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Geometrical aspects of PT -invariant transfer matrices
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We show that the transfer matrix for a PT -invariant system, when recast in the appropriate variables, can be
interpreted as a point in the (3 + 1)-dimensional de Sitter space. We introduce a naturalPT -invariant composition
law for these matrices and confirm that their action appears as a Lorentz transformation. We elucidate the
geometrical meaning of the PT symmetry breaking and suggest that the cosmological event horizon arising in
the de Sitter metric can be can be unraveled with a simple optical scheme.
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I. INTRODUCTION

After the work of Bender and co-workers [1], considerable
effort has been invested in the study of non-Hermitian
potentials that have neither parity (P) nor time-reversal sym-
metry (T ), yet they retain combined PT invariance [2–10].
These systems can exhibit real energy eigenvalues, thus
suggesting a possible generalization of quantum mechanics.
Moreover, they can also display a spontaneous PT symmetry
breaking, at which the reality of the eigenvalues is lost [11].
This speculative concept has motivated an ongoing debate
in several forefronts, including quantum field theories [12],
Anderson models [13–15], complex crystals [16–19], Lie
algebras [20–22], and open quantum systems [23], to mention
a few.

Quite recently, the prospect of realizing PT -symmetric po-
tentials within the framework of optics has been suggested [24]
and experimentally tested [25]. The complex refractive index
takes on here the role of the potential so they can be accom-
plished through a judicious inclusion of index guiding and gain
and loss regions. Besides, PT -synthetic materials can exhibit
several intriguing features; these include, among others, power
oscillations [26], nonreciprocity of light propagation [27],
Bloch oscillations [28], coherent perfect absorbers [29,30],
nonlinear switching structures [31], or unidirectional invisi-
bility [32].

Interesting as they are, these developments have one aspect
in common that might be considered as a flaw: the physical in-
terpretation of PT symmetry remains obscure [33]. Although
complex potentials have been used to phenomenologically
describe loss mechanisms [34], there are further subtleties
in the PT invariance. It is our purpose to put forth a simple
feature of these systems that, possibly, may help to answer
this criticism. We argue that under PT symmetry, the transfer
matrix may be understood as a point in the de Sitter space and
its action manifest as a Lorentz transformation.

Apart from a relativistic presentation of the topic, which
has interest on its own, this gives rise to a nice picture in
terms of hyperbolic geometry, which is a fundamental aspect
of modern physics. As an illustration of this geometrical
scenario, we reanalyze the existence of a spontaneous PT
symmetry breaking and we also suggest that the existence of
a cosmological horizon might be unraveled by using a simple
optical setup.

II. PT -INVARIANT TRANSFER MATRIX

The main ideas we wish to put forward can be captured
by considering the monochromatic wave propagation in
a dielectric structure with a spatially dependent complex
permittivity ε(x), in the plane-wave and scalar approximations.
This is fully equivalent to the scattering by a one-dimensional
complex potential in quantum mechanics [35–37].

As sketched in Fig. 1, the structure is embedded in the
region |x| < L/2, where ε(x) is complex; it is the imaginary
part which describes the local gain or loss of the medium.
Outside this region, ε(x) is assumed to be real and equal
to ε(x) = n2

0, where n0 represents a constant background
index (in a practical implementation, n0 is the refractive
index of the waveguide or the fiber in which the system is
embedded).

By writing the electric field in the structure as E(x,t) =
E(x) exp(−iωt) + c.c., where c.c. is the complex conjugate
and ω is the (complex) frequency of the field, the spatial mode
envelope E(x) satisfies the Helmholtz equation

[
d2

dx2
+ ω2

c2
ε(x)

]
E(x) = 0 , (1)

with c being the speed of light in vacuum. The most general
solution of Eq. (1) can be written as

E(x) =
⎧⎨
⎩

A+ exp(ikn0x) + A− exp(−ikn0x) , x < −L/2,

B+ exp(ikn0x) + B− exp(−ikn0x) , x > L/2,

(2)

where k = ω/c is the wave vector in vacuum, the subscripts
+ and − indicate that the waves propagate to the right and to
the left, respectively, and the amplitudes A and B refer to the
end points a and b of the structure, as marked in Fig. 1.

The linearity of the problem allows one to relate the wave
amplitudes on both sides of the structure by(

A−
A+

)
= M

(
B−
B+

)
, (3)

where M is the transfer matrix, which can be written as [38]

M =
(

1/T ∗ Rl/T

−Rr/T 1/T

)
, (4)
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FIG. 1. (Color online) Illustration of the wave scattering in a one-
dimensional optical PT -symmetric structure with complex dielectric
constant ε(x), displaying the input (A+ and B−, in red) and output
(A− and B+, in blue) complex amplitudes. In the upper panel we
schematize a typical behavior for the real and imaginary parts of the
complex refractive index n(x).

with the constraint det M = 1. Here, Rl and Rr stand for
the reflection coefficients for left (a → b) and right (b → a)
incidence, whereas T ≡ Tl = Tr is the direction-independent
transmission coefficient. They must be determined from the
boundary conditions and, in general, are frequency dependent.
In fact, there might exist spectral singularities for those fre-
quencies where T and consequently, Rl and Rr , diverge [37].
We can look at a spectral singularity as a frequency for which
the two solutions in Eq. (2) become linearly dependent, i.e.,
they have a vanishing Wronskian.

ThePT invariance leads to the requirement ε(x) = ε∗(−x).
In terms of the complex refractive index ε2(x) = n(x), the real
part is then an even function of position nR(x) = nR(−x),
while the imaginary is odd nI(x) = −nI(−x). In physical
words, this indicates that there is a balance of absorption and
amplification in parity-related regions.

The PT operation on M can be formulated as
PT M(ω) = σx M(ω∗) σx , where σx is the corresponding Pauli
matrix [35,36]. Hence one works out the condition

Re

(
Rl

T

)
= Re

(
Rr

T

)
= 0. (5)

Alternatively, we can rewrite this as

ρl − τ = ±π/2, ρr − τ = ±π/2 , (6)

where τ = arg(T ) and ρl,r = arg(Rl,r ). If we look at the
complex numbers Rl , Rr , and T as phasors, Eq. (6) tells us
that Rl and Rr are always collinear, while T is simultaneously
perpendicular to them. We draw attention to the fact that the
same expressions have been derived for lossless symmetric
beam splitters [39]; here we have shown that they hold true for
any PT structure.

Next we examine the behavior of the scattering matrix,
defined by

S =
(

Rl T

T Rr

)
, (7)

so it relates outgoing to incoming amplitudes. Indeed, the
eigenvalues of S, denoted as s±, can be displayed in terms
of the matrix elements of M. When PT symmetry holds,
either each eigenvalue of S is itself unimodular or forms pairs
with reciprocal moduli. These two possibilities correspond
to symmetric and symmetry-broken scattering behavior [11].
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FIG. 2. (Color online) Semilog plot of S-matrix eigenvalue
intensities log |s±|2 as a function of ωL for a PT -symmetric slab
of length L with balanced refractive index n = 3 ± 0.005i in each
half. ThePT symmetry is spontaneously broken at ωc � 1418.21/L.

The criterion for the eigenvalues of S to be unimodular is
|(Rl − Rr )/T | � 2. Upon varying the setup parameters (e.g.,
the frequency), violating this inequality brings us into the
broken-symmetry phase.

To be specific, we shall benefit from the simple model
of a single slab of total length L with fixed (and constant)
refractive index n = nR ± inI in each half [30]. In this case,
the imaginary part of the index plays the role of the breaking
parameter and the critical frequency can be shown to be ωc �
c/(nIL) ln(2nR/nI). Figure 2 shows the appearance of that
transition as a function of ωL and how in the broken-symmetry
phase a net amplification occurs.

III. GEOMETRICAL INTERPRETATION

In view of the general form of the transfer matrix and
the conditions (5) imposed by the PT invariance, we can
generically write M as

M =
(

x + iy i(z + t)
i(z − t) x − iy

)
, (8)

where (x,y,z,t) are arbitrary real numbers we shall immedi-
ately interpret as spatio-temporal coordinates. In fact, using
the transmission and reflection coefficients, they read as

x = Re

(
1

T

)
, y = −Im

(
1

T

)
,

(9)

z = Rl − Rr

2iT
, t = Rl + Rr

2iT
.

The condition of det M = 1 gives now

x2 + y2 + z2 − t2 = 1. (10)

In other words, we can regard the matrix M as defining a point
in a single-sheeted unit hyperboloid, which is known as the de
Sitter space dS3. From now on, M will denote both the transfer
matrix and the associated point (x,y,z,t)T it determines on dS3

(the superscript T indicates the transpose).
We recall that the de Sitter space is perhaps the simplest

example of pseudo-Riemanian structure [40], equivalent to
a pseudosphere. The causal structure of dS3 is induced by
the restriction of the Lorentzian geometry of the ambient
Minkowski space-time [41].
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When two conventional Hermitian systems, represented by
transfer matrices M and N, are coupled, the resulting one is
given by the matrix product MN, taken in the appropriate
order. However, when those systems are PT invariant, to
preserve such a symmetry we have to piece them together
either as MNM or N M N. From a mathematical viewpoint
it seems thus natural to define the PT composition law
as M � N = M N M. This resembles the conjugation by
matrix M, but please note carefully that the inverse of M
does not appear here. This law is not associative (therefore
these matrices do not form a group) and has only left unit
element 1 � M = 1M 1 = M, M � 1 = M 1M = M2. The
right inverse of M is M−2 and the left inverse M−1/2.

Let (a,b,c,d)T be the coordinates of the matrix N in dS3 and
(a′,b′,c′,d ′)T the coordinates of M � N. A direct calculation
gives ⎛

⎜⎝
a′
b′
c′
d ′

⎞
⎟⎠ = 	(M)

⎛
⎜⎝

a

b

c

d

⎞
⎟⎠ , (11)

where

	(M) =

⎛
⎜⎜⎝

−1 + 2x2 −2xy −2xz 2xt

2xy 1 − 2y2 −2yz 2yt

2xz −2yz 1 − 2z2 2zt

2xt −2yt −2zt 1 + 2t2

⎞
⎟⎟⎠ . (12)

Furthermore, 	(M)T g 	(M) = g, with g = diag(1,1,1,−1)
being the metric tensor. This proves that the transformation
	(M) induced by M is a Lorentz transformation and maps
dS3 into itself [so that 	(M) realizes an isometry of the de
Sitter space]. This must to be taken into account when dealing
with periodic PT systems.

To illustrate our approach, let us analyze from this geomet-
rical perspective the PT symmetry-breaking point discussed
before. Using the space-time coordinates (9), the eigenvalues
of the scattering matrix are

s± = it ± √
1 − z2

x − iy
. (13)
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FIG. 3. (Color online) Left panel: Space-time coordinates associ-
ated with the same PT -symmetric slab of length L as in Fig. 2, with
balanced refractive index n = 3 ± 0.005i in each half, as a function
of ωL. Central panel: The associated trajectory in the de Sitter space
dS3 showing only two of the three space coordinates. The marked
yellow point corresponds to the critical frequency ωc. Right panel: A
zoomed version of the previous trajectory, where small oscillations
can be appreciated. In this plot, r2 = x2 + y2.
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FIG. 4. (Color online) Critical points for a PT -symmetric slab of
length L with balanced refractive index n = 3 ± nIi, when nI varies
from 0.005 to 0.105 in steps of 0.005. All the points are located in
the light cone (14), which is the intersection of dS3 with the plane
z2 = 1.

Both eigenvalues are unimodular when z2 < 1, while when
z2 > 1 they form pairs with reciprocal moduli. The breaking
occurs at the points characterized by z2 = 1. This corresponds
to the (2 + 1)-dimensional light cone

x2 + y2 − t2 = 0 , (14)

whose vertex is at (0,0,±1,0)T .
In Fig. 3 we have represented the space-time coordinates

associated to the slab used before in Fig. 2. The yellow mark
corresponds to the breaking point. In the right inset we see that
the trajectory on dS3 is oscillatory when seen with the proper
resolution.

In Fig. 4 we have plotted the critical points obtained for
the same simple slab model when the imaginary part nI varies,
confirming that all of them lie in the light cone (14).

The de Sitter geometry finds its most important physical
applications in cosmology, for the induced metric ds2 =
dx2 + dy2 + dz2 − dt2 is a vacuum solution of Einstein’s
equations with a cosmological constant term. It is customary
to introduce in dS3 static coordinates x = r cos ϕ, y = r sin ϕ,
z = √

1 − r2 cosh λ, t = √
1 − r2 sinh λ. In terms of them the

metric reads

ds2 = −(1 − r2)dλ2 + dr2

1 − r2
+ r2dϕ2 . (15)

At r = 1 a cosmological horizon appears, which has been un-
der heated debate [42]. The formal analogy drawn in this paper
allows one to explore that horizon by means, e.g., of the simple
optical PT slab considered so far. This constitutes yet another
instance of an analog for gravitational phenomena [43].
Work in that direction is in progress and will be presented
elsewhere.

IV. CONCLUDING REMARKS

Modern geometry provides a useful and, at the same
time, simple language in which numerous physical ideas and
concepts may be clearly formulated and effectively treated.
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In this paper we have devised a geometrical tool to analyze
PT invariance in a concise way that, in addition, can be related
to other branches of physics. This picture allows space-time
phenomena to be transplanted to the more familiar arena of
the optical world. However, note that this gateway works in
both directions. Here it has allowed us to establish a relativistic
presentation of PT invariance, but optics can be also used as
a powerful instrument for visualizing special relativity [44].
Our paper is one further step in this fruitful interplay between
optics and relativity.
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