuum cavity field [24].

The results discussed so far are obtained using stationary
phase approximation. However, for further affirmation, the
behavior of the actual envelope of the transmitted wave func-
tion in the ground state is solved using numerical integration
techniques. The result in the form of normalized probability
density |〈g,1|ψT (z,t)〉|2/σ against the dimensionless time is
shown in Fig. 7. The parameters used for the calculations are
k0L = 3π/2, �̃ = 2, σ/k0 = 0.01, and k̄/k0 = 1.6. It is clear
from the plot that the peak of the transmitted wave packet
appears at t/tcl ≈ −1.9, which matches with the phase time
in Fig. 5(a) at k̄/k0 = 1.6.

It may be mentioned here that the definition of phase time is
valid only under the condition that the transmission amplitude
varies slowly with wave number k. For rapidly varying
transmission probability it is no longer valid. Throughout our
numerical calculations, we have assumed that the modulus of
the transmission amplitude is a slowly varying function of the

/ph clt t

,1gT

(b)

(a)

0/k k

FIG. 5. (Color online) Dimensionless phase time (solid curve)
and transmission probability (dashed curve) for transmission of a two-
level atom in ground state vs the mean momentum for the parameters
k0L = 3π/2 and �̃ = +2.

wave vector. We also assume that the width of the Gaussian
packet associated with the ultracold atoms is very narrow, i.e.,
σ

k
� 1, otherwise the transmitted wave packet deformed from

the Gaussian shape and the idea of following the peak of the
wave packet to calculate the phase time becomes meaningless.
This fact is clearly shown in Fig. 8, where the splitting of
the transmitted wave packet occurs after passing through the
high-Q mazer cavity.

0/k k

/ph clt t

FIG. 6. (Color online) Dimensionless phase time (solid curve)
for transmission of a two-level atom in ground state vs the mean
momentum for the parameters k0L = 3π/2 and �̃ = −2. The dashed
curve represents the transmission probability Tg,1 of the atom in
ground state.
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/ clt t

p

FIG. 7. (Color online) Normalized probability density P ≡
|〈g,1|ψT (z,t)〉|2/σ at Z = L as a function of dimensionless time t/tcl .
The solid (dashed) curve represents P after transmission through the
cavity (in free space). The parameters used for the calculations are
k0L = 3π/2, �̃ = 2, σ/k0 = 0.01, k̄/k0 = 1.6. Both the solid and
dashed curves are normalized to unity.

V. CONCLUSIONS

In conclusion, we have studied the tunneling and traversal
of ultracold two-level atoms interacting off-resonantly with a
single-mode field in a high-Q cavity. The atoms are assumed
to be initially in their excited state while the cavity field is
in a vacuum state. After interaction with the cavity field,
the atom may either be reflected or transmitted in excited
or ground states. We have studied the effects of detuning on
phase tunneling time for transmission of ultracold two-level
atoms through the vacuum-induced potential. Our results
show that the behavior of phase tunneling time exhibits some
interesting features in the presence of off-resonant interaction.
For example, detuning can be used to switch the phase time
from subclassical to superclassical for appropriate choice of
the parameters. The appearance of negative phase time is
similar to the negative group velocities studied for the case of
electromagnetic pulse propagation through a dielectric media

/ c lt t

p

FIG. 8. (Color online) Normalized probability density P ≡
|〈g,1|ψT (z,t)〉|2/σ at Z = L as a function of dimensionless time t/tcl .
The solid (dashed) curve represents P after transmission through the
cavity (in free space). The parameters used for the calculations are
k0L = 10π , �̃ = −0.55, σ/k0 = 0.55, k̄/k0 = 2.055. Both the solid
and dashed curves are normalized to unity.

[32]. Our results show that in the presence of off-resonant
interaction, negative phase time can be obtained even for
atoms leaving the cavity in their ground state for an appropriate
choice of parameters. Throughout our numerical results, we
have assumed that the modulus of the transmission amplitude
is a slowly varying function of the wave vector k. Our results
are presented under stationary phase approximation; however,
we have also studied the propagation of the actual envelope
of the Gaussian wave packet associated with the two-level
atoms using numerical integration techniques. The results are
in good agreement with the one obtained using stationary phase
approximation.
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APPENDIX

After interaction with the high-Q cavity, the ultracold atoms
can be transmitted in excited or ground states with transmission
probabilities as given in Eqs. (3) and (4) [28], with

τ e
n (k) =

cos2θn
τ−
n (k)

τ−
n (kg)

τ+
n (kg) + sin2θnτ

−
n (k)(

cos2θn
k−kg

kc
n

− 1
)(

cos2θn
k−kg

kt
n

− 1
) (A1)

and

τ
g

n+1(k) = sin 2θn

4

(
1 + k

kg

)

×
τ−
n (k)

τ̃−
n (k,kg)

τ+
n (kg) − τ+

n (kg)
τ̃+
n (k,kg)

τ−
n (k)(

cos2θn
k−kg

kc
n

− 1
)(

cos2θn
k−kg

kt
n

− 1
) . (A2)

Here

τ±
n (k) = e−ikL[cos(k±

n L) − i�±
n (k)sin(k±

n L)]−1, (A3)

τ̃±
n (k,kg) = e−ikL[cos(k±

n L) − i�̃±
n (k,kg)sin(k±

n L)]−1,

(A4)

with

k+
n =

√
k2 − k2

0 tan θn, (A5)

k−
n =

√
k2 + k2

0 cot θn, (A6)

�±
n (k) = 1

2

(
k±
n

k
+ k

k±
n

)
, (A7)

�̃±
n (k,kg) =

(
k±
n

k + kg

+ kg

k + kg

k

k±
n

)
, (A8)

kc
n = i

[
k + icot

( k−
n L

2

)
k−
n

][
kg + icot

( k+
n L

2

)
k+
n

]
cot

(
k−
n L
2

)
k−
n − cot

(
k+
n L
2

)
k+
n

, (A9)

kt
n = i

[
k − itan

( k−
n L

2

)
k−
n

][
kg − itan

( k+
n L

2

)
k+
n

]
tan

(
k+
n L
2

)
k+
n − tan

(
k−
n L
2

)
k−
n

. (A10)
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