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Topological invariance and global Berry phase in non-Hermitian systems
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By studying the topological invariance and Berry phase in non-Hermitian systems, we reveal the basic properties
of the complex Berry phase and generalize the global Berry phases Q to identify the topological invariance for
non-Hermitian systems. We find that Q can identify topological invariance in two kinds of non-Hermitian model,
the two-level non-Hermitian Hamiltonian and the bipartite dissipative model. For the bipartite dissipative model,
an abrupt change of the Berry phase in the parameter space reveals a quantum phase transition and is related to
the exceptional points. These results give the basic relationships between the Berry phase and the quantum and
topological phase transitions of non-Hermitian systems.

DOI: 10.1103/PhysRevA.87.012118 PACS number(s): 03.65.Vf, 64.70.Tg

I. INTRODUCTION

Quantum state storage and transfer are central issues of
quantum technology. The basic idea is to find an efficient
way to generate robust quantum states [1]. Several schemes
of quantum devices, such as quantum adiabatic pumps [2]
and geometric quantum computation, exhibit excellent fea-
tures [3,4]. The geometric phase plays a crucial role in
realizing robust quantum states and detecting quantum phase
transitions (QPTs) [5,6]. The geometric phase generalized
to non-Hermitian systems provides a geometrical description
of the quantum evolution of non-Hermitian systems [7] and
give the relationship between the geometric phase and the
QPT [8]. For a non-Hermitian quantum walk, it has been
found that the topological invariance depends on the ratio
of the hopping amplitude between A and B sites [9]. The
topological invariance provides some hints toward realizing
robust quantum states and opens some fundamental issues [10].
The challenging problem is how to give a unified definition of
the topological invariance for different quantum systems. In
general, a topological phase transition (TPT) is characterized
by a topological index instead of symmetry breaking, such as
the winding number or Chern number [11]. For example, the
integer conductance plateau in the integer quantum Hall effect
is related to the topological quantity the Chern class and the
geometric phase [12], which reveals the relationship between
the TPT and the geometric phase.

However, there has been no general method to define
the topological invariance for different quantum systems,
particularly for non-Hermitian systems. Actually, how to give
a unified definition of topological invariance and how to
characterize TPTs for a general system are still challenging
problems even though there have been some schemes for some
specific systems [10,11,13]. Hence, any effort to construct a
novel paradigm to describe topological invariance and the TPT
for both Hermitian and non-Hermitian systems is valuable.

In this paper, we will study the basic properties of the
complex Berry phase in the quantum evolution of non-
Hermitian models. We propose the global Berry phase Q of
all states to identify the topological invariance; it is used in
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two kinds of non-Hermitian model. One is a general 2 × 2
non-Hermitian model; the other is a bipartite dissipative model.
They have different mathematical structures. We find that Q

can be a topological index to identify the topological invariance
in these two models. We will also give the phase diagram of the
complex geometric phase in the parameter space that indicates
the relationships between topological invariance, quantum
phase transitions, and the complex Berry phase.

II. BERRY PHASE IN THE QUANTUM EVOLUTION
OF NON-HERMITIAN SYSTEMS

We consider a general quantum system described by the
parameter-dependent Hamiltonian H (α), where the parame-
ters α = (α1,α2, . . . ,αm) are functions of time, which leads
to an implicit time dependence of H (α) and describes the
state evolution. For a general non-Hermitian system, H (α) �=
H †(α). The state vectors |�(α)〉 and |�(α)〉 within the Hilbert
space |�(α)〉 ∈ H and its dual Hilbert space |�(α)〉 ∈ H†

satisfy the Schrödinger equation [14]

ih̄∂t |�(α)〉 = H (α)|�(α)〉, ih̄∂t |�(α)〉 = H †(α)|�(α)〉.
(1)

In the adiabatic approximation, the state evolution can be
expanded into the instantaneous right eigenstates

|�(α)〉 =
∑

μ

cμ(t)|ψμ(α)〉, (2)

where |ψμ(α)〉 satisfies the instantaneous eigenequation
H (α)|ψμ(α)〉 = Eμ(α)|ψμ(α)〉. Neglecting the off-diagonal
terms in the adiabatic approximation, the coefficient can be
expressed as [14]

cμ(t) = cμ(0)e−(i/h̄)
∫ t

0 Eμ(t ′)dt ′ei
∫ t

0 〈λμ(α)|∇α |ψμ(α)〉dα, (3)

where 〈λμ(α)| is the corresponding eigenstate of |ψμ(α)〉 in the
dual space. The parameters α are varied in a cyclic way and the
initial state of the system remains at an instantaneous eigen-
state |�(0)〉 = |ψμ(α(0))〉; the state evolution follows [14]

|�(T )〉 = ei[γ D
μ (T )+γ G

μ (T )]|�(0)〉, (4)

where γ D
μ = − 1

h̄

∫ T

0 Eμ(t)dt is the complex dynamical phase.
T is the periodicity of time evolution such that α(T ) = α(0).
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γ D
μ can be written as γ D

μ ≡ γ d
μ + iξ d

μ , where the real part γ d
μ

is the dynamical phase, and the imaginary part ξd
μ is the dis-

sipative effect induced by the energy shift for non-Hermitian
systems. The complex Berry phase in the cyclic evolution is

γ B
μ =

∮
C

Aμ, (5)

where Aμ = i〈λμ(α)|d|ψμ(α)〉 is the Berry potential
(connection), where d is the exterior derivative. Similarly,
γ B

μ ≡ γ b
μ + iξ b

μ, where the real part γ b
μ is the Berry phase, and

the imaginary part ξb
μ is the dissipative effect induced by the

geometric potential.
For non-Hermitian systems, the dissipative effect originates

from ξd
μ and ξb

μ, where ξd
μ depends on the eigenvalues of

H and describes the dynamical dissipation. ξb
μ depends on

the geometry of the evolution path. We refer to this as the
geometrical dissipative effect.

We may define a non-Abelian Berry connection (a gauge
potential one-form) by [15]

A= Akdαk = i

⎛
⎜⎜⎝

〈λ1|dψ1〉 · · · 〈λ1|dψM〉
...

. . .
...

〈λM |dψ1〉 · · · 〈λM |dψM〉

⎞
⎟⎟⎠ ,

(6)

where

Ak = i

⎛
⎜⎜⎝

〈λ1|∂kψ1〉 · · · 〈λ1|∂kψM〉
...

. . .
...

〈λM |∂kψ1〉 ... 〈λM |∂kψM〉

⎞
⎟⎟⎠ . (7)

It should be remarked that the non-Abelian Berry connection
involves all eigenstates of the system such that it can describe
the global properties of the system. We may define the global
Berry phase of the system [2]

Q = 1

2π

∮
TrA. (8)

We will demonstrate that the global Berry phase Q can be
used to identify the topological invariance for Hermitian and
two kinds of non-Hermitian systems. We call Q the global
Berry phase or the ground-state Berry phase. As in Hermitian
systems, we can obtain a few basic properties of the complex
Berry phase.

Claim 2.1. For the gauge transformation |ψ ′
μ〉 =

e−if (α)|ψμ〉 where e−if (α) is a single-value function modulo
2π , namely, f [α(t) + α(t + T )] = f [α(t)] + 2nπ , where n

is integer,
(a) the Berry potential is A′

ν = Aν + df ;
(b) the complex Berry phase is invariant mod 2π , γ ′G

ν =
γ G

ν + 2nνπ ;
(c) Q′ = Q + ∑

ν nν , where nν is integer corresponding to
the state ν.

Proof. (a) A′
ν = i〈λν(α)|eif (α)de−if (α)|ψν(α)〉= i〈λν(α)|d|

ψν(α)〉 + i〈λν(α)|ψν(α)〉eif (α)de−if (α) = Aν + df ; (b) noting
that

∮
df = 2nνπ , we have γ ′G

ν = ∮
A′

ν = γ G
ν + 2nνπ ; (c)

straightforwardly since TrA′ = TrA + Tr(df ) and
∮

Trdf =
Tr

∮
df = ∑

μ nμ; hence Q′ = 1
2π

∮
TrA′ = Q + ∑

μ nμ. �
It can be seen that γ G

ν and Q are gauge invariant modulo
2π . They will be used to describe quantum phase transitions
and the topological invariance of systems.

III. TOPOLOGICAL INVARIANCE AND THE QUANTUM
PHASE TRANSITION IN NON-HERMITIAN MODELS

A. Two-level non-Hermitian model

Let us consider a 2 × 2 non-Hermitian Hamiltonian,

H = HHermi + Hnon-Hermi, (9)

where the Hermitian part of the Hamiltonian is given by

HHermi = h · σ , (10)

where h(α) = (hx sin θα cos ϕα,hy sin θα sin ϕα,hz cos θα) de-
scribes the Hermitian properties. Thus,

HHermi =
[

hz cos θα (hx cos ϕα − ihy sin ϕα) sin θα

(hx cos ϕα + ihy sin ϕα) sin θα −hz cos θα

]
. (11)

The non-Hermitian part is

Hnon-Hermi = � · n(α), (12)

where

� =
(

0 �x

−�x 0

)
i +

(
0 −i�y

−i�y 0

)
j +

(
i�z 0

0 −i�z

)
k (13)

describes the non-Hermitian properties, and n(α) = (sin θα cos ϕα, sin θα sin ϕα, cos θα) is a unit vector of the Bloch sphere. We
have

Hnon-Hermi =
[

i�z cos θα (�x cos ϕα − i�y sin ϕα) sin θα

(−�x cos ϕα − i�y sin ϕα) sin θα −i�z cos θα

]
, (14)

012118-2



TOPOLOGICAL INVARIANCE AND GLOBAL BERRY PHASE . . . PHYSICAL REVIEW A 87, 012118 (2013)

where α is the evolution parameter. The total Hamiltonian is
rewritten as

H =
[

Z cos θα r (+)
α eiνα,1 sin θα

r (−)
α eiνα,2 sin θα −Z cos θα

]
; (15)

where Z = hz + i�z; r (±)
α =√

(hx ± �x)2 cos2 ϕα + (hy ± �y)2 sin2 ϕα; να,1 =
arctan[− hy+�y

hx+�x
tan ϕα]; να,2 = arctan[ hy−�y

hx−�x
tan ϕα]. To solve

the above Hamiltonian, the eigenvalues are obtained:

E± = ±
√

r2
αei2ν

(+)
α sin2 θα + Z2 cos2 θα (16)

where rα ≡
√

r (+)
α r (−)

α , and ν(+)
α ≡ να,2+να,1

2 . We define tan φα ≡
rαeiν

(+)
α

Z
tan θα , The corresponding wave functions are

|ψ+〉 =
(

ραe−iν(−)
α cos φα

2

sin φα

2

)
; |ψ−〉 =

(
−ραe−iν(−)

α sin φα

2

cos φα

2

)
,

(17)

where ν(−)
α ≡ να,2−να,1

2 and ρα ≡
√

r (+)
α /r (−)

α . Similarly the
wave functions in the dual space are

|λ+〉 =
(

e−iν
(−)
α

ρα
cos∗ φα

2

sin∗ φα

2

)
; |λ−〉 =

(
− e−iν

(−)
α

ρα
sin∗ φα

2

cos∗ φα

2

)
.

(18)

In the same way, the non-Abelian Berry connection may be
given by

A = i

( 〈λ+|dψ+〉 〈λ+|dψ−〉
〈λ−|dψ+〉 〈λ−|dψ−〉

)
(19)

where

A= 1

2
(σ0 + σz cos φα − σx sin φα)

(
i
dρα

ρα

+ dν(−)
α

)
+ σydφα

where σ0 = 12×2, σx,y,z are the Pauli matrices. It can be seen
that ρα , φα , and ν(−)

α vary periodically with ϕα and θα , which
are related to the evolution parameters α. Thus, similarly, the
global Berry phase can be obtained:

Q = 1

2π

∮
TrA = i

2π

∮
d ln ρα + 1

2π

∮
dν(−)

α . (20)

Notice that ρα is a periodic function of α, with periodicity∮
d ln ρα = ln ρα|ϕ=2π

ϕ=0 = 0. Integrating the second term in
Eq. (20), we can obtain

(1) Q = 1 for (�2
x − h2

x)(�2
y − h2

y) > 0;
(2) Q = 0 for (�2

x − h2
x)(�2

y − h2
y) < 0;

(3) Q = 1 for �x = �y = �z = 0, when the system
reduces to a general two-level Hermitian system.

It can be seen that the global Berry phase Q is equal to
1 or 0, depending only on �x,y at ±hx,y , but is independent
of the values of �x and �y beyond ±hx,y . However, �x,y =
±hx,y is a singularity and Q has no definition at these points.
Therefore, Q can be regarded as a topological index identifying
the topological invariance. Thus, when the parameters �x and
�y vary on crossing ±hx,y , it implies that a topological phase
transition occurs.

B. Bipartite dissipative model

To clearly see the topological invariance and the meaning
of the complex Berry phase of non-Hermitian systems, we
consider a bipartite one-dimensional (1D) lattice model with
dissipation on one of its sublattices, which can be realized
by double quantum dots [9]. An electron can hop between
sites and is initially localized on any nondecaying site. The
Hamiltonian of this system can be written as [9]

H =
∑
m

[εAc†mcm + εBd†
mdm + v(c†mdm + d†

mcm)

+ v′(c†mdm+1 + d
†
m+1cm)], (21)

where εA is the on-site energy of A sites, while εB = εA − i2�

is the on-site energy of B sites, and the imaginary part describes
the dissipation. v and v′ are the transition amplitudes of the
intracell and intercell hopping processes, respectively. They
are independent of the site index m; namely, the translation
symmetry is preserved. Thus, using Fourier transformation,
we can rewrite the Hamiltonian in Eq. (21) in reciprocal space,

H =
∑

k

(c†k,d
†
k )

[
εA vk

v∗
k εB

] (
ck

dk

)
, (22)

where vk = v + v′eik . It can be seen that this Hamiltonian is
non-Hermitian, but has different mathematical structure from
the first model in Eq. (9). By solving the eigenequation in
Eq. (22), we can obtain the eigenvalues

Ek,± = εA − i� ±
√

|vk|2 − �2, (23)

where s labels the pseudospin ±1. The corresponding eigen-
functions are

|ψ+〉 =
(

vk

|vk | cos φ

2

sin φ

2

)
; |ψ−〉 =

(
− vk

|vk | sin φ

2

cos φ

2

)
, (24)

and their dual wave functions in the dual space are

|λ+〉 =
(

vk

|vk | cos∗ φ

2

sin∗ φ

2

)
; |λ−〉 =

(
− vk

|vk | sin∗ φ

2

cos∗ φ

2

)
, (25)

where tan φ = |vk |
i�

, φ is a complex variable, and k is a wave
vector within the Brillouin zone, k ∈ (−π,π ). Similarly, the
non-Abelian Berry potential of the system can be given by

A = 1
2 (σ0 + σz cos φ − σx sin φ)∂kθkdk − i

2σy∂kφdk, (26)

where θk is defined by vk = |vk|e−iθk , and cos φ ≡ i�√
|vk |2−�2

.

Since the wave function is periodic in k, the wave vector k can
be regarded as a parameter inducing the Berry phase [16]. The
complex geometric phases in two bands can be expressed as

γ G
± =

∮
C

A± = 1

2

∮
(1 ± cos φ)dθk. (27)

Notice that the second terms for different states may cancel,
and the global Berry phase becomes

Q = 1

2π

∮
A = 1

2π

∮
dθk. (28)

Let q = v′/v be the ratio of the hopping amplitudes between
the A and B sites. For q > 1, as k varies from −π to π ,
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the closed integral path goes around the zero point, which
corresponds to the winding number, namely, Q = 1. For
0 < q < 1, the integral closed path does not go around the
zero point, implying that Q = 0. Q is the winding number
of the relative phase between components of the Bloch
wave function, which identifies the topological invariance of
this quantum dissipative system. This topological invariance
identified by Q is robust against local variation of q because
whether Q = 0 or 1 depends only on whether q < 1 or q > 1
instead of the q value. This implies a topological invariance
and Q can be regarded as a topological index. The TPT
occurs at q = 1 in the parameter space. Namely, this non-
Hermitian system has two states that have topological invari-
ance distinguished by 0 < q < 1 and q > 1 in the parameter
space.

On the other hand, an abrupt change of the Berry phase
in the ground state implies a quantum phase transition for
Hermitian systems [5]. For non-Hermitian systems an abrupt

change of the complex Berry phase in a quantum state also
implies a QPT. Suppose that electrons occupy the lower energy
band Ek,−, namely, the half-filling case, where |ψ−〉 is the
ground state. Thus, the abrupt change of the complex Berry
phase γ G

− implies a QPT.
In the integration of Eq. (27), for q < 1, the closed integral

path does not go around the zero point such that the first term
of the closed path integration equals zero, and for q > 1, the
closed integral path goes around the zero point such that the
first term of the integration equals 1. Thus, we have 1

2

∮
dθk =

π�(q − 1), where � is the step function. For the second term,
notice that

dθ

dk
= q(q + cos k)

1 + q2 + 2q cos k
= 1

2

(
1 + q2 − 1

1 + q2 + 2q cos k

)
,

(29)

so that the second term in Eq. (27) can be written

∮
cos φdθ = iη

2

∫ π

−π

dk√
1 + q2 + 2q cos k − η2

+ iη(q2 − 1)

2

∫ π

−π

dk

(1 + q2 + 2q cos k)
√

1 + q2 + 2q cos k − η2

= iη√
(1 + q2) − η2

∫ π/2

0

dk√
1 − 4q

(1+q)2−η2 sin2 k
+ iη(q − 1)

(q + 1)
√

(1 + q2) − η2

×
∫ π/2

0

dk[
1 − 4q

(1+q)2 sin2 k
]√

1 − 4q

(1+q)2−η2 sin2 k
, (30)

where η = �
v

. Letting x = 4q

(q+1)2 and y = 4q

(q+1)2−η2 , the above
integration can be rewritten as the elliptic integral, and the
complex Berry phase γ G

μ can be obtained:

γ G
± = π�(q − 1) ± i

η

2

√
y

q

(
K(y) + q − 1

q + 1
�(x,y)

)
,

(31)

where K(y) = ∫ π/2
0

dk√
1−y sin2 k

and �(x,y) =∫ π/2
0

dk

(1−x sin2 k)
√

1−y sin2 k
are the first and third kinds of

the complete elliptic integral, respectively.
The analytic properties of γ G

± in Eq. (31) reveal the
relationship between the complex Berry phase, the QPT,
and the TPT for non-Hermitian systems. We plot γ G

± in the
parameter space (q,η) in Figs. 1 and 2 for two pseudospin
states.

From the topological point of view, the parameter space is
divided into two parts, 0 < q < 1 and q > 1, corresponding to
topological phases (TPs) I Q = 0 and II Q = 1, respectively,
and the Berry phase γ

g
± has a step of π at q = 1. The abrupt

change of γ G
± in the parameter space implies a QPT. In quantum

evolution, for Hermitian systems the system properties are
sensitive near the exceptional points, where the energy levels
have avoided or diabolic crossings, with the parameter varying
near these points. For non-Hermitian systems, the eigenenergy
is complex. When the real part of the eigenenergy shows an

avoided crossing and the imaginary part a true crossing at the
exceptional point, it is called a type-I exceptional point, and
the reverse is called a type-II exceptional point [14]. We find
three basic properties of the exceptional points for this model.

FIG. 1. (Color online) (a) The geometric phases in the up-
pseudospin state in the parameter space (q,η). The TPT occurs at q =
1, where γ

g
+ has an abrupt change of π . The states in 0 < q < 1 and

q > 1 are two topological phases. γ g
+ diverges at the line d1. η = q +

1 implies a quantum phase transition. (b) The geometric dissipation
ξ

g
+ in the parameter space. ξ

g
+ = 0 in B3 and C3, meaning there is no

dissipative effect from the gauge potential. ξ
g
+ diverges at the line d2.
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FIG. 2. (Color online) (a) The geometric phases in the down-
pseudospin state in the parameter space (q,η). As in Fig. 1, the
TPT occurs at q = 1, where γ

g
− has an abrupt change of π . (b) The

geometric dissipation ξ
g
− in the parameter space. ξg

− = 0 in B3 and C3

and ξ
g
− �= 0 in other regions. ξ

g
− also diverges at the line d2.

Claim 3.1. In the region |q − 1| � η � q + 1 (B2 + C2 in
Figs. 1 and 2) there exists some k such that the complex energy
level has a true crossing, E+ = E−, namely, it is gapless.

Proof. E+ = E− leads to 1 + q2 + 2q cos k = η2. Namely,
1 + q2 ± 2q = η2

max(min). It implies that there exists some k

satisfying 1 + q2 + 2q cos k = η2 for η within |q − 1| � η �
q + 1.

Claim 3.2. In the region η � |1 − q| (C1 in Figs. 1 and 2)
there exists some k such that the energy-level crossing is
type I, Im(E+) = Im(E−), but Re(E+) �= Re(E−), implying
the existence of a gap.

Proof. For η � |1 − q|,
√

|vk|2 − �2 ∈ R such that
Re(E+) �= Re(E−) and Im(E+) = Im(E−).

Claim 3.3. In the region η � 1 + q (B3 + C3 in Figs. 1
and 2) there exists some k such that the energy-level crossing
is type II, Re(E+) = Re(E−), but Im(E+) �= Im(E−).

Proof. For η � 1 + q,
√

|vk|2 − �2 is purely imaginary
such that Re(E+) = Re(E−) and Im(E+) �= Im(E−).

The regions in the above three claims are sufficient but not
necessary for the conclusion. The exceptional point proper-
ties exhibit different energy band structures and dissipative
properties.

The Berry phases γ
g
± diverge logarithmically at the line

η = q + 1 labeled by d1 in Figs. 1(a) and 2(a), but have a finite
jump at the other line η = |q − 1| labeled by d2 in Figs. 1(b)
and 2(b). Similarly, ξ

g
± diverge logarithmically at η = |q −

1| and have a finite jump at η = q + 1. The divergence of
γ

g
± and ξ

g
± at these lines implies a quantum phase transition

[8]. The divergence of γ
g
± at the critical line d1, η = q + 1,

corresponds to resonance by interference of the Berry phase,
and the divergence of ξ

g
± at the line d2 implies an internal

transition between two states by diffusion. In other words, the
divergence of the Berry phase γ

g
± and its dissipative effect

ξ
g
± at the state transition lines corresponds to a change of the

energy band structure, such as when the parameter changes
from η � |q − 1| to η � |q − 1|, corresponding to the energy
band structure changing from gapless to gapped, as can be
seen from the three claims above.

The physical difference between TPs I and II is that charge
transfer between the system and environment does not exist in
TP I but does in TP II [9]. The bipartite dissipative model is
equivalent to the 1D non-Hermitian quantum walk model [9].
Rudner and Levitov use the average displacement of particles
〈�m〉 = ∑

m mPm to describe the particle decay, where Pm

measures the decay probability distribution [9].

IV. DISCUSSION

It should be remarked that the solutions in Eq. (4) is
obtained under the adiabatic approximation. Actually, there
are two regimes of the adiabatic theorem in a non-Hermitian
Hamiltonian [17]. For the weak non-Hermiticity regime, in
which the absolute values of the imaginary parts of the
eigenvalues are of the same order of magnitude as the slowness
parameter, the adiabatic theorem is valid for the non-Hermitian
Hamiltonian. For the strong non-Hermiticity regime, in which
at least some of the eigenvalues have imaginary parts much
larger (in absolute value) than the slowness parameter, the
adiabatic theorem for a non-Hermitian Hamiltonian is not
the same as that of the Hermitian Hamiltonian [17]. Nenciu
and Rasche generalized the adiabatic theorem for the strong
non-Hermiticity regime, proving that an adiabatic expansion
exists for evolution restricted to the subspace corresponding to
the least dissipative eigenvalues [17]. The high-order terms can
modify the adiabatic evolution in the strong non-Hermiticity
regime. However, the high-order terms do not disturb the
topological invariance we address here because we may
define the Berry connection without the high-order terms even
though the high-order terms modify the evolution. In fact,
even if we define the Berry connection with a first-order
correction [17], we can prove that the first-order correction
has no contribution to the topological invariance for a 2 × 2
non-Hermitian Hamiltonian. Namely,

TrA1 = i

E� − Ej

[〈∂kλ�|ψj 〉〈λj |∂kψ�〉 − 〈∂kλj |ψ�〉〈λ�|∂kψj 〉]
= 0, (32)

where |λ�(j )〉 and |ψ�(j )〉 are the eigenvectors in Eqs. (17), (18),
(24), and (25). It can be verified that the first-order correction
in the adiabatic approximation makes no contribution to the
global Berry phase.

In general, the quantum phase transition for an N -level
system occurs at an energy-level crossing or avoided crossing
(a so-called diabolic or exceptional point) as some parameter
is varied, which is related only to two energy levels and is
associated with a nonanalytic Berry phase; the other energy
levels are invariant with change in the parameters [5,6,8].
Thus, the divergence or jump of the Berry phase γ

g
− implies

a quantum phase transition [8]. However, a topological phase
transition is characterized by a topological index. A state with
topological invariance is robust against local perturbations.
A TPT is independent of energy-level crossings and avoided
crossings [7], as can be seen from the discussion above. We
generalized the global Berry phases Q to identify the TPT
for two kinds of non-Hermitian model. Q as a topological
index describes the topological invariance of a system. Q

involves all of the energy band structure [2,16]. It implies
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that the topological properties of a system depend on the
whole energy band structure which can actually be seen in
topological insulators [18]. Interestingly, topological invari-
ance and TPTs can occur in both Hermitian and non-Hermitian
systems. The topological invariance and TPT in the first model
originate from non-Hermitian off-diagonal elements, while
the topological invariance and TPT in the bipartite dissipative
model are induced by Hermitian off-diagonal elements of the
Hamiltonian. The non-Hermitian diagonal element � does
not induce topological invariance and a TPT, but induces a
QPT.

It should be emphasized that the complex Berry phase
was introduced for adiabatic evolution in some specific
models [8,14]. The global Berry phase has been used as
a topological index for the Hermitian Hamiltonian [2,19].
Here we found the gauge invariance of the complex Berry
phase and global Berry phase for a generic non-Hermitian
Hamiltonian and generalized the global Berry phase to identify
the topological invariance for a non-Hermitian Hamiltonian.
Moreover, we used two two-level non-Hermitian models to
reveal the relationship between the TPT and QPT.

V. CONCLUSIONS

In summary, we give the basic properties of the complex
Berry phase and the global Berry phases Q of non-Hermitian
systems and find that the complex Berry phase and the global
Berry phases Q are gauge invariant. We generalize the global
Berry phase to non-Hermitian systems as a topological index
to identify the topological invariance for two quite general
non-Hermitian models. For the bipartite dissipative model,
we give the phase diagram of the complex Berry phase in
the parameter space, in which an abrupt change of the Berry
phase reveals the QPT of the system, which corresponds to
an exceptional point. Our findings reveal some topological
invariance in non-Hermitian systems, and the relationships
between the complex Berry phase, topological invariance, the
QPT, and the TPT in non-Hermitian systems.
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