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Dissipative and stochastic geometric phase of a qubit within a canonical Langevin framework
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Dissipative and stochastic effects in the geometric phase of a qubit are taken into account using a geometrical
description of the corresponding open-system dynamics within a canonical Langevin framework based on
a Caldeira-Leggett-like Hamiltonian. By extending the Hopf fibration S3 → S2 to include such effects, the
exact geometric phase for a dissipative qubit is obtained, whereas numerical calculations are used to include
finite-temperature effects on it.
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Introduction. The concept of geometric phase (GP) in
quantum systems was proposed by Berry [1] when he studied
the dynamics of an isolated quantum system that undergoes an
adiabatic cyclic evolution. This cyclic evolution is due to the
variation of parameters of the Hamiltonian and is accompanied
by a change in the wave function by an additional phase factor
which depends only on the geometric structure of the space
of parameters. The underlying mathematical structure behind
GPs was pointed out almost simultaneously by Simon [2].
Soon afterward, the generalization to non-adiabatic cyclic
evolution was carried out by Aharonov and Anandan [3] and
noncyclic evolution and sequential projection measurements
by Samuel and Bhandary [4]. Although GPs have been
observed in the laboratory [5–7], realistic quantum systems
are always subject to decoherence due to their surroundings.
Therefore, the extension of the GP to the case of open quantum
systems becomes fundamental. The first formal extension of
the GP was carried out by introducing the concept of parallel
transport along density operators [8]. In a more physical
context, the concept of GP was generalized for nondegenerated
mixed states [9] and for degenerate mixed states under unitary
evolution [10]. Using a kinematic approach [11], GPs for
mixed states in nonunitary evolution were addressed [12].
Within a spin-boson model, GPs in open quantum systems
have also been calculated [13] together with a study of their
geometric nature [14]. A different approach was introduced in
Ref. [15], where the GP was described by a distribution. In
classical physics, the counterpart of the Aharonov-Anandan
(or Berry) phase was discovered early by Hannay [16].
Regarding classical dissipative systems, GP shifts have been
defined in dissipative limit cycle evolution [17–20], showing
that they can be identified with the classical Hannay angle in an
extended phase space [21]. Moreover, GPs can be constructed
for a purely classical adiabatically slowly driven stochastic
dynamics [22–24].

In this paper we tackle the problem of including dissipative
and stochastic effects in the GP of a qubit. Our study is based
on a geometrical description for a nonisolated qubit within
a canonical Langevin framework (see [25] and references
therein) using a Caldeira-Leggett-like Hamiltonian [26].

Mathematical preliminaries. It is well known that if |�〉
represents a normalized n-level system, then |�〉 ∈ S2n−1.
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Thus, the geometry of odd-dimensional spheres is related to
the quantum mechanics of finite-dimensional Hilbert spaces.
In fact, the celebrated Hopf fibration [27] relates the quantum
and classical description of qubits by means of the map
π : S3 → S2. This map can be understood as a composition,
π = � ◦ �, where � : S3 ⊂ C2 → CP 1 sends an element of
C2 to its equivalence class and � : CP 1(= C ∪ ∞) → S2 is
given by the stereographic projection. It can be shown that
the Hopf map can be written in terms of the Pauli matrices as
π (|�〉 ∈ S3) = (〈�|σ̂x |�〉,〈�|σ̂y |�〉,〈�|σ̂z|�〉) ∈ S2, where
〈�|σ̂x |�〉2 + 〈�|σ̂y |�〉2 + 〈�|σ̂z|�〉2 = 1. Thus, from the
Hopf map it can be shown that quantum and classical mechan-
ics may be embedded in the same formulation. Specifically,
for a qubit, the Strocchi map [28] is exactly the Hopf
map previously described. However, the S7 → S4 Hopf map,
which is an entanglement-sensitive fibration, does not have
a classical analog [29]. As there is a map S2n−1 → CP n−1

and the complex projective space has a natural symplectic
structure (CP n−1 is a Kähler manifold), n-state systems have
a well-defined classical correspondence, which is given by
the Strocchi map [28]. Thus, one can derive a classical
Hamiltonian function for an n-level system by defining, for
example, appropriate n action-angle coordinates in CP n−1

[30]. For example, as shown in [31], the symplectic structure
of S2 is responsible for the Aharonov-Anandan GP.

Using the pair of action-angle coordinates (I,�) on
S2, the Hopf map can be expressed as π (|�〉) =
(
√

1 − I 2 cos �,
√

1 − I 2 sin �,I ), where |�〉= a1|1〉+ a2|2〉
(aj = |aj |eiφj ∈ C), I ≡ |a1|2 − |a2|2, and � ≡ φ1 − φ2.
Thus, the Hamiltonian operator Ĥ = ∑

i ηi σ̂i , where σ̂i are the
Pauli matrices and ηi ∈ R can be Hopf-mapped to a Hamil-
tonian function, H0, given by H0 = −2

√
1 − I 2(η1 cos � +

η2 sin �) + 2η3I (this is the Meyer-Miller-Stock-Thoss
Hamiltonian [32,33], widely used in molecular physics).

Dissipative-stochastic Hopf fibration of S3. Our study is
based on a Caldeira-Leggett-like [26] Hamiltonian for a qubit
in the Langevin framework (see [25] and references therein),
which can be expressed as

H = H0 + 1

2

∑
i

(
p2

i + x2
i ω

2
i

) − �
∑

i

cixi +
∑

i

�2c2
i ,

(1)
where the oscillator mass has been taken to be 1 and ci are
the system-bath coupling constants. This model takes into
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account a renormalization term due to the interaction with
the environment.

Let us start with pure and normalized quantum states.
Using the (I,�) action-angle coordinates, it is easy to see
that the unit-radius sphere S2 is the set of points satisfy-
ing (−√

1 − I 2 cos �)2 + (−√
1 − I 2 sin �)2 + I 2 = 1. The

radius of this sphere remains constant along the time due to
energy conservation. That is, the corresponding Hamiltonian
function, given by H0 = −√

1 − I 2(cos � + sin �) + I , re-
mains constant in time (we have taken ηi = 1 for simplicity).
When ohmic dissipation is assumed, and after removing the
bath variables, the corresponding equations of motion issued
from Eq. (1) are

İ = −
√

1 − I 2(sin � + cos �) − 2γ �̇(t) + ξ (t),
(2)

�̇ = I√
1 − I 2

(cos � + sin �) + 1,

which correspond to the effective Hamiltonian func-
tion H (t) = −√

1 − I 2(cos � + sin �) + I + 2γ��̇ − ξ (t)
�. This stochastic dynamics can be interpreted in terms of
a stochastic Bloch sphere S2(γ,ξ ) defined by

(
√

1 − I 2 cos �)2 + (
√

1 − I 2 sin �)2 + I 2

= 1 − γ
d

dt
(�2) + ξ (t)�, (3)

where γ is the friction constant and ξ (t) is a stochastic Gaus-
sian process. The time-dependent radius is given by R2

t (γ,ξ ) =
1 − γ d

dt
(�2) + ξ�. Thus, dissipative and stochastic effects

make the Bloch sphere breathe, Eq. (3), by changing its radius
in time. This radius is bounded for ξ = 0, Rt (γ,0) � 1. The
equality is reached at t = 0 and at asymptotic times, where
thermal equilibrium is reached (in this case, a point in the unit
radius sphere represents a pure state). Otherwise, mixed states
are represented at each instant of time as points in different
spheres of variable radius, as shown in Fig. 1. When ξ �= 0, the
square radius becomes a stochastic variable which can reach
Rt (γ,ξ ) � 1 for a particular phase-space trajectory.

The breathing of the Bloch sphere can be geometrized by
extending its round metric by adding both dissipation and
noise. If these terms are included, the metric of S2(γ,ξ ) can be
written as ds2[S2(γ,ξ )] = R2

t (γ,ξ )ds2[S2], where ds2[S2] =
dI 2

1−I 2 + (1 − I 2)d�2 is the round metric for S2 in action-angle
coordinates.

In order to calculate the stochastic GP, let us start with pure
states. If we choose an orthonormal moving frame field σ 1 =

dI√
1−I 2 , σ 2 = √

1 − I 2d�, then dσ 2 = − I√
1−I 2 dI ∧ d� =

−Iσ 1 ∧ d� = Id� ∧ σ 1. Using Cartan’s first structure equa-
tion, we obtain the only nonvanishing connection one-form,
ω = Id�. Thus, the dynamic phase is obtained as φd =∮

ω = ∮
Id� = πI = π cos θ . If S2 is considered as an

embedded submanifold of S3, taking into account that the
spin connection of S3 is ω̃ = d� + Id�, where � is the
extra Euler angle which parametrizes the third dimension, it
can be shown [29] that S2 inherits from S3 the connection
one-form ω̃ = (I − 1)d�. Thus, the GP is expressed as φg =∮

ω̃. Now, if dissipation and noise are taken into account,
the orthonormal moving frame field is given by Rt (γ,ξ )σ i

with i = 1,2. In this case, the only nonvanishing connection

FIG. 1. Representation of the dissipative-induced time depen-
dence of the Bloch sphere for ξ = 0. Smaller spheres correspond
to later times.

one-form is ω(γ,ξ ) = Rt (γ,ξ )Id� = Rt (γ,ξ )ω. This allows
us to define the stochastic dynamic phase acquired after a cycle
of period T as φd (γ,ξ ) = ∮

ω(γ,ξ ) = ∮
Rt (γ,ξ )I (T )d� =

cos θ (T )
∮ √

1 − γ d
dt

(�2) + ξ�d�. Therefore, the stochastic
connection one-form, which can be defined as ω̃(γ,ξ ) =
[IRt (γ,ξ ) − 1]d�, leads to the corresponding GP:

φg(γ,ξ ) =
∮

ω̃(γ,ξ ) =
∮

[I (T )Rt (γ,ξ ) − 1] d�

=
∮ (

I (T )

√
1 − γ

d

dt
(�2) + ξ� − 1

)
d�. (4)

Note that the dynamics driven by this kind of Caldeira-
Leggett-like coupling could be interpreted in terms of a
mapping between conformal spheres with conformal unitary
group fibers at each instant. Moreover, the GP defined by

Eq. (4) becomes φ̃g(γ,ξ ) = ∮
(I

√
1 − γ d

dt
(�̃2) + ξ�̃ − 1)d�̃

under the transformation |�̃〉 = eiα|�〉 (or �̃ = � + α). Thus,
φg(γ,ξ ) is a gauge-invariant quantity.

Dissipative qubit (zero temperature). Let us consider a
simple qubit which can be represented by the Hamiltonian
operator Ĥ = εσ̂z. The corresponding dissipative dimension-
less Hamiltonian function (t → 2εt), which can be written
as H (t) = I + γ

2ε
��̇, leads to the pair of coupled equations

İ = − γ

2ε
�̇ and �̇ = 1 with solutions I (t) = I0 − γ

2ε
t and

�(t) = �0 + t , where I0 and �0 are the initial conditions
of the action-angle variables. After a cycle of period T = 2π

(the scaled Rabi frequency is ω0 = 1), the dissipative GP can
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be computed as

φg(γ ) =
∮

[Rt (γ )I − 1] d�

=
∮ [

I (T )

√
1 − γ

2ε
��̇ − 1

]
d�

= −π + 4

3

[(
1 − πγ

2ε

)3/2
− 1

] (
π − ε

γ
cos θ0

)
,

(5)

where I0 = cos θ0. Note that the nondissipative GP is recov-
ered when γ → 0.

It is also interesting to remark that Eq. (5) is only valid for
γπ/2ε � 1, which reflects nothing but the Caldeira-Leggett
energy renormalization in an Ohmic environment. Moreover,
this energy renormalization can be reinterpreted in terms of a
Bloch sphere whose radius develops harmonic oscillations.
In order to show this statement in simple terms, let us
introduce the damping factor by means of the phenomeno-
logical Caldirola-Kanai Hamiltonian [34–36] for a harmonic
oscillator (which is equivalent to the corresponding Caldeira-
Leggett Hamiltonian for the oscillator at zero temperature).
The Hamiltonian reads H = (1/2)p2e− γ

2ε
πt + q2e

γ

2ε
πt (the

π factor has been introduced to note that time evolution
is cyclic). It is straightforward to derive the corresponding
equations of motion, leading to ÿ + [1 − ( γπ

2ε
)2]y = 0, where

y = p,q. Thus, the renormalized frequency due to the damping
term is ω̄2 = ω2

0 − ( γπ

2ε
)2, which has physical sense only

when γπ/2ε � 1, as Eq. (5) shows. Therefore, the radius
of the Bloch sphere develops harmonic oscillations with a
renormalized frequency (another interpretation is that |I (t)| �
1 requires γπ/2ε � 1).

The weak-coupling limit of the GP given by Eq. (5) can be
expressed as

φg(γ ) = −π (1 − cos θ0) − γ

ε

(π

2

)2
(cos θ0 + 4) + O(γ 2).

(6)

A direct comparison with other authors [10,12,15] is not
pertinent since different models of dissipation and other
approaches to calculating the GP were used.

On the other hand, for this dissipative dynamics, in-
formation on interference experiments can be straight-
forwardly extracted from the probability density itself.
The typical interference intensity, Jt , evolves in time
according to Jt ∝ |�(t)|2 ∝ 1 +

√
1 − I 2(t) cos �(t) = 1 +√

1 − (I0 − γ

2ε
t)2 cos(t + �0), depending critically on the

ratio γ /2ε, which is directly related to the GP given by Eq. (5).
Stochastic qubit (nonzero temperature). Noise effects can

be included in a simple way by assuming a Gaussian stochastic

process with distribution function ρ(ξ ; β) =
√

β

2π
exp (− βξ 2

2 ),
where β is the inverse of the temperature, which is given
in units of 2ε. Thus, for a qubit, the squared radius is
also a stochastic process given by R2

t (γ,ξ ) = 1 + (ξ − γ

2ε
)�.

Therefore, the stochastic GP acquired after a cycle of period

T is given by

φg(γ ; β) =
(

cos θ (T ) − γπ

2ε

) [ ∮ ∫ ∞

−∞

√
1 − �

(
γ

2ε
− ξ

)

×
√

β

2π
exp

(
− βξ 2

2

)
dξdφ

]
− π. (7)

The previous integral in the noise variable has no analytic
solution. Thus, we first integrate in �, obtaining

φg(γ ; β) =
(

cos θ (T ) − γπ

2ε

)[ ∫ ∞

−∞
−2

3

(
γ

2ε
− ξ

)−1

×
[(

1 −
{

γ

2ε
− ξ

}
π

)3/2

− 1

]√
β

2π

× exp

(
− βξ 2

2

)
dξ

]
− π. (8)

To illustrate the computation of this integral (which does
not have any analytical solution either), only the GP for
a nondissipative qubit at finite temperature is considered.
Moreover, as the noise term becomes more important for high
temperatures, we assume that the mean of the Gaussian process
is β−1. Therefore, the GP can be factorized as

φg(β) = cos θ0

[ ∫ ∞

−∞

2

3ξ
[(1 + ξπ )3/2 − 1]

√
β

2π

× exp

{
− β(ξ − β−1)2

2

}
dξ

]
− π

≡ cos θ0f (β) − π, (9)

where f (β) encodes the thermal information of the GP
acquired by an isolated qubit. This function is depicted in
Fig. 2 within a large range of temperatures, displaying a
linear behavior at high temperatures and a crossover at a
critical temperature given by Tc ≈ 2ε (Tc ≈ 1 if adimensional
temperatures are used). This temperature corresponds to the
energy difference of the two levels of the qubit. Moreover, as

1

 10

 100

 1×10-7  1×10-6  1×10-5 0.0001  0.001  0.01  0.1 1  10  100

f(
β)

T

π

FIG. 2. Thermal behavior of the GP obtained by numerical
integration of Eq. (9) (a double-logarithmic scale is used). Note that
f (β) → π at very low temperatures.
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f (β) → π at very low temperatures, the GP acquired for the
pure state at zero temperature is recovered. Finally, note that
this type of calculation can be straightforwardly extended to
any dissipation value.

In summary, a geometrical description of the dissipative and
stochastic dynamics of a qubit within a Langevin formalism
(with a Caldeira-Leggett-like coupling) has been developed.
The Hopf fibration S3 → S2 has been extended to include both
stochastic and dissipative effects in terms of a Bloch sphere

which develops harmonic oscillations (in the dissipative case).
This procedure has allowed us to define a gauge-invariant GP,
which has been computed for both dissipative and stochastic
cases.

This work was funded by the MICINN (Spain) through
Grant Nos. CTQ2008-02578 and FIS2011-29596-C02-01.
P.B. acknowledges a Juan de la Cierva fellowship from the
MICINN.

[1] M. V. Berry, Proc. R. Soc. London A 392, 45 (1984).
[2] B. Simon, Phys. Rev. Lett. 51, 2167 (1983).
[3] Y. Aharonov and J. Anandan, Phys. Rev. Lett. 58, 1593 (1987).
[4] J. Samuel and R. Bhandari, Phys. Rev. Lett. 60, 2339 (1988).
[5] A. Tomita and R. Y. Chiao, Phys. Rev. Lett. 57, 937 (1986).
[6] T. Bitter and D. Dubbers, Phys. Rev. Lett. 59, 251 (1987).
[7] P. J. Leek et al., Science 318, 1889 (2007).
[8] A. Uhlmann, Rep. Math. Phys. 24, 229 (1986).
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