Geometrical aspects of \mathcal{PT} -invariant transfer matrices

J. J. Monzón,¹ A. G. Barriuso,¹ J. M. Montesinos-Amilibia,² and L. L. Sánchez-Soto^{1,3}

¹Departamento de Óptica, Facultad de Física, Universidad Complutense, 28040 Madrid, Spain

²Departamento de Geometría y Topología, Facultad de Matemáticas, Universidad Complutense, 28040 Madrid, Spain

³Max-Planck-Institut für die Physik des Lichts, Günther-Scharowsky-Straße 1, Bau 24, 91058 Erlangen, Germany

(Received 27 July 2012; published 14 January 2013)

We show that the transfer matrix for a \mathcal{PT} -invariant system, when recast in the appropriate variables, can be interpreted as a point in the (3 + 1)-dimensional de Sitter space. We introduce a natural \mathcal{PT} -invariant composition law for these matrices and confirm that their action appears as a Lorentz transformation. We elucidate the geometrical meaning of the \mathcal{PT} symmetry breaking and suggest that the cosmological event horizon arising in the de Sitter metric can be can be unraveled with a simple optical scheme.

DOI: 10.1103/PhysRevA.87.012111

PACS number(s): 11.30.Er, 42.25.-p, 03.65.Nk, 03.30.+p

I. INTRODUCTION

After the work of Bender and co-workers [1], considerable effort has been invested in the study of non-Hermitian potentials that have neither parity (\mathcal{P}) nor time-reversal symmetry (\mathcal{T}), yet they retain combined \mathcal{PT} invariance [2–10]. These systems can exhibit real energy eigenvalues, thus suggesting a possible generalization of quantum mechanics. Moreover, they can also display a spontaneous \mathcal{PT} symmetry breaking, at which the reality of the eigenvalues is lost [11]. This speculative concept has motivated an ongoing debate in several forefronts, including quantum field theories [12], Anderson models [13–15], complex crystals [16–19], Lie algebras [20–22], and open quantum systems [23], to mention a few.

Quite recently, the prospect of realizing \mathcal{PT} -symmetric potentials within the framework of optics has been suggested [24] and experimentally tested [25]. The complex refractive index takes on here the role of the potential so they can be accomplished through a judicious inclusion of index guiding and gain and loss regions. Besides, \mathcal{PT} -synthetic materials can exhibit several intriguing features; these include, among others, power oscillations [26], nonreciprocity of light propagation [27], Bloch oscillations [28], coherent perfect absorbers [29,30], nonlinear switching structures [31], or unidirectional invisibility [32].

Interesting as they are, these developments have one aspect in common that might be considered as a flaw: the physical interpretation of \mathcal{PT} symmetry remains obscure [33]. Although complex potentials have been used to phenomenologically describe loss mechanisms [34], there are further subtleties in the \mathcal{PT} invariance. It is our purpose to put forth a simple feature of these systems that, possibly, may help to answer this criticism. We argue that under \mathcal{PT} symmetry, the transfer matrix may be understood as a point in the de Sitter space and its action manifest as a Lorentz transformation.

Apart from a relativistic presentation of the topic, which has interest on its own, this gives rise to a nice picture in terms of hyperbolic geometry, which is a fundamental aspect of modern physics. As an illustration of this geometrical scenario, we reanalyze the existence of a spontaneous \mathcal{PT} symmetry breaking and we also suggest that the existence of a cosmological horizon might be unraveled by using a simple optical setup.

II. \mathcal{PT} -INVARIANT TRANSFER MATRIX

The main ideas we wish to put forward can be captured by considering the monochromatic wave propagation in a dielectric structure with a spatially dependent complex permittivity $\varepsilon(x)$, in the plane-wave and scalar approximations. This is fully equivalent to the scattering by a one-dimensional complex potential in quantum mechanics [35–37].

As sketched in Fig. 1, the structure is embedded in the region |x| < L/2, where $\varepsilon(x)$ is complex; it is the imaginary part which describes the local gain or loss of the medium. Outside this region, $\varepsilon(x)$ is assumed to be real and equal to $\varepsilon(x) = n_0^2$, where n_0 represents a constant background index (in a practical implementation, n_0 is the refractive index of the waveguide or the fiber in which the system is embedded).

By writing the electric field in the structure as $\mathcal{E}(x,t) = E(x) \exp(-i\omega t) + \text{c.c.}$, where c.c. is the complex conjugate and ω is the (complex) frequency of the field, the spatial mode envelope E(x) satisfies the Helmholtz equation

$$\left[\frac{d^2}{dx^2} + \frac{\omega^2}{c^2}\varepsilon(x)\right]E(x) = 0, \qquad (1)$$

with c being the speed of light in vacuum. The most general solution of Eq. (1) can be written as

$$E(x) = \begin{cases} A_{+} \exp(ikn_{0}x) + A_{-} \exp(-ikn_{0}x), & x < -L/2, \\ B_{+} \exp(ikn_{0}x) + B_{-} \exp(-ikn_{0}x), & x > L/2, \end{cases}$$
(2)

where $k = \omega/c$ is the wave vector in vacuum, the subscripts + and - indicate that the waves propagate to the right and to the left, respectively, and the amplitudes *A* and *B* refer to the end points *a* and *b* of the structure, as marked in Fig. 1.

The linearity of the problem allows one to relate the wave amplitudes on both sides of the structure by

$$\begin{pmatrix} A_{-} \\ A_{+} \end{pmatrix} = \mathbf{M} \begin{pmatrix} B_{-} \\ B_{+} \end{pmatrix}, \tag{3}$$

where **M** is the transfer matrix, which can be written as [38]

$$\mathbf{M} = \begin{pmatrix} 1/T^* & R_l/T \\ -R_r/T & 1/T \end{pmatrix},\tag{4}$$

FIG. 1. (Color online) Illustration of the wave scattering in a onedimensional optical \mathcal{PT} -symmetric structure with complex dielectric constant $\epsilon(x)$, displaying the input (A_+ and B_- , in red) and output (A_- and B_+ , in blue) complex amplitudes. In the upper panel we schematize a typical behavior for the real and imaginary parts of the complex refractive index n(x).

with the constraint det $\mathbf{M} = 1$. Here, R_l and R_r stand for the reflection coefficients for left $(a \rightarrow b)$ and right $(b \rightarrow a)$ incidence, whereas $T \equiv T_l = T_r$ is the direction-independent transmission coefficient. They must be determined from the boundary conditions and, in general, are frequency dependent. In fact, there might exist spectral singularities for those frequencies where *T* and consequently, R_l and R_r , diverge [37]. We can look at a spectral singularity as a frequency for which the two solutions in Eq. (2) become linearly dependent, i.e., they have a vanishing Wronskian.

The \mathcal{PT} invariance leads to the requirement $\varepsilon(x) = \varepsilon^*(-x)$. In terms of the complex refractive index $\varepsilon^2(x) = n(x)$, the real part is then an even function of position $n_{\rm R}(x) = n_{\rm R}(-x)$, while the imaginary is odd $n_{\rm I}(x) = -n_{\rm I}(-x)$. In physical words, this indicates that there is a balance of absorption and amplification in parity-related regions.

The \mathcal{PT} operation on **M** can be formulated as $\mathcal{PT}\mathbf{M}(\omega) = \sigma_x \mathbf{M}(\omega^*)\sigma_x$, where σ_x is the corresponding Pauli matrix [35,36]. Hence one works out the condition

$$\operatorname{Re}\left(\frac{R_l}{T}\right) = \operatorname{Re}\left(\frac{R_r}{T}\right) = 0.$$
 (5)

Alternatively, we can rewrite this as

$$\rho_l - \tau = \pm \pi/2, \quad \rho_r - \tau = \pm \pi/2,$$
 (6)

where $\tau = \arg(T)$ and $\rho_{l,r} = \arg(R_{l,r})$. If we look at the complex numbers R_l , R_r , and T as phasors, Eq. (6) tells us that R_l and R_r are always collinear, while T is simultaneously perpendicular to them. We draw attention to the fact that the same expressions have been derived for lossless symmetric beam splitters [39]; here we have shown that they hold true for any \mathcal{PT} structure.

Next we examine the behavior of the scattering matrix, defined by

$$\mathbf{S} = \begin{pmatrix} R_l & T \\ T & R_r \end{pmatrix},\tag{7}$$

so it relates outgoing to incoming amplitudes. Indeed, the eigenvalues of **S**, denoted as s_{\pm} , can be displayed in terms of the matrix elements of **M**. When \mathcal{PT} symmetry holds, either each eigenvalue of **S** is itself unimodular or forms pairs with reciprocal moduli. These two possibilities correspond to symmetric and symmetry-broken scattering behavior [11].

FIG. 2. (Color online) Semilog plot of *S*-matrix eigenvalue intensities $\log |s_{\pm}|^2$ as a function of ωL for a \mathcal{PT} -symmetric slab of length *L* with balanced refractive index $n = 3 \pm 0.005i$ in each half. The \mathcal{PT} symmetry is spontaneously broken at $\omega_c \simeq 1418.21/L$.

The criterion for the eigenvalues of **S** to be unimodular is $|(R_l - R_r)/T| \leq 2$. Upon varying the setup parameters (e.g., the frequency), violating this inequality brings us into the broken-symmetry phase.

To be specific, we shall benefit from the simple model of a single slab of total length *L* with fixed (and constant) refractive index $n = n_R \pm in_I$ in each half [30]. In this case, the imaginary part of the index plays the role of the breaking parameter and the critical frequency can be shown to be $\omega_c \simeq c/(n_I L) \ln(2n_R/n_I)$. Figure 2 shows the appearance of that transition as a function of ωL and how in the broken-symmetry phase a net amplification occurs.

III. GEOMETRICAL INTERPRETATION

In view of the general form of the transfer matrix and the conditions (5) imposed by the \mathcal{PT} invariance, we can generically write **M** as

$$\mathbf{M} = \begin{pmatrix} x + iy \ i(z+t) \\ i(z-t) \ x - iy \end{pmatrix},\tag{8}$$

where (x, y, z, t) are arbitrary real numbers we shall immediately interpret as spatio-temporal coordinates. In fact, using the transmission and reflection coefficients, they read as

$$x = \operatorname{Re}\left(\frac{1}{T}\right), \quad y = -\operatorname{Im}\left(\frac{1}{T}\right),$$

$$z = \frac{R_l - R_r}{2iT}, \quad t = \frac{R_l + R_r}{2iT}.$$
(9)

The condition of det $\mathbf{M} = 1$ gives now

$$x^{2} + y^{2} + z^{2} - t^{2} = 1.$$
 (10)

In other words, we can regard the matrix **M** as defining a point in a single-sheeted unit hyperboloid, which is known as the de Sitter space dS_3 . From now on, **M** will denote both the transfer matrix and the associated point $(x, y, z, t)^T$ it determines on dS_3 (the superscript *T* indicates the transpose).

We recall that the de Sitter space is perhaps the simplest example of pseudo-Riemanian structure [40], equivalent to a pseudosphere. The causal structure of dS_3 is induced by the restriction of the Lorentzian geometry of the ambient Minkowski space-time [41].

When two conventional Hermitian systems, represented by transfer matrices **M** and **N**, are coupled, the resulting one is given by the matrix product **MN**, taken in the appropriate order. However, when those systems are \mathcal{PT} invariant, to preserve such a symmetry we have to piece them together either as **MNM** or **NMN**. From a mathematical viewpoint it seems thus natural to define the \mathcal{PT} composition law as $\mathbf{M} \odot \mathbf{N} = \mathbf{MNM}$. This resembles the conjugation by matrix **M**, but please note carefully that the inverse of **M** does not appear here. This law is not associative (therefore these matrices do not form a group) and has only left unit element $\mathbb{1} \odot \mathbf{M} = \mathbb{1} \mathbf{M} \mathbb{1} = \mathbf{M}, \mathbf{M} \odot \mathbb{1} = \mathbf{M} \mathbb{1} \mathbf{M} = \mathbf{M}^2$. The right inverse of **M** is \mathbf{M}^{-2} and the left inverse $\mathbf{M}^{-1/2}$.

Let $(a,b,c,d)^T$ be the coordinates of the matrix **N** in dS_3 and $(a',b',c',d')^T$ the coordinates of **M** \odot **N**. A direct calculation gives

$$\begin{pmatrix} a'\\b'\\c'\\d' \end{pmatrix} = \Lambda(\mathbf{M}) \begin{pmatrix} a\\b\\c\\d \end{pmatrix}, \tag{11}$$

where

$$\Lambda(\mathbf{M}) = \begin{pmatrix} -1 + 2x^2 & -2xy & -2xz & 2xt \\ 2xy & 1 - 2y^2 & -2yz & 2yt \\ 2xz & -2yz & 1 - 2z^2 & 2zt \\ 2xt & -2yt & -2zt & 1 + 2t^2 \end{pmatrix}.$$
 (12)

Furthermore, $\Lambda(\mathbf{M})^T g \Lambda(\mathbf{M}) = g$, with g = diag(1,1,1,-1) being the metric tensor. This proves that the transformation $\Lambda(\mathbf{M})$ induced by \mathbf{M} is a Lorentz transformation and maps dS_3 into itself [so that $\Lambda(\mathbf{M})$ realizes an isometry of the de Sitter space]. This must to be taken into account when dealing with periodic \mathcal{PT} systems.

To illustrate our approach, let us analyze from this geometrical perspective the \mathcal{PT} symmetry-breaking point discussed before. Using the space-time coordinates (9), the eigenvalues of the scattering matrix are

$$s_{\pm} = \frac{it \pm \sqrt{1 - z^2}}{x - iy} \,. \tag{13}$$

FIG. 3. (Color online) Left panel: Space-time coordinates associated with the same \mathcal{PT} -symmetric slab of length *L* as in Fig. 2, with balanced refractive index $n = 3 \pm 0.005i$ in each half, as a function of ωL . Central panel: The associated trajectory in the de Sitter space dS_3 showing only two of the three space coordinates. The marked yellow point corresponds to the critical frequency ω_c . Right panel: A zoomed version of the previous trajectory, where small oscillations can be appreciated. In this plot, $r^2 = x^2 + y^2$.

FIG. 4. (Color online) Critical points for a \mathcal{PT} -symmetric slab of length *L* with balanced refractive index $n = 3 \pm n_1 i$, when n_1 varies from 0.005 to 0.105 in steps of 0.005. All the points are located in the light cone (14), which is the intersection of dS_3 with the plane $z^2 = 1$.

Both eigenvalues are unimodular when $z^2 < 1$, while when $z^2 > 1$ they form pairs with reciprocal moduli. The breaking occurs at the points characterized by $z^2 = 1$. This corresponds to the (2 + 1)-dimensional light cone

$$x^2 + y^2 - t^2 = 0, (14)$$

whose vertex is at $(0,0,\pm 1,0)^T$.

In Fig. 3 we have represented the space-time coordinates associated to the slab used before in Fig. 2. The yellow mark corresponds to the breaking point. In the right inset we see that the trajectory on dS_3 is oscillatory when seen with the proper resolution.

In Fig. 4 we have plotted the critical points obtained for the same simple slab model when the imaginary part $n_{\rm I}$ varies, confirming that all of them lie in the light cone (14).

The de Sitter geometry finds its most important physical applications in cosmology, for the induced metric $ds^2 = dx^2 + dy^2 + dz^2 - dt^2$ is a vacuum solution of Einstein's equations with a cosmological constant term. It is customary to introduce in dS_3 static coordinates $x = r \cos \varphi$, $y = r \sin \varphi$, $z = \sqrt{1 - r^2} \cosh \lambda$, $t = \sqrt{1 - r^2} \sinh \lambda$. In terms of them the metric reads

$$ds^{2} = -(1 - r^{2})d\lambda^{2} + \frac{dr^{2}}{1 - r^{2}} + r^{2}d\varphi^{2}.$$
 (15)

At r = 1 a cosmological horizon appears, which has been under heated debate [42]. The formal analogy drawn in this paper allows one to explore that horizon by means, e.g., of the simple optical \mathcal{PT} slab considered so far. This constitutes yet another instance of an analog for gravitational phenomena [43]. Work in that direction is in progress and will be presented elsewhere.

IV. CONCLUDING REMARKS

Modern geometry provides a useful and, at the same time, simple language in which numerous physical ideas and concepts may be clearly formulated and effectively treated.

J. J. MONZÓN et al.

In this paper we have devised a geometrical tool to analyze \mathcal{PT} invariance in a concise way that, in addition, can be related to other branches of physics. This picture allows space-time phenomena to be transplanted to the more familiar arena of the optical world. However, note that this gateway works in both directions. Here it has allowed us to establish a relativistic presentation of \mathcal{PT} invariance, but optics can be also used as a powerful instrument for visualizing special relativity [44]. Our paper is one further step in this fruitful interplay between optics and relativity.

- C. M. Bender and S. Boettcher, Phys. Rev. Lett. **80**, 5243 (1998);
 C. M. Bender, S. Boettcher, and P. N. Meisinger, J. Math. Phys. **40**, 2201 (1999);
 C. M. Bender, D. C. Brody, and H. F. Jones, Phys. Rev. Lett. **89**, 270401 (2002);
 C. M. Bender, Am. J. Phys. **71**, 1095 (2003);
 Rep. Prog. Phys. **70**, 947 (2007);
 C. M. Bender and P. D. Mannheim, Phys. Lett. A **374**, 1616 (2010).
- [2] F. Cannata, G. Junker, and J. Trost, Phys. Lett. A 246, 219 (1998).
- [3] G. Levai and M. Znojil, J. Phys. A 33, 7165 (2000).
- [4] P. Dorey, C. Dunning, and R. Tateo, J. Phys. A 34, L391 (2001).
- [5] Z. Ahmed, Phys. Lett. A 282, 343 (2001).
- [6] A. Mostafazadeh, J. Math. Phys. 43, 3944 (2002); J. Phys. A 36, 7081 (2003); A. Mostafazadeh and A. Batal, *ibid.* 37, 11645 (2004).
- [7] S. Weigert, Phys. Rev. A 68, 062111 (2003).
- [8] H. F. Jones, J. Phys. A **38**, 1741 (2005).
- [9] U. Günther and B. F. Samsonov, Phys. Rev. Lett. 101, 230404 (2008).
- [10] Q.-H. Wang, S.-Z. Chia, and J.-H. Zhang, J. Phys. A 43, 295301 (2010).
- [11] E. Delabaere and F. Pham, Phys. Lett. A 250, 25 (1998);
 S. Klaiman, U. Günther, and N. Moiseyev, Phys. Rev. Lett. 101, 080402 (2008); A. Guo, G. J. Salamo, D. Duchesne, R. Morandotti, M. Volatier-Ravat, V. Aimez, G. A. Siviloglou, and D. N. Christodoulides, *ibid.* 103, 093902 (2009); G. Levai, Pramana 73, 329 (2009).
- [12] C. M. Bender, D. C. Brody, and H. F. Jones, Phys. Rev. D 70, 025001 (2004); H. F. Jones, J. Phys. A 39, 10123 (2006).
- [13] I. Y. Goldsheid and B. A. Khoruzhenko, Phys. Rev. Lett. 80, 2897 (1998).
- [14] J. Heinrichs, Phys. Rev. B 63, 165108 (2001).
- [15] L. G. Molinari, J. Phys. A 42, 265204 (2009).
- [16] C. M. Bender, G. V. Dunne, and P. N. Meisinger, Phys. Lett. A 252, 272 (1999).
- [17] H. F. Jones, Phys. Lett. A 262, 242 (1999).
- [18] M. Znojil, Phys. Lett. A 285, 7 (2001).
- [19] Z. Ahmed, Phys. Lett. A 286, 231 (2001).
- [20] B. Bagchia and C. Quesne, Phys. Lett. A 273, 285 (2000).
- [21] C. M. Bender and S. P. Klevansky, Phys. Rev. A 84, 024102 (2011).
- [22] O. Cherbal and D. A. Trifonov, Phys. Rev. A **85**, 052123 (2012).
- [23] I. Rotter, J. Phys. A 42, 153001 (2009).

ACKNOWLEDGMENTS

We wish to acknowledge discussions with the participants of the 518th Heraeus Seminar, "Quantum-Optical Analogies: A Bridge between Classical and Quantum Physics," at the Physik-Zentrum in Bad Honnef, especially with Gerd Leuchs, Demetrios Christodoulides, and Ali Mostafazadeh. Financial support from the Spanish DGI (Grant FIS2011-26786) and the UCM-BSCH program (Grant GR-920992) is gratefully acknowledged.

- [24] R. El-Ganainy, K. G. Makris, D. N. Christodoulides, and Z. H. Musslimani, Opt. Lett. 32, 2632 (2007); O. Bendix, R. Fleischmann, T. Kottos, and B. Shapiro, Phys. Rev. Lett. 103, 030402 (2009).
- [25] C. E. Ruter, K. G. Makris, R. El-Ganainy, D. N. Christodoulides, M. Segev, and D. Kip, Nat. Phys. 6, 192 (2010).
- [26] K. G. Makris, R. El-Ganainy, D. N. Christodoulides, and Z. H. Musslimani, Phys. Rev. Lett. 100, 103904 (2008).
- [27] M. C. Zheng, D. N. Christodoulides, R. Fleischmann, and T. Kottos, Phys. Rev. A 82, 010103 (2010).
- [28] S. Longhi, Phys. Rev. Lett. 103, 123601 (2009).
- [29] S. Longhi, Phys. Rev. A 82, 031801 (2010).
- [30] Y. D. Chong, L. Ge, and A. D. Stone, Phys. Rev. Lett. 106, 093902 (2011).
- [31] A. A. Sukhorukov, Z. Xu, and Y. S. Kivshar, Phys. Rev. A 82, 043818 (2010).
- [32] Z. Lin, H. Ramezani, T. Eichelkraut, T. Kottos, H. Cao, and
 D. N. Christodoulides, Phys. Rev. Lett. **106**, 213901 (2011);
 S. Longhi, J. Phys. A **44**, 485302 (2011).
- [33] S. Weigert, Czech J. Phys. 54, 1139 (2004); L. Jin and Z. Song, J. Phys. A 44, 375304 (2011).
- [34] J. G. Muga, J. P. Palao, B. Navarro, and I. L. Egusquiza, Phys. Rep. 395, 357 (2004).
- [35] Z. Ahmed, Phys. Rev. A 64, 042716 (2001); Phys. Lett. A 324, 152 (2004); J. Phys. A 45, 032004 (2012).
- [36] F. Cannata, J.-P. Dedonder, and A. Ventura, Ann. Phys. (NY) 322, 397 (2007).
- [37] A. Mostafazadeh, Phys. Rev. Lett. 102, 220402 (2009).
- [38] L. L. Sánchez-Soto, J. J. Monzón, A. G. Barriuso, and J. Cariñena, Phys. Rep. 513, 191 (2012).
- [39] L. Mandel and E. Wolf, *Optical Coherence and Quantum Optics* (Cambridge University Press, Cambridge, 1995).
- [40] B. O'Neill, Semi-Riemannian Geometry with Applications to Relativity (Academic Press, London, 1983).
- [41] U. Moschella, Seminaire Poincaré 1, 1 (2005).
- [42] S. W. Hawking and G. F. R. Ellis, *The Large Scale Structure of Space-Time* (Cambridge University Press, Cambridge, 1999).
- [43] U. Leonhardt, C. Maia, and R. Schützhold, New J. Phys. 14, 105032 (2012).
- [44] J. J. Monzón and L. L. Sánchez-Soto, Opt. Commun. 162, 1 (1999); J. Opt. Soc. Am. A 16, 2013 (1999); J. J. Monzón, A. G. Barriuso, L. L. Sánchez-Soto, and J. M. Montesinos-Amilibia, Phys. Rev. A 84, 023830 (2011).