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We present a family of entropic uncertainty relations for pointer-based simultaneous measurements of
conjugate observables. The lower bounds of these relations explicitly incorporate the influence of the
measurement apparatus. We achieve this by using a mathematical theorem which states that the information
entropy of convoluted probability distributions is bound from below. As a consequence of these results we
can straightforwardly show that appropriately squeezed states are minimal entropy states for simultaneous
measurements.
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I. INTRODUCTION

The fundamental connection between any physical theory
and phenomena in nature is being established by some kind
of measurement. From this point of view, a profound under-
standing of measurement concepts is crucial to evaluating the
validity of a physical theory. Especially in quantum mechanics,
it is, however, not a simple task to gain a deeper knowledge of
how measuring actually works and what it means “to measure
a system.” There is a vast amount of literature on this topic
from early works [1–3] up to more recent summaries [4,5].
Our considerations are particularly founded on von Neumann’s
pointer-based measurements [6], which treat the measurement
apparatus as a quantum mechanical object called a pointer.
Von Neumann states that from the interaction of the pointer
and the system to be measured and a subsequent projective
measurement of the pointer, one can deduce information about
the system to be measured itself.

In this work we derive the entropic uncertainty [7–10] of a
measurement configuration with two pointers bilinearly cou-
pled to a system to be measured. Such a configuration allows
a simultaneous measurement of two conjugate observables
[11,12]. In Sec. II we briefly review the underlying concept
of this sort of pointer-based measurement. Subsequently, we
discuss an entropic measure for the associated uncertainty in
Sec. III. In Sec. IV we derive a family of entropic uncertainty
relations, founded on a theorem of Lieb [13], and sort out the
one which is best suited for our needs. Moreover, we show
that this specific uncertainty relation is an improvement of a
previously established entropic uncertainty relation [14,15].
Section V is dedicated to the derivation of minimal entropy
states from our previous results. Finally, we conclude with a
summary and an outlook in Sec. VI.

II. CONCEPTS OF POINTER-BASED SIMULTANEOUS
MEASUREMENTS

As already loosely described in the Introduction, we
consider a continuous-variable system which is coupled to two
pointers, see Fig. 1. This coupling is chosen in such a way that
the position of the system to be measured moves (or, in another
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phrasing, “kicks” [16]) the position of the first pointer whereas
the corresponding momentum moves the position of the second
pointer. We can therefore deduce information about the system
from a projective measurement of the pointer positions after
the coupling interaction. A more detailed discussion of this
model can be found in Refs. [11,12]. We closely follow these
references and just recall those results which are essential for
the present study.

The total system is initially prepared in the state

|�〉 ≡ |ψ〉 ⊗ |�〉1,2, (1)

where |ψ〉 denotes the system to be measured and |�〉1,2
represents the bipartite state of the two pointers. The coupling
between system and pointers is described by the interaction
Hamiltonian [11,12]

Ĥint ≡ κ1x̂p̂1 + κ2p̂p̂2, (2)

with constant coupling strengths κ1 and κ2 in an appropriate
scaling (i.e., h̄ = 1) [16]. The operators x̂ and p̂ denote position
and momentum of the system, respectively, whereas p̂1 and p̂2

indicate the momenta of either one of the two pointers.
It is the bilinear construction of the interaction Hamiltonian

which is responsible for the behavior described above: The
observable values of x̂ and p̂ move the positions of the first and
second pointer, respectively. This is not surprising since Eq. (2)
bears a strong resemblance to the displacement operator [17].
However, the complete pointer dynamics are not immediately
clear due to the mutual feedback of the three systems involved.

A. Measurement coupling dynamics

To understand the measurement coupling dynamics, we
solve the corresponding Heisenberg equations for the positions
x̂1 and x̂2 of the pointers. For this purpose we assume that the
interaction energy is much larger than the kinetic energy (e.g.,
realized by a short but strong interaction between the system
to be measured and the pointers) and we can therefore neglect
free dynamics. For a given interaction time T , we arrive at the
so-called inferred observables of position

X̂ ≡ x̂1(T )

κ1T
= 1

κ1T
exp[iĤintT ]x̂1 exp[−iĤintT ] (3a)

= x̂ + x̂1

κ1T
+ p̂2κ2T

2
(3b)
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FIG. 1. Schematic representation of a pointer-based measure-
ment. The system to be measured, described by the state |ψ〉, and
the pointers, described by the bipartite state |�〉1,2, interact with
each other by means of an interaction Hamiltonian Ĥint. After the
interaction process at time T , a projective measurement of the pointer
positions x̂1(T ) and x̂2(T ) is performed. An appropriate choice of
Ĥint enforces that the measurable values of the pointer observables
are related to the system’s initial position and momentum. Hence,
both of the latter can be retrieved from these measurement results.
A fundamental question is therefore whether we can quantify the
quantum uncertainty of such a simultaneous measurement by using
the concept of an entropy.

and momentum

P̂ ≡ x̂2(T )

κ2T
= 1

κ2T
exp[iĤintT ]x̂2 exp[−iĤintT ] (3c)

= p̂ + x̂2

κ2T
− p̂1κ1T

2
, (3d)

which are just appropriately scaled pointer positions and
clearly commute. Both X̂ and P̂ are Heisenberg operators
which live in the combined Hilbert space of all three
participating systems, Eq. (1). Observables without explicit
time dependencies refer to the initial time t ≡ 0 prior to
the interaction process, i.e., observables in the Schrödinger
picture. Initial states of the pointers and therefore the
expectation values 〈x̂1〉, 〈x̂2〉, 〈p̂1〉, and 〈p̂2〉 as well as the
coupling strengths κ1 and κ2 are assumed to be known. Hence
we conclude from Eq. (3) that one can deduce the expectation
values of both the system’s initial position 〈x̂〉 and momentum
〈p̂〉 by simultaneously determining the expectation values
〈X̂ 〉 and 〈P̂〉 of the pointer positions.

Then the interesting question arises as to how the uncer-
tainties of these simultaneously measurable quantities behave.
To find an answer, a description in terms of probability
distributions for X̂ and P̂ is most appropriate. Therefore, we
define the joint probability distribution

pr(X ,P) ≡ 〈�|δ(X − X̂ )δ(P − P̂)|�〉 , (4)

which describes the probability to infer a position X , Eq. (3a),
and a momentum P , Eq. (3c), by means of a single
pointer-based simultaneous measurement. In particular, Eq. (4)
directly results from the inverse Fourier transform of the
corresponding characteristic function [18] when we use the
abbreviation

δ(X − X̂ ) ≡ 1

2π

∫ +∞

−∞
dα exp[iα(X − X̂ )] (5)

and an analogous definition for δ(P − P̂). From another point
of view, Eq. (4) can be considered as the expectation value of a
projection operator which corresponds to the joint eigenspace
of the eigenvalues X and P of inferred position X̂ and inferred

momentum P̂ , respectively, and therefore projects the total
state |�〉, Eq. (1), onto the appropriate subspaces.

Integration of Eq. (4) leads us to the marginal probability
distribution of inferred position

prX (X ) ≡
∫ +∞

−∞
dP pr(X ,P) (6a)

and inferred momentum

prP (P) ≡
∫ +∞

−∞
dX pr(X ,P), (6b)

respectively. Analogously, these distributions describe the
probability to find either an inferred position X or an inferred
momentum P through a single pointer-based measurement.

B. The role of squeezed pointer states

The concept of pointer-based measurements relies, as
already mentioned in the beginning of Sec. II, on pointer
states which are initially localized states in phase space and
can be kicked by the system state to imprint its information on
them as a displacement in position. Therefore, it is reasonable
to use vacuum states or, more generally, squeezed states as
initial pointer states. Historically, such states have already been
used in Ref. [11] in the pioneering theory of pointer-based
measurements. Suitably squeezed pointer states also allow an
optimal measurement apparatus in terms of variances [19]
and we can connect our upcoming results to this statement in
Sec. V.

Hence, we assume in the following that our initial pointer
states are squeezed vacuum states, which enables us to
separate the initial bipartite state from Eq. (1) according
to |�〉1,2 ≡ |σ1〉1 ⊗ |σ2〉2. We confine the squeezing to real
squeezing parameters without displacements [17]. In other
words, we only squeeze along the position and momentum
axes in phase space. This approach allows us to define a
squeezed state |σ 〉 solely by its variance in position space
σ 2 ≡ 〈σ |x̂2|σ 〉.

Due to these simplifications we can express the joint
probability distribution, Eq. (4), as a convolution

prsq(X ,P) = 1

2πδX δP

∫ +∞

−∞
dx

∫ +∞

−∞
dp W|ψ〉(x,p)

× exp

[
− (X − x)2

2δ2
X

− (P − p)2

2δ2
P

]
(7)

of the Wigner function W|ψ〉 of the state |ψ〉 and a Gaussian
“filter function” [20]. The so-called noise terms [19]

δX ≡
√

σ 2
1

κ2
1 T 2

+ κ2
2 T 2

16σ 2
2

(8a)

and

δP ≡
√

σ 2
2

κ2
2 T 2

+ κ2
1 T 2

16σ 2
1

(8b)

describe the noise induced by the specific measurement setup.
As written above, the expressions σ 2

1 and σ 2
2 stand for the

initial variances in position of either one of the two pointer
states (or, analogously, they stand for the respective second
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moments). One can easily verify that there is a minimal noise
term product

δX δP � 1
2 (9)

with equality for σ 2
1 σ 2

2 = κ2
1 κ2

2 T 4/16.
Using our joint probability distribution, Eq. (7), the

marginal probability distributions, Eq. (6), take on the rather
intuitive and simple forms [19]

prsq
X (X ) = 1√

2πδX

∫ +∞

−∞
dx|ψ(x)|2 exp

[
− (X − x)2

2δ2
X

]
(10a)

and

prsq
P (P) = 1√

2πδP

∫ +∞

−∞
dp|ψ̃(p)|2 exp

[
− (P − p)2

2δ2
P

]
, (10b)

respectively. Above we use the position representa-
tion ψ(x) ≡ 〈x|ψ〉 and the momentum representation
ψ̃(p) ≡ 〈p|ψ〉 of the system state |ψ〉.

In the case of squeezed pointer states as discussed here,
the influence of the setup on the simultaneous measurement
is solely defined by the two noise terms of Eq. (8). We
therefore do not need to consider specific coupling strengths,
pointer state variances, and interaction times in order to discuss
different measurement setups in the following. Note, however,
that different measurement setups can lead to the same noise
terms and thus the same influence on the measurement.

III. ENTROPY AS UNCERTAINTY MEASURE OF
POINTER-BASED SIMULTANEOUS MEASUREMENTS

Variances are one possibility of describing the uncertainty
of pointer-based measurements in an operational manner,
but they are not always a good solution [21,22]. We take a
step further away from these kinds of “traditional uncertainty
relations” towards an entropic perspective.

A. Collective entropy

The Shannon entropy has already been introduced [15]
as a measure of uncertainty in the context of pointer-based
measurements. We start by closely following this concept and
define the marginal entropy of the inferred position

SX ≡ −
∫ +∞

−∞
dX prsq

X (X ) ln prsq
X (X ) (11a)

and the marginal entropy of the inferred momentum

SP ≡ −
∫ +∞

−∞
dP prsq

P (P) ln prsq
P (P) (11b)

based on the marginal probability distributions, Eq. (10). These
entropies are connected to the uncertainty of a measurement
of either inferred position or inferred momentum, respectively.
Since an entropy describes the expected information gain, a
large entropy and thus large expected information gain can be
regarded as a high uncertainty, whereas a small entropy and
thus small expected information gain can be regarded as a low
uncertainty. Likewise,

S ≡ SX + SP (12)

is a suitable measure for the total uncertainty of a simultaneous
measurement of inferred position and momentum and we
therefore call it collective entropy. For all these definitions
we still assume squeezed pointer states.

B. Entropic uncertainty relations

From an operational point of view, one has no control over
the system state to be measured. Instead, the system state is
unknown and it is only possible to modify the measurement
setup to obtain different sets of noise terms, Eq. (8). What can
we say about the fundamental limits of an entropic uncertainty
imposed by such a pointer-based simultaneous measurement
setup?

To answer this question we need to introduce the concept
of entropic uncertainty relations. Any entropic uncertainty
relation of a pointer-based simultaneous measurement sets
a lower bound for the collective entropy, Eq. (12), of the
form [23]

S � Smin. (13)

The quality of such a lower bound Smin for a given measure-
ment setup (defined by the noise terms) and a particular system
to be measured is determined by the difference of the left-hand
side and the right-hand side of this inequality: the larger, the
worse.

Uncertainty relations with a system-dependent right-hand
side are not of much use if we maintain our operational
assumption of an unknown system state [8,21,22]. For this
reason, we aim for an entropic uncertainty relation with a
right-hand side which is independent of the system state to be
measured. The measurement setup itself, since being known,
is allowed to have an influence on our desired bound Smin.

Various versions of entropic uncertainty relations can
already be found in the existing literature [7–9]. More recent
studies mainly deal with sets of more than two observables in
the context of quantum information theory [22,24]. However,
most results from these publications are not directly applicable
to pointer-based simultaneous measurements. Therefore, we
cannot further discuss all of them but rather concentrate on a
pioneering approach for simultaneous measurements. In fact
it was noted in Ref. [15] that the lower bound of the Wehrl
entropy [13,14] can be associated with a constant lower bound
of the collective entropy which reads

S � 
 ≡ 1 + ln(2π ). (14)

Thus, in this entropic uncertainty relation neither the system
state to be measured nor the measurement setup have any
influence on the lower bound 
 of the collective entropy.
Due to this static behavior, it seems natural to search for a
modification of Eq. (14) which incorporates the properties of
the measurement configuration. And indeed, a whole family
of such entropic uncertainty relations can be found based on
a theorem by Lieb [13]. The bounds of these uncertainty
relations depend on two parameters and can effectively be
increased beyond 
.

For example, we can obtain

S � 1 + ln

[
2π

(
δX δP + 1

2

)]
� 
. (15)
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Hence, for any noise term product δX δP > 1/2 this new bound
is superior to 
. In the following section we discuss this
improvement in its general form.

IV. ENTROPIC UNCERTAINTY RELATIONS BASED
ON LIEB’S THEOREM

In Ref. [13], Lieb proves an inequality for the entropy
of convolutions as a byproduct [25] and remarks that it
“may be useful for related problems.” Indeed, we can use
his theorem in the following to establish a general lower
bound of the collective entropy of pointer-based simultaneous
measurements with squeezed pointer states.

A. Lieb’s theorem

The theorem [13] states that if one has two non-negative
and square-integrable functions f and g which are normalized
according to∫ +∞

−∞
dx f (x) =

∫ +∞

−∞
dx g(x) = 1, (16)

an information entropy of the form

S[f ] ≡ −
∫ +∞

−∞
dx f (x) ln f (x) (17)

obeys the inequality [26]

S[f ∗ g] � λS[f ] + (1 − λ)S[g]

− λ ln λ + (1 − λ) ln(1 − λ)

2
. (18)

Here the notation f ∗ g stands for the convolution

(f ∗ g)(x) ≡
∫ +∞

−∞
dy f (y)g(x − y) (19)

and λ is an arbitrary weighting parameter in the range
0 � λ � 1.

Furthermore, we note that the equality in Eq. (18) holds true
if and only if both f and g are Gaussians and one chooses [13]

λG(σf ,σg) ≡ σ 2
f

σ 2
f + σ 2

g

(20)

as the weighting parameter λ. Here, σ 2
f and σ 2

g denote the
variances of f and g, respectively.

B. A family of entropic uncertainty relations

Using the fact that the marginal probability distributions
for squeezed pointer states, Eq. (10), are actually convolutions
of the system state probability distribution with a Gaussian
function, we can now directly apply Eq. (11) to both marginal
entropies of pointer-based measurements, Eq. (11). This
results in a family of uncertainty relations for the collective
entropy, Eq. (12), which reads

S � �(λX ,λP ) (21)

with a parameterized lower bound

�(λX ,λP ) ≡ λXS[|ψ |2] + λPS[|ψ̃ |2]

+ 1 − λX
2

ln
(
2πδ2

X
) + 1 − λP

2
ln

(
2πδ2

P
)

+ 
(λX ) + 
(λP ) (22)

and the abbreviation


(λ) ≡ 1 − λ

2
[1 − ln(1 − λ)] − λ

2
ln λ. (23)

Here, a pair (λX ,λP ) of weighting parameters occurs, which
are both restricted to the interval [0,1]. Specifically, they
describe the ratio of influence on the lower bound from either
the system state to be measured or the measurement setup,
represented by the noise terms, Eq. (8). Apart from these
two contributions, correction terms 
(λ), Eq. (23), occur in
the lower bound, which are solely based on the weighting
parameters and cannot directly be connected to a physical
property. It is eventually the dependence on the measurement
setup which makes Eq. (22) superior in comparison with the
constant bound, Eq. (14).

C. Optimal weighting parameters

In general, Eq. (22) still depends on the system state to be
measured. Yet, as already mentioned in Sec. III B, we strive for
a lower bound which does not depend on the system state, so
we need to find a pair of weighting parameters for which this
dependence can be eliminated. Moreover, our choice should
maximize Eq. (22) as far as possible in order to improve our
lower bound beyond the constant bound, Eq. (14).

Formally, we are looking for the optimal set of parameters
λO
X and λO

P which lead to the largest and thus best lower entropy
bound, Eq. (22), by calculating an optimized bound

�
(
λO
X ,λO

P
) ≡ max

λX ,λP∈[0,1]
�(λX ,λP ), (24)

which should also be independent of the system state. To
approach this problem, we first examine three critical pairs
of weighting parameters: (1,1), (0,0), and (1/2,1/2).

In case of the pair (1,1), we have a purely system-
determined bound

�(1,1) = S[|ψ |2] + S[|ψ̃ |2]. (25)

Guided by our demand for a system-independent lower bound,
we can further simplify Eq. (25) by means of the entropic
inequality [7,10,27–29]

S[|ψ |2] + S[|ψ̃ |2] � 1 + ln π (26)

to yield a constant bound. However, this resulting constant
bound is worse than the constant bound from Eq. (14). This
is understandable since Eq. (26) quantifies only an intrinsic
uncertainty of the system. By no means does it take into
account that we perform a simultaneous measurement which
will introduce additional uncertainties.

For the pair (0,0) we arrive at a noise-determined bound [30]

�(0,0) = 1 + ln(2πδX δP ), (27)

which is solely determined by measurement uncertainties.
Although Eq. (27) does not depend on the system state to
be measured and is equal or better than the constant bound,
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Eq. (14), for a noise term product δX δP � 1, it is still worse
for smaller noise term products.

Apparently, neither neglecting the influence of the mea-
surement, Eq. (25), nor neglecting the influence of the system,
Eq. (27), leads to a bound which is generally better than the
constant bound, Eq. (14). Therefore, it may seem natural to
choose the pair (1/2,1/2) and we consequently arrive at a
kind of “balanced” bound

�

(
1

2
,
1

2

)
= 1 + S[|ψ |2] + S[|ψ̃ |2] + ln(8πδX δP )

2
(28a)

= ln 2 + 1

2
[�(0,0) + �(1,1)] . (28b)

It contains the expressions from both Eqs. (25) and (27).
Moreover, when we further use Eq. (26) it is also possible to
eliminate the intrinsic uncertainty of the system from Eq. (28).
The resulting bound, whose uncertainty relation reads

S � 1 + ln(2π
√

2δX δP ), (29)

is equal (δX δP = 1/2) or better (δX δP > 1/2) than the constant
bound, Eq. (14).

Although this example already shows that Eq. (22) is clearly
an improvement over the constant bound, Eq. (14), we have
not yet found the optimal pair of weighting parameters. Since
our last example of equal weighting parameters has unfolded
promising results, we use a general approach with arbitrary but
equal weighting parameters in the following. Such a setting
allows an analytical maximization of the lower bound and
furthermore enables us to use Eq. (26) in order to eliminate
the dependency on the system state.

D. Single parameter bound

Let us consider the case of equal but arbitrary weighting
parameters λX ≡ λP ≡ λ ∈ [0,1]. We can then directly sim-
plify Eq. (22) with the help of Eq. (26) and thus arrive at the
single parameter bound

S � �S(λ) ≡ 1 − λ ln
λ

π
+ (1 − λ) ln

(
2πδX δP

1 − λ

)
. (30)

This bound does not depend on the system state to be
measured anymore. A maximization of �S(λ) leads us to the
optimal single parameter bound associated with the entropic
uncertainty relation

S � 1 + ln
[
2π

(
δX δP + 1

2

)]
, (31)

which has already been presented in Eq. (15). As previously
mentioned, Eq. (31) is a refinement of the constant entropic
bound, Eq. (14). Only in the case of a minimal noise term
product δX δP = 1/2 are both expressions identical. Moreover,
Eq. (31) is independent of the system state to be measured. This
improved bound, Eq. (31), is actually the main result of this
contribution.

V. MINIMAL ENTROPY STATES

To deepen our understanding of the improved entropic
uncertainty relation, Eq. (31), we discuss it here in the context
of so-called minimal entropy states. For a given measurement
setup, defined by a set of noise terms, Eq. (8), minimal entropy

states are those system states that result in a minimal collective
entropy, Eq. (12). Although we have already emphasized that
in operational terms one has no control over the system state to
be measured, it is still interesting to know the ideal properties
of a system state in a simultaneous pointer-based measurement.
Moreover, any entropic uncertainty relation for a minimal
entropy state is by definition also valid for any other state
if the measurement setup remains unchanged. In other words,
it is in fact the collective entropy of a minimal uncertainty state
itself which sets the optimal bound.

A. The single parameter bound from another perspective

First, we take a look at the lower bound determining Eq. (31)
in the light of squeezed system states. In fact, we show that this
bound is equal to the collective entropy of a particular squeezed
system state, i.e., the inequality is tight. This squeezed system
state is the one which results in minimal collective entropy for
a given measurement setup.

We prove this statement in a straightforward way by
utilizing Eq. (20) to determine a pair of weighting parameters
(λG(σ,δX ),λG(σ−1/2,δP )) for a squeezed system state |σ 〉 with
variance σ 2 in position space (where the notation from Sec. II B
is being used). For this choice of parameters, the equality in
Eq. (18) holds true and the collective entropy of a squeezed
system state reads

S[|σ 〉] = 1 + ln π − ln
√

λG(σ,δX )λG(σ−1/2,δP ). (32)

To find the smallest collective entropy, Eq. (12), we can
minimize Eq. (32) with respect to σ and consequently arrive
at

min
σ

S[|σ 〉] = S[|σmin〉] (33a)

= 1 + ln
[
2π

(
δX δP + 1

2

)]
(33b)

with [31]

σ 2
min ≡ δX

2δP
. (34)

Hence we see that the collective entropy of the corresponding
squeezed states reaches the lower bound of our entropic
uncertainty relation, Eq. (31). From this relationship one can
easily argue that squeezed states are minimal entropy states if
they obey Eq. (34).

B. A family of minimal entropy states

The collective entropy of any system state |ψ〉 is limited
from below by the uncertainty relation, Eq. (31). On the other
hand, according to Eq. (33), the corresponding lower bound is
also equivalent to the collective entropy of a squeezed system
state |σmin〉 with the specific variance σ 2

min, Eq. (34), in position
space. Therefore, one has S[|ψ〉] � S[|σmin〉] and thus we can
deduce that minimal collective entropy can always be reached
by a squeezed system state |σmin〉 whose variance in position
space fulfills Eq. (34). Consequently, the bound given by our
entropic uncertainty relation, Eq. (31), is the optimal bound for
a simultaneous measurement based on squeezed pointer states.

In fact, since the equality in Eq. (18), is fulfilled if and
only if one has Gaussian probability distributions which obey
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Eq. (20), the minimal entropy states |σmin〉 are (apart from
a global phase factor) unique minimal entropy states for a
given measurement setup. This means that there may not be
a differently shaped state |ψ〉 
= α |σmin〉 (|α| = 1) which also
reaches minimal collective entropy [32].

We remark that the lowest possible collective entropy of
a pointer-based simultaneous measurement with squeezed
pointer states, i.e., S = 1 + ln(2π ), can be reached with a
squeezed system state which obeys Eq. (34) and a mea-
surement configuration with a minimal noise term product
δX δP = 1/2. The constant bound, Eq. (14), is apparently
equivalent to this lowest limit. This result corresponds to the
derivation of Eq. (14), where it is assumed that “the filter state
is considered to be in a pure minimum uncertainty state” [15].

VI. SUMMARY AND OUTLOOK

In this final section we outline the most important results of
this contribution and take a look at several aspects which still
leave room for further considerations.

A. Summary

We have analyzed a whole family of entropic uncertainty
relations for pointer-based simultaneous measurements. This
family includes specific cases which have been known previ-
ously. However, it has also allowed us to eliminate the influence
of the system state to be measured from the bound while not
neglecting the influence of the measurement setup. This has led
us to the optimal bound which is equal to the collective entropy
of minimal entropy states. Such minimal entropy states are the
well-known squeezed vacuum states.

B. Outlook

In the previous sections we imposed several limitations in
order to simplify our mathematical expressions. In particular,

we chose a linear interaction Hamiltonian with constant
coupling strengths, squeezed pointer states, and pure system
states to describe the simultaneous measurement. Furthermore,
we neglected free dynamics of all systems involved. In the
following we discuss which of these limitations may be
loosened.

Linearity of the interaction Hamiltonian is a crucial point of
our discussion. On the other hand, we expect that higher order
interaction terms only lead to corrections which are smaller
than the main contribution of the linear term. Therefore, our
coupling model should be able to describe the key features
of pointer-based measurements and consequently allows us
to discuss the associated noise of the measurement apparatus
in terms of entropies. It is, however, possible to generalize
our considerations to time-dependent coupling strengths,
which results in a more complicated expression for the noise
terms [16]. Otherwise, the discussion of the results remains
unchanged. Similarly, all the effects of free motion in the
Hamiltonian can be included in modified noise terms [33].

Using general pointer states instead of squeezed pointer
states prevents us from applying Lieb’s theorem and we have
to fall back onto different entropic uncertainty relations. For
example, we could use a linearization approach to find an
entropic bound, but there are also other possibilities [34] which
are valid for arbitrary pointer states.

Lastly, extending our framework to mixed states for system
and pointers requires us to rewrite most definitions and
therefore cannot be further discussed here. The underlying
limitation is related to the fact that we use a projective
measurement to read out the pointer observables. A more
physical approach would incorporate an environment to which
the pointers are coupled [35]. By doing so, the pointer
observables could emerge purely by decoherence effects.
Density matrices instead of pure states would appear naturally.
Consequently, additional environmental noises are assumed to
influence the measurement.
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