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We address the joint estimation of the two defining parameters of a displacement operation in phase space.
In a measurement scheme based on a Gaussian probe field and two homodyne detectors, it is shown that both
conjugated parameters can be measured below the standard quantum limit when the probe field is entangled.
We derive the most informative Cramér-Rao bound, providing the theoretical benchmark on the estimation,
and observe that our scheme is nearly optimal for a wide parameter range characterizing the probe field. We
discuss the role of the entanglement as well as the relation between our measurement strategy and the generalized
uncertainty relations.
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I. INTRODUCTION

One of the most promising avenues for quantum technology
is the use of quantum resources to improve the sensitivity in
the estimation of (not directly observable) relevant physical
parameters, e.g., for applications in metrology and sensing
[1,2]. While the estimation of a single parameter has been
extensively studied from both theoretical and experimental
viewpoints [1,3], the joint estimation of multiple parameters
has not received enough attention (notable contributions are
Refs. [4–15]). Here we take a further step forward in this
direction by providing optimal quantum-enhanced strategies
to estimate the two conjugated parameters characterizing
a paradigmatic and ubiquitous quantum operation, phase-
space displacement. Quantum states of single-mode bosonic
continuous variable (CV) systems can be described by
quasiprobability distributions on a two-dimensional real phase
space [16]. The operation of displacing a state by a phase
space vector (q0,p0) is represented by the Weyl displacement
operator

D̂(q0,p0) = exp(ip0q̂ − iq0p̂), (1)

where q̂ and p̂ are the two quadrature operators satisfying
the canonical commutation relation [q̂,p̂] = i1. A relevant
question is, starting with a reference state �0 that undergoes
an unknown displacement, how accurately can we jointly
estimate the two conjugate parameters q0 and p0 of the
displacement operator with a measurement on the displaced
state � = D̂(q0,p0)�0D̂

†(q0,p0)? One possibility is certainly
to use coherent states as initial probe states, followed by
heterodyne detection as a measurement strategy at the output
of the displacement transformation [4]. This has, in fact, been
the standard technique to estimate and measure displacement,
as it naturally complies with the generalized Heisenberg
uncertainty relation [17]. On the other hand, one may ask
whether entanglement, here in the form of Einstein-Podolsky-
Rosen (EPR) correlations [18], could lead to a better estimation
precision for this task, as was suggested in Ref. [19] and as
happens in the case of quantum magnetometry [20], for the
joint estimation of the temperature and coupling constant in

a bosonic dissipative channel [14], and more in general for
phase estimation in quantum metrology [1].

In this paper we propose and analyze a measurement
scheme where CV entanglement is used to improve the
estimation precision for this particular and relevant problem.
For this purpose, we limit the analysis to Gaussian states and
operations [21]. An introduction to local quantum estimation
(LQE) for multiple parameters will be given in Sec. II, while
in Sec. III we will derive the bounds for the displacement
estimation by considering single- and two-mode Gaussian
states. In Sec. IV we show a simple measurement scheme
involving two-mode squeezed thermal states which achieves
the ultimate bound for different values of squeezing and
thermal photons and beats the standard quantum limit for this
kind of estimation. We also discuss how the performances and
the bounds change when one has a priori information about
the parameters to be estimated, and when the displacement
operation presents an inner uncertainty. In Sec. V we discuss
the role of entanglement, showing how it is always necessary
to beat the classical optimal strategy, and also necessary for
symmetric probe states. In Sec. VI we discuss the relationship
between this multiparameter estimation and the generalized
uncertainty relations, and finally we end the paper with some
concluding remarks.

II. MULTIPARAMETER LOCAL ESTIMATION THEORY

How can we know that a given measurement scheme, able
to estimate certain parameters, is optimal? Is it possible to
estimate these parameters with a better precision? In order to
answer this question, we make use of tools derived from local
quantum estimation (LQE) theory [2,22–24]. The purpose of
LQE theory is indeed to determine the ultimate precision
achievable and the corresponding optimal measurement for the
estimation of parameters characterizing a physical quantum
system. In particular it has been applied for the estimation
of different quantities, including the quantum phase of a
harmonic oscillator [25,26], CV Gaussian unitary parameters
[27], the amount of quantum correlations of bipartite quantum
states [28–30], and the coupling constants of different kinds
of interactions [13,14,31–39]. While most studies so far
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have been limited to single-parameter estimation, the case
of multiple parameters is more complex as different bounds
can be derived for the same setting. Moreover, as we will
point out later, these bounds are not always achievable,
in particular when one deals with conjugate variables for
which a Heisenberg-type uncertainty relation applies. Let
us start by considering the general case, that is, a family
of quantum states �z which depend on a set of d different
parameters z = {zμ}, μ = 1, . . . ,d. One can define the so-
called Symmetric Logarithmic Derivative (SLD) and Right
Logarithmic Derivative (RLD) operators for each one of the
parameters involved, respectively as

∂�

∂zμ

= L(S)
μ � + �L(S)

μ

2
(SLD), (2)

∂�

∂zμ

= �L(R)
μ (RLD). (3)

Then one can define the two matrices

Hμν = tr

[
�z

L(S)
μ L(S)

ν + L(S)
ν L(S)

μ

2

]
, (4)

Jμν = tr
[
�zL

(R)
ν L(R)†

μ

]
. (5)

By defining the covariance matrix elements V (z)μν =
E[zμzν] − E[zμ]E[zν] and a weight (positive definite) matrix
G, two different Cramér-Rao bounds hold:

tr[GV] � 1

M
tr[G(H)−1], (6)

tr[GV] � tr[GRe(J−1)] + tr[|GIm(J−1)|]
M

, (7)

where tr[A] is the trace operation on a finite dimensional
matrix A and M is the number of measurements performed.
We observe that if we choose G = 1, we obtain the two bounds
on the sum of the variances of the parameters involved:

∑
μ

Var(zμ) � BS

M
:= 1

M
tr[H−1], (8)

∑
μ

Var(zμ) � BR

M
:= tr[Re(J−1)] + tr[|Im(J−1)|]

M
. (9)

The matrices H and J are called, respectively, the Symmet-
ric Logarithmic Derivative (SLD) [23] and Right Logarithmic
Derivative (RLD) [4,6–9] quantum Fisher information matri-
ces. Neither the SLD bound BS nor the RLD bound BR on the
sum of the variances is in general achievable [5]. The first one
could not be achievable because it corresponds to the bound
obtained by measuring optimally and simultaneously each
single parameter, and this is not possible when the optimal
measurements do not commute. At the same time the RLD
bound could not be achievable because the optimal estimator
does not always correspond to a proper quantum measurement
(that is, a proper positive operator valued measure). Moreover
which one of these bounds is more informative, that is,
which one is higher and then tighter, depends strongly on
the estimation problem considered. One can then define the
most informative Cramér-Rao bound,

BMI = max{BS,BR},

obtaining the single inequality∑
μ

Var(zμ) � BMI

M
.

A. Cramér-Rao bounds with a priori information

Similar bounds can be obtained in the case where one has
a certain a priori information regarding the distribution on the
parameters one wants to estimate. Let us assume that the a
priori information is described by a probability distribution
Pprior(z). One can define a Fisher-information matrix of the a
priori distribution as

Aμν =
∫

dz Pprior(z)

[
∂ logPprior(z)

∂zμ

] [
∂ logPprior(z)

∂zν

]
.

(10)

The new Cramér-Rao bounds that take into account this a
priori information will read

tr[GV] � 1

M
tr[G(H + A)−1], (11)

tr[GV] � 1

M
(tr{GRe[(J + A)−1]} + tr{|GIm[(J + A)−1]|}),

(12)

and, for G = 1,∑
μ

Var(zμ) � BS(�)

M
:= 1

M
tr[(H + A)−1], (13)

∑
μ

Var(zμ) � BR(�)

M

:= 1

M
(tr[Re[(J + A)−1]} + tr{|Im[(J + A)−1]|}).

(14)

Here � denotes a vector of parameters characterizing the prior
information at our disposal.

B. Evaluation of the RLD Fisher information

In the following we give some details about the derivation
of the RLD Fisher information when the RLD operator cannot
be evaluated directly. Let us suppose that the derivative with
respect to every parameter has the following form:

∂�

∂zμ

= �L(a)
μ + Bμ�. (15)

To obtain the RLD operator Lμ = L(a)
μ + L(b)

μ as defined in
Eq. (3) we have to find the operator L(b)

μ such that (assuming
that �−1 exists)

Bμ� = �L(b)
μ , (16)

L(b)
μ = �−1Bμ�. (17)

Then, after some algebra, we can express the elements of the
RLD Fisher information matrix as

Jμν = tr[�LνL
†
μ]

= tr
[
�L(a)

ν

(
L(a)

μ

)†] + tr
[
�B†

μL(a)
ν

]
+ tr

[
�
(
L(a)

μ

)†
Bν

] + tr[Bν�
2B†

μ�−1]. (18)
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III. CRAMÉR-RAO BOUNDS FOR DISPLACEMENT
ESTIMATION

Let us now consider a generic probe state (pure or mixed)
�0, which is displaced by the operator D̂(q0,p0) to the state
� = D̂(q0,p0)�0D̂

†(q0,p0). In the following we derive explicit
formulas for the SLD and RLD Fisher information matrices.
Let us start by considering the SLD Fisher information
for a given probe state whose diagonal form reads �0 =∑

n pn|φn〉〈φn|. One proves that in our case the SLD operator
in Eq. (2) satisfies the property L(S)

μ = D̂(q0,p0)LμD̂†(q0,p0),
where

Lμ = 2i
∑
n�=m

〈Gμ〉nm

pn − pm

pn + pm

|φn〉〈φm| (19)

with μ,ν = {q0,p0}, 〈Gμ〉nm = 〈φn|Gμ|φm〉 and where Gq0 =
p̂,Gp0 = −q̂ are the generators of the two orthogonal displace-
ments. Then the SLD Fisher information matrix elements read

Hμν = 1

2
tr[�0(LμLν + LνLμ)] (20)

= 2
∑
s �=t

ps

(
ps − pt

ps + pt

)2

(〈Gμ〉st 〈Gν〉ts + 〈Gν〉st 〈Gμ〉ts).

(21)

Let us consider now more in detail the case of the RLD
Fisher information. By differentiating � with respect to
the parameters μ = {q0,p0}, we obtain formulas resembling
Eq. (15), where L(a)

μ = B†
μ = −iGμ. Then, starting from

Eq. (18), and by observing that

D̂†(μ)p̂D̂(μ) = p̂ − p0, (22)

D̂†(μ)q̂D̂(μ) = q̂ + q0, (23)

we can express, after some algebra, the elements of the
Fisher information matrix in terms of the generators of the
displacement as

Jμν = tr
[
Gν�

2
0Gμ�−1

0

] + tr[�0GνGμ] − 2tr[�0GμGν] .

We notice that the Fisher matrices do not depend on the values
of the parameters to be estimated and that the only elements
that are involved are the probe state and the generators of the
two transformations.

A. Most informative bounds for single- and
two-mode probe states

The most general single-mode Gaussian state with zero
initial displacement can be written as �0 = S(r)νNS(r)†

where νN = 1
N+1

∑
n

N
N+1 |n〉〈n| is a thermal state and S(r) =

exp{− r
2 (a† 2 − a2)} is the single-mode squeezing operator.

Notice that every single-mode squeezed state evolving in a
noisy dissipative channel can always be written in this form,
which makes this treatment important for actual implementa-
tions [40]. In this case the two bounds BS and BR are evaluated,
and the most-informative for the single-mode case B(1)

MI is found
to be equal to the RLD bound, yielding

B(1)
MI(r,N ) = (2N + 1) cosh 2r + 1. (24)

For zero squeezing the results obtained by Yuen and Lax
are recovered [4]. Moreover one can verify that this bound
is achieved for any value of squeezing and thermal photons
by performing an heterodyne measurement. In general we
observe that the bound grows with N and r . It is thus clear
that single-mode squeezing is not useful for displacement
estimation, and the optimal measurement setup involving
single-mode Gaussian probe states and heterodyne detection
corresponds to using the vacuum (or any coherent state) as a
probe field. The corresponding bound is denoted by

Bsql = B(1)
MI(0,0) = 2, (25)

as to the standard quantum limit (SQL). We note that the SQL
does not depend at all on the mean energy of the probe coherent
state: By increasing the mean photon number of the coherent
states one does not obtain any enhancement in the estimation
precision. Let us focus now on the more interesting two-mode
case, where the displacement operator is applied only on one
of the two modes. The probe state corresponds to a two-mode
squeezed thermal state, which is an archetype of the (possibly
noisy) Gaussian entangled states:

�0 = Ŝ2(r)(νN ⊗ νN )Ŝ†
2(r), (26)

where Ŝ2(r) = exp{r(â†b̂† − âb̂)} is the two-mode squeezing
operator. The two bounds can also be straightforwardly
evaluated, obtaining

B(2)
S (r,N ) = 2N + 1

cosh 2r
, (27)

B(2)
R (r,N ) = 4N (1 + N )

(2N + 1) cosh 2r − 1
. (28)

Both are increasing functions of the average number of
thermal photons N and decreasing functions of the squeezing
parameter r (and thus of the entanglement of the probe state).
In this case which bound is the most informative depends
on the actual values of r and N . Comparing Eqs. (36) and
(37), when cosh(2r) < 2N + 1, BS < BR. Thus we define a
threshold value for the squeezing as rths = 1

2 cosh−1(2N + 1),
and the most informative bound reads

B(2)
MI(r,N ) =

{
B(2)

R (r,N ) for r < rths

B(2)
S (r,N ) for r � rths.

(29)

We notice that for N = 0 the most informative bound coincides
with the SLD bound, while if we increase the value of
N and for small values of the squeezing parameter r , the
most informative bound turns out to be the RLD bound. By
inspecting the most informative bound B(2)

MI, we notice that for
different values of the parameters the bound is smaller than the
SQL bound Bsql. One may then wonder if by using entangled
probe states one can achieve a better result; in the next section
we present a simple measurement scheme, outperforming the
classical single-mode strategy.

IV. NEAR-OPTIMAL MEASUREMENT SCHEME

As pointed out in the previous section, if we consider
coherent states as probe states and then, after the displacement
operation, we perform a heterodyne measurement, we achieve
the SQL Bsql. On the other hand, the bounds obtained
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FIG. 1. (Color online) Measurement scheme for the estimation
of the displacement with a two-mode squeezed probe state. After the
displacement operation, the modes are mixed in a balanced beam
splitter, and then orthogonal homodyne measurements are performed
on the output modes.

for entangled probe states suggest that the SQL can in
principle be overcome. Indeed, we now illustrate the two-mode
measurement scheme able to beat bound Bsql and to achieve the
optimality for different values of the parameters characterizing
the probe state. The scheme is pictured in Fig. 1. It clearly
resembles the CV version of the dense coding protocol [41] and
was already suggested for the estimation of displacement [19].
The probe state corresponds to a two-mode squeezed thermal
state (26). The displacement operator is applied on one mode
after which the two modes are mixed at a balanced beam
splitter. Then the output fields of the beam splitter are described
by the density operator

�′ = Ûbs�Û
†
bs = �′

1 ⊗ �′
2, (30)

where Ûbs = exp{π
4 (âb̂† − â†b̂)} is the beam splitter operator

[16], � = D̂(q0,p0)�0D̂
†(q0,p0) is the state after the displace-

ment, and

�′
1 = D̂(q ′

0,p
′
0)Ŝ(r)νN Ŝ†(r)D̂†(q ′

0,p
′
0), (31)

�′
2 = D̂(q ′

0,p
′
0)Ŝ(−r)νN Ŝ†(−r)D̂†(q ′

0,p
′
0) (32)

with q ′
0 = q0√

2
, p′

0 = p0√
2

[42]. The output state is a tensor
product of two states squeezed in orthogonal directions and
both displaced by the rescaled values q ′

0 and p′
0. One performs

a homodyne measurement of the quadrature p̂ on the state
�′

1 and of the quadrature q̂ on �′
2, obtaining, respectively,

the parameter values q0 and p0. As the states are squeezed
in orthogonal directions, the two variances approach expo-
nentially to zero by increasing the squeezing parameter r as
Var(q0) = Var(p0) = (2N + 1) e−2r : the higher the squeezing,
the more precise the estimation. The sum of the two variances
is

Var(q0) + Var(p0) = 2 (2N + 1) e−2r � B(2)
MI(r,N ). (33)

One can observe that we obtain for the two-parameter
estimation the same optimal scaling in terms of the degree
of squeezing, as the one obtained for the single-parameter
displacement estimation in Ref. [43]; in particular for a
pure two-mode squeezed state (N = 0), one achieves for
large squeezing the Heisenberg limit scaling 1/N̄ , where
N̄ = sinh2 r denotes the mean number of photons. Comparing
Eq. (33) with Eq. (25), it is clear that this scheme can
outperform the single-mode strategy. For N = 0, as long
as squeezing is nonzero, we can estimate the parameters
better than the SQL suggests. For N �= 0, if the field exhibits

0.5 1.0 1.5
r

0.2

0.4

0.6

0.8

1.0
D

FIG. 2. (Color online) Renormalized difference D(r,N ) between
the sum of the variances for the estimation of displacement with the
double-homodyne scheme and the most informative bound B(2)

MI(r,N ),
as a function of the squeezing parameter r and for different values
of thermal photons: continuous-red line, N = 0; dashed-green line,
N = 0.5; dotted-blue line, N = 2.

two-mode squeezing, that is, if it is squeezed stronger than the
following threshold,

r > rsql(N ) = 1
4 ln(1 + 4N + 4N2), (34)

we can beat the SQL.
If we now compare the obtained results to the most-

informative bounds derived in the previous section, we observe
that the sum of the variances E(r,N ) = Var(q0) + Var(p0) in
Eq. (33) is, as expected, bounded from below by B(2)

MI(r,N ).
However, one may wonder if, in some range of parameters,
the scheme becomes (nearly) optimal, that is, if the bound is
almost saturated. In Fig. 2 we plot the quantity

D(r,N ) = E(r,N ) − B(2)
MI(r,N )

B(2)
MI(r,N )

for different values of N and as a function of the squeezing
r . One observes that by increasing the squeezing parameter r ,
our scheme is optimal with D(r,N ) � 0. For lower values of r ,
we notice that D(r,N ) is not always monotonically decreasing;
this is because the most informative bound changes between
the RLD bound B(2)

R (r,N ) and the SLD bound B(2)
S (r,N ),

as explained before. As remarked before, the measurement
scheme we present resembles the CV version of the dense
coding protocol [41]; however, while the dense coding protocol
requires more than 4 dB of squeezing to outperform single-
mode strategies, our estimation strategy outperforms the SQL
for any value of two-mode squeezing at the input.

A. Estimation with a priori information

Let us consider now the case where we have some prior
distribution on the parameters we want to estimate. In particu-
lar, for the sake of simplicity we consider the parameters taken
randomly with the following a priori probability distribution:

Pprior(q0,p0) = G0,�(q0)G0,�(p0),

where Gμ,σ 2 (x) denotes a Gaussian distribution, centered at
μ and with variance σ 2. The objective is to minimize the
average precision one gets on the estimation of these random
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parameters; we can then evaluate the bounds in Eqs. (13) and
(14), for different input states and strategies. By considering
coherent states as the input, the most-informative RLD bound
will be equal to

BSQL(�) := 2�2

1 + �2
. (35)

If we rather consider a two-mode squeezed thermal state
�0 = S2(r)νN ⊗ νNS

†
2(r) as the probe, we obtain the following

bounds:

B(2)
S (r,N,�) = 2(2N + 1)�2

2N + 1 + 2�2 cosh 2r
, (36)

B(2)
R (r,N,�) = 4N (1 + N )�2

2N (1 + N ) + �2[(2N + 1) cosh 2r − 1]
.

(37)

All these bounds decrease with the decreasing �. We note
that all the bounds discussed before can be reobtained by taking
the limit of flat a priori distribution (� → ∞). If one fixes the
value of �, one can define the most-informative bound B(2)

MI =
max{B(2)

S ,B(2)
R }, and compare it with the corresponding SQL

bound. One could then ask which is the optimal measurement
strategy, and if the precision obtained saturates the most
informative bounds for different possible probe states. Let
us start by considering input coherent states: As proved
in Ref. [4], the optimal cheating strategy corresponds to
multiplying the heterodyne outcomes by a factor

Kc = �2

1 + �2
. (38)

It is indeed easy to check that with this choice the obtained
averaged variances are equal to the SQL limit BSQL(�)
derived in Eq. (35) (notice that this is also the optimal choice
used in Refs. [44,45] to derive the classical benchmark for
teleportation of coherent states). Let us consider the general
case where, for given values of q0 and p0, the variances
obtained with a certain measurement strategy are equal and
do not depend on the parameters themselves, that is,

Var(q0) = Var(p0) := Var0.

One can prove that the scaling factor that minimizes the
average sum of the variances is equal to

Kmin = �2

Var0 + �2
, (39)

and the obtained result is

〈VarK (q0) + VarK (p0)〉 = 2Var0 �2

Var0 + �2
,

where 〈 · 〉 denotes the average on the a priori distribution.
This is also the case for the two-mode squeezed thermal states
considered before. Of course, the scaling factor in this case
depends on the probe state parameters, since

Var0 = (2N + 1)e−2r . (40)

If this information is not available, one can always adopt the
coherent states optimal strategy and use the scaling factor Kc

0.5 1.0 1.5 2.0 2.5 3.0
r

0.5

1.0

1.5

2.0
B

0.5 1.0 1.5 2.0 2.5 3.0
r

1

2

3

4

B

0.5 1.0 1.5 2.0 2.5 3.0
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1

2

3
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5
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0.5 1.0 1.5 2.0 2.5 3.0
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1

2

3

4

5

B

FIG. 3. (Color online) Dashed blue line: Average sum of the
variances for two-mode squeezed thermal probe states with N = 1
mean thermal photons and by adopting the optimal scaling factor
Kmin. Dotted red line: Average sum of the variances for two-mode
squeezed thermal probe states with N = 1 mean thermal photons and
by adopting the coherent state scaling factor Kc. Solid black line:
Most-informative bound for two-mode squeezed thermal state (with
N = 1). Solid gray line: Standard quantum limit BSQL. All the plots
are functions of the squeezing parameter r and for different values of
the a priori uncertainty �. Top left: � = 1; top right: � = 2; bottom
left: � = 3; bottom right: � = 5.

in Eq. (38), which does not depend on the input state, obtaining

〈VarK (q0) + VarK (p0)〉 = �2(1 + �2Var0)

(1 + �2)2
. (41)

The different results for two-mode squeezed thermal states
are shown in Fig. 3: One observes that by using the scaling
factor Kmin, the estimation strategy is nearly optimal, that
is, the most-informative bound is saturated for a wide range
of parameters of the probe state, and for different values
of the a priori uncertainty �. One also observes that by
using the simpler scaling factor Kc, one still beats the SQL
limit by increasing the squeezing parameter; in particular, for
zero thermal photons (N = 0), the entangled assisted strategy
always beat the SQL for any value of the squeezing parameter
r . On the other hand this strategy is far to be optimal for low
values of � and for large values of the squeezing parameter r .

B. Estimation of imperfect displacement operations

Let us consider the case where the displacement operation
is imperfect. We thus have an additional uncertainty on the
parameters we want to estimate. We assume that the two
corresponding values are distributed according to a certain
probability distribution Perr(q ′,p′), which has mean values q0

and p0. The output state, after the displacement operation, can
thus be written as

� =
∫

dq ′ dp′ Perr(q
′,p′)D̂(q ′,p′)�D̂†(q ′,p′). (42)
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For the sake of simplicity, let us consider that the error prob-
ability is a product of two Gaussian independent probability
distributions, i.e.,

Perr(q
′,p′) = Gq0,�2

q
(q ′)Gp0,�2

p
(p′).

Using our entanglement-assisted estimation strategy, we ob-
tain the following result for the variances of the estimated
parameters:

Var(q0) + Var(p0) = 2 (2N + 1) e−2r + �2
q + �2

p. (43)

It is clear that the additional uncertainties are simply added to
the previous results, giving, as expected, a worse performance
in terms of estimation precision.

V. THE ROLE OF ENTANGLEMENT

In our measurement scheme, we make use of entangled
Gaussian states showing EPR correlations, as probe states.
One may then ask whether the entanglement of these states is
necessary (or even sufficient) to beat the SQL bound obtained
by means of the single-mode strategy. For this purpose, we
consider a generic two-mode Gaussian state, without local
squeezing, i.e., with 〈(�q̂i)2〉 = 〈(�p̂i)2〉, i = 1,2. This is a
reasonable choice because we know that local squeezing does
not help in our scheme. Given a generic two-mode quantum
state, the corresponding quadrature operators q̂i and p̂i and an
arbitrary (nonzero) real number a, if we define the operators û

and v̂ as û = |a|q̂1 + 1
a
q̂2,v̂ = |a|p̂1 − 1

a
p̂2, Duan et al. [46]

proved that, the condition

〈(�u)2〉 + 〈(�v)2〉 < a2 + 1

a2
(44)

is a sufficient condition for inseparability. One can easily notice
that the inseparability condition is the same as Var(q0) +
Var(p0) < Bsql, assuming a = 1, which gives the lowest
bound in Eq. (44). This clearly shows that the entanglement
of the probe state is a necessary condition if we are to
beat the SQL obtained using coherent states and heterodyne
measurements. Moreover, for symmetric states, such as the
two-mode squeezed thermal state � = Ŝ2(r)(νN ⊗ νN )Ŝ†

2(r), it
is proved that the condition (44) with a = 1 is a necessary and
sufficient condition for inseparability [46]. As a consequence,
for this class of states, entanglement is not only necessary but
also sufficient to beat the SQL. It is also straightforward to
find a counterexample in order to prove that in the asymmetric
case, entanglement is only necessary but not sufficient. Let
us consider an asymmetric two-mode squeezed thermal state
� = Ŝ2(r)νN1 ⊗ νN2 Ŝ

†
2(r), with N1 �= N2; if we set N1 = 0 the

state is always entangled for r �= 0, but to beat the SQL on
the estimation of displacement, one can show that N2 has to
be moderately low (one can derive the threshold value as a
function of squeezing parameter r). It is worth stressing the
fact that the state must be entangled before the application of
the displacement operator. If we consider the case where a two-
mode squeezer is applied after the action of the displacement
operator on a thermal state νN , no enhancement in the precision
estimation can be achieved. Here this squeezing operation can
be thought as a part of the measurement process. The ultimate
precision in this case coincides with the results described for
single-mode states and has to comply with the SQL. This

result is in fact related to the security of the CV quantum key
distribution protocol with coherent states [47].

VI. PARAMETER ESTIMATION AND UNCERTAINTY
RELATIONS

We have observed that it is possible to measure the two
conjugate parameters below the SQL. This seems to contra-
dict with the (generalized) Heisenberg uncertainty relations.
Nevertheless, if one looks carefully at the setup, one notices
that the fundamental uncertainty relations are never violated:
The variances corresponding to the true quantum quadrature
operators q̂i and p̂i on each mode involved and at every step of
the measurement setup always satisfy the uncertainty relation,
as ought to be the case. The generalized uncertainty relations
derived in Ref. [17] show that an inherent and unavoidable
extra noise has to be taken into account if one wants to estimate
two conjugate parameters by means of a joint measurement.
However, that analysis did not take into account the possibility
of having a two-mode entangled state as the initial probe
as described in the previous scheme [48]. In fact, in our
setup the preexistent entanglement is exploited in order to
perform precise measurements on different modes, and thus
on commuting observables. Specifically, if we consider the
product of the corresponding variances on the estimation of
the parameters q0 and p0, we are led to conclude that the
generalized uncertainty relation seems to be violated when

Var(q0)Var(p0) < 1. (45)

If Var(q0) = Var(p0), as is always the case by considering
�0 = Ŝ2(r)νN ⊗ νN Ŝ

†
2(r) as a probe state and our measurement

setting, one can clearly observe that the condition (45) is
equivalent to beating the SQL bound. Then, as described in
the previous section, entanglement is always necessary and, in
the symmetric case, also sufficient to violate the generalized
uncertainty relation on the conjugate parameters by means of
the proposed setup.

VII. REMARKS

The estimation of the two conjugate parameters of a
displacement operation is important both for applications
and fundamental reasons. Displacement operations are indeed
ubiquitous in most of the quantum protocols for CV systems.
On the other hand, as we remarked earlier, this estimation fol-
lows from the uncertainty relations, and thus from the founda-
tional properties of quantum mechanics. In this paper we have
presented a measurement scheme which estimates accurately
the two real parameters characterizing the unitary operation
of displacement in phase space, by using Gaussian entangled
probe states and homodyne detections. We have derived the
ultimate quantum bounds on the multiparameter estimation
for single- and two-mode input Gaussian states, showing that
our setup is optimal for a large range of parameter values
characterizing the probe states. We have discussed the role of
entanglement, showing that in our setup its presence is always
necessary, and in symmetric cases also sufficient, to beat the
standard quantum limit achievable by using coherent input
states and heterodyne detection. Finally we have analyzed in
detail the relationship between our results and the generalized
Heisenberg uncertainty relation for conjugate parameters.
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