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We address measurement schemes where certain observables Xk are chosen at random within a set of
nondegenerate isospectral observables and then measured on repeated preparations of a physical system. Each
observable has a probability zk to be measured, with

∑
k zk = 1, and the statistics of this generalized measurement

is described by a positive operator-valued measure. This kind of scheme is referred to as quantum roulettes, since
each observable Xk is chosen at random, e.g., according to the fluctuating value of an external parameter. Here we
focus on quantum roulettes for qubits involving the measurements of Pauli matrices, and we explicitly evaluate
their canonical Naimark extensions, i.e., their implementation as indirect measurements involving an interaction
scheme with a probe system. We thus provide a concrete model to realize the roulette without destroying the
signal state, which can be measured again after the measurement or can be transmitted. Finally, we apply our
results to the description of Stern-Gerlach-like experiments on a two-level system.
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I. INTRODUCTION

In this paper we deal with a specific class of general-
ized quantum measurements usually referred to as quantum
roulettes. These quantum measurements are achieved through
the following procedure. Consider K projective measure-
ments, described by the set {Xk}k=1,...,K of nondegenerate
isospectral observables in a Hilbert space H . The system is
sent to a detector which, at random, performs the measurement
of the observable Xk . Each observable has a probability zk to
be measured, with

∑
k zk = 1. This scheme is referred to as

quantum roulette since the measured observable Xk is chosen
at random, e.g., according to the fluctuating value of a physical
parameter, as it happens for the outcome of a roulette wheel.
The generalized observable actually measured by the detector
is described by a positive operator-valued measure (POVM),
which provides the probability distribution of the outcomes
and the postmeasurement states [1–3].

As a matter of fact, any POVM on a given Hilbert space
may be implemented as a projective measurement in a larger
one (e.g., see [4] for single-photon qudits). This measurement
scheme is usually referred to as a Naimark extension of the
POVM. Indeed, it is quite straightforward to find a Naimark
extension for the POVM of any quantum roulette in terms
of a joint measurement performed on the system under
investigation and an ancillary one.

On the other hand, for any POVM the Naimark theorem [5]
ensures the existence of a canonical Naimark extension, i.e.,
the implementation of the POVM as an indirect measurement
involving an independent preparation of an ancillary (probe)
system [6], an interaction of the probe with the system
under investigation, and a final step in which only the
probe is subjected to a (projective) measurement [7,8]. A
question thus arises on the canonical implementation of the
quantum roulette’s POVM and on the resources needed to
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realize the corresponding interaction scheme. This is the
main point of this paper. In particular, we focus on quantum
roulettes involving the measurements of Pauli matrices on a
qubit system and explicitly evaluate their canonical Naimark
extensions.

We recall that having the Naimark extension of a general-
ized measurement is, in general, highly desirable, since it pro-
vides a concrete model to realize an apparatus which performs
the measurement without destroying the state of the system
under investigation. Thus, the state after the measurement can
be measured again, or can be transmitted, and the tradeoff
between information gain and measurement disturbance may
be evaluated [9–12]. Alternatively, the scheme may serve to
perform indirect quantum control [13].

It should be emphasized that the concept of quantum
roulette provides a natural framework to describe the mea-
surement scheme in which the measured observable depends
on an external parameter, which cannot be fully controlled
and fluctuates according to a given probability distribution. A
prominent example is given by the Stern-Gerlach apparatus,
which allows one to measure a spin component of a particle
in the direction individuated by an inhomogeneous magnetic
field [14,15]. Indeed, whenever the field is fluctuating, or the
uncertainty in the splitting force is taken into account [16],
the measurement scheme is described by a quantum roulette.
Also, in this case, if we have the canonical Naimark extension
for the roulette, then we have a concrete way to realize a
measurement without destroying the state [17]. We recall that
in the continuous variable regime quantum roulettes involving
homodyne detection with randomized phase of the local oscil-
lator have been already studied theoretically [18] and realized
experimentally [19].

The paper is structured as follows. In the next section we
introduce notation, briefly review the Naimark theorem, and
gather all the necessary tools, e.g., the Cartan decomposition
of SU(4) transformations, which allows us to greatly reduce
the number of parameters involved in the problem of finding
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the canonical Naimark extension. In Sec. III we introduce the
concept of quantum roulette, derive the corresponding POVM,
and illustrate an example of noncanonical Naimark extension.
In Sec. IV we derive the canonical extension for one-parameter
Pauli quantum roulettes and discuss details of their implemen-
tation, whereas Sec. V is devoted to analyze Stern-Gerlach-like
experiments as quantum roulettes, i.e., taking into account the
possibility that the magnetic field is randomly fluctuating.
Finally, Sec. VI closes the paper with some concluding
remarks.

II. NOTATION AND TOOLS

A. POVMs and the Naimark theorem

When we measure an observable on a quantum system,
we cannot predict which outcome we will obtain in each run.
What we know is the spectrum of possible outcomes and their
probability distribution. Given a system described by a state ρ

in the Hilbert space H , to obtain the probability distribution
of the outcomes x we use the Born Rule:

px = Tr[ρ�x].

In order to satisfy the properties of the distribution px , the
operators �x do not need to be projectors. The operators �x

have to be positive, �x � 0, since the probability distribution
px has to be positive for every |ϕ〉 ∈ H , and normalized,∑

x �x = I, since px is normalized. A decomposition of
identity by positive operators �x will be referred to as a
positive operator-valued measure (POVM), and the operators
�x are the elements of the POVM.

We use �x to get information about the probability distri-
bution px , but if we are interested in postmeasurement states
we have to introduce the set of operators Mx , the detection
operators. These operators should give the same probability
distribution given by �x ; thus, they are obtained from px =
Tr[MxρM

†
x] = Tr[ρ�x]. Therefore, detection operators that

satisfy �x = MxM
†
x are Mx = Ux

√
�x , with Ux being a

unitary operator such that UxU
†
x = I, and this leaves a residual

freedom on the postmeasurement states. The postmeasurement
states are then given by

ρx = 1

px

MxρM†
x.

A measurement described by the operators �x is referred to
as generalized measurement.

In order to link general measurements with physical
schemes of measurement, we have the Naimark theorem,
which states that a generalized measurement in a Hilbert space
HA may be always seen as an indirect measurement in a larger
Hilbert space given by the tensor product HA ⊗ HB . This
indirect measure is known as canonical Naimark extension
for the generalized measurement (see Fig. 1). Conversely,
when we perform a projective measure on the subsystem HB

of a composite system HA ⊗ HB , the degrees of freedom of
HB may be traced out and we obtain the same probability
distribution of the outcomes of the projective measurement
and the same postmeasurement states performing a generalized
measurement on the subsystem HA.

FIG. 1. (Color online) The two measurement schemes linked by
the Naimark theorem. (a) A generalized measurement described by
the POVM �x = M†

xMx and (b) its canonical Naimark extension,
defined by the triple {ρB,U,{Px}}, describing the probe state ρB , the
evolution operator U , and the projective measurement {Px} on the
probe system, respectively.

The Naimark theorem gives a practical recipe to evaluate
the canonical extension for a generalized measurement in a
Hilbert space HA:

�x = TrB[I ⊗ ρB U † I ⊗ Px U ], (1)

where ρB ∈ L(HB) describes the state of the probe system
(or ancilla), the operators {Px} ∈ L(HB) are a set of projectors
which describe the measurement on the ancilla, and the unitary
operator U ∈ L(HA ⊗ HB) works on both the system and the
ancilla. A canonical Naimark extension for the generalized
measurement given by the operators {�x} ∈ L(HA) is thus
individuated by the triple {ρB,U,{Px}}.

Evaluating the canonical Naimark extension for a general-
ized measurement is desirable since it gives a concrete model to
realize an apparatus which performs the measurement without
destroying the state. Then, the postmeasurement state can be
transmitted, or measured again.

B. The Cartan decomposition of SU(4) transformations

In the following we are going to deal with two-qubit
interactions, i.e., unitary operators (with unit determinant) of
the group SU(4), which are individuated by 15 parameters. In
order to reduce the number of these parameters we will make
use of the Cartan decomposition, which allows us to factor
a general operator in SU(4) into local operators working on
single qubits and a single two-qubit operator V individuated
by three parameters [20–22] (see Fig. 2).

According to the Cartan decomposition any X ∈ SU(4)
can be rewritten as X = (R1 ⊗ R0)V (S1 ⊗ S0), where
R1,R0,S1,S0 ∈ SU(2), and V = exp{i ∑3

j=1 kjσj ⊗ σj }, with
k ≡ (k1,k2,k3) ∈ R3. The operators σi are the Pauli matrices.

FIG. 2. (Color online) The Cartan decomposition of the operator
X ∈ SU(4), given by (R1 ⊗ R0)V (S1 ⊗ S0).
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If we introduce the following equivalence relation in SU(4),

A ∼ B if A = (R1 ⊗ R0)B(S1 ⊗ S0), (2)

we can split the whole space of unitary operators with unit
determinant into equivalence classes. Then, since an operator
X ∈ SU(4) is represented (by the equivalent relation given
here) by the matrix V , it is possible to establish a link between
operators in SU(4) and real vectors: X ∼ k, where k is the class
vector of X. The following operations are class-preserving:
(1) shift—k can be shifted by ±π

2 along one of its components;
(2) reverse—the sign of two components of k can be reversed;
and (3) swap—two components of k can be swapped.

By the use of these operations it is always possible to reduce
any k into a bounded region K given by the following:

(1) π
2 > k1 � k2 � k3 � 0.

(2) k1 + k2 � π
2 .

(3) If k3 = 0, then k1 � π
4 .

k ∈ K are referred to as canonical class vectors.
The expression of the operator V may be simplified using

a different set of parameters, e.g.,

k1 = −α1 − α2

4
,

k2 = −α1 + α2

4
,

k3 = −α3

2
.

Additionally, we introduce the operators �i = 1
2σi ⊗ σi ,

which are normalized in the space of 4 × 4 operators, with
the inner product 〈A,B〉 = Tr[B†A]. Eventually, we obtain
the following matrix V :

V = exp{−i[ 1
2 (α1 − α2)�1 + 1

2 (α1 + α2)�2 + α3�3]}. (3)

In terms of the α parameters the bounded region corresponding
to the canonical class vectors is given by

−π � α1 � 0,

0 � α2 � −α1,

α1 + α2 � 2α3 � 0,

If α3 = 0 then α1 − α2 � −π.

As we will see in the next section, the Cartan decomposition
simplifies the problem of finding the canonical Naimark
extension for the quantum roulette, since we will be able
to neglect single-qubit operations, and thus reducing the
15-parameters operator U to the 3-parameters operator V .
Furthermore, we will restrict the interval of the parameters of
V to the bounded region defined above.

III. THE PAULI QUANTUM ROULETTE WHEEL

Let us consider K observables {Xk} in a Hilbert space
HA with dimension d = dim(HA). All the observables are
nondegenerate and isospectral. Since the observables are
nondegenerate and the Hilbert space is finite dimensional, each
of them has d eigenvalues. We use a detector which chooses at
random one of these observables and performs a measurement
of that observable. Each observable has a probability zk of
being selected by the detector and

∑
k zk = 1. This scheme,

denoted by the K-tuple {{X1,z1},{X2,z2}, . . . ,{XK,zK}}, is
referred to as quantum roulette.

If we have a system represented by the state ρ ∈ L(HA)
and we send it to the detector, the probability distribution of
the outcomes is given by

px =
∑

k

zkp
(k)
x =

∑
k

zkTr
[
ρP (k)

x

]
= Tr

[
ρ

∑
k

zkP
(k)
x

]
= Tr [ρ �x] , (4)

where p(k)
x is the probability distribution of the outcome

x for the observable Xk and P (k)
x = |x〉(k)(k)〈x| is the one-

dimensional projector on the eigenspace of the eigenvalue x

for the observable Xk . In the last equality of Eq. (4) we have
introduced the POVM of the roulette, whose elements are given
by

�x =
∑

k

zkP
(k)
x . (5)

�x are positive operators; indeed, given any |ϕ〉 ∈ HA, we
have 〈ϕ|�x |ϕ〉 = ∑

k zk|〈ϕ|x〉(k)|2 � 0; and they represent a
decomposition of identity, since∑

x

�x =
∑

x

∑
k

zkP
(k)
x =

∑
k

zk

∑
x

P (k)
x =

∑
k

zk I = I.

On the other hand, �x are not orthogonal projectors since
�x�x ′ 
= δxx ′ �x . Indeed,

�x�x ′ =
∑
k,k′

zkzk′P (k)
x P

(k′)
x ′ 
= 0.

In fact, while (k)〈x|x ′〉(k) has to be equal to δxx ′ for a fixed value
of k, the quantity (k)〈x|x ′〉(k′) (with k 
= k′) could be different
from zero also when x 
= x ′.

A. The noncanonical Naimark extension

The quantum roulette has a Naimark extension that is not the
canonical one (i.e., the indirect measurement scheme described
by the Naimark theorem), that can be obtained as follows:
consider an additional Hilbert space HB , describing the
ancilla, with dimension equal to the number K of observables
Xk ∈ L(HA) and a basis {|θk〉} in HB . Then we introduce
projectors Qx = ∑

k P (k)
x ⊗ |θk〉〈θk| in the larger Hilbert space

HA ⊗ HB and we prepare the initial state of the ancilla in
|ωB〉 = ∑

k

√
zk|θk〉, obtaining the probability distribution

px = TrAB[ρ ⊗ |ωB〉〈ωB | Qx],

that gives us the POVM’s elements:

�x = TrB[I ⊗ |ωB〉〈ωB | Qx] =
∑

k

zkP
(k)
x .

Moreover, the postmeasurement states will be given by

ρx = 1

px

TrB[Qx ρ ⊗ |ωB〉〈ωB | Qx]

= 1

px

∑
k

zk P (k)
x ρP (k)

x .
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This measurement scheme does not involve an evolution
operator U ∈ L(HA ⊗ HB) and the projective measure is
performed on both system and ancilla, unlike the canonical
extension that involves a projective measurement on the sole
ancilla.

IV. THE CANONICAL NAIMARK EXTENSION
OF THE PAULI QUANTUM ROULETTE WHEEL

We focus on quantum roulettes which work on qubit
systems with Hilbert space HA ≡ C2 and address quantum
roulettes involving the measurement of Pauli operators. In
order to obtain the canonical Naimark extension for these
roulettes we have to add a probe system (the ancilla). We
assume a two-dimensional ancilla and show that this is enough
to realize the canonical extension using Eq. (1), where the
elements of the POVM are given by Eq. (5).

Since HB is a Hilbert space with dimension 2, we choose the
following representations: the state ρB = |ωB〉〈ωB |, and the
projector Px = |x〉〈x|, where |ωB〉 = cos θ

2 |0〉 + eiϕ sin θ
2 |1〉

and |x〉 = cos α
2 |0〉 + eiβ sin α

2 |1〉, with the parameters α,θ ∈
[0; π ] and β,ϕ ∈ [0; 2π ). Notice that |0〉,|1〉 comprise a basis
in HB ; we assume that |0〉 is the eigenvector of σ3 related to
the eigenvalue 1, while |1〉 is the eigenvector related to −1.

The last tool to individuate the canonical extension is
the evolution operator U ∈ L(HA ⊗ HB) which works on the
overall state of the composite system. The operator U ∈ SU(4),
then it is defined by 15 parameters. Therefore, the total number
of parameters that defines the Naimark extension is 19 (4
parameters from |ωB〉 and |x〉 plus 15 from U ). As we will
see, this number can be greatly reduced by employing the
Cartan decomposition.

A. Application of the Cartan decomposition
to the Naimark extension

The Naimark theorem provides a practical connection
between the generalized measurement given by the quantum
roulette and the indirect measurement described by the
extension. Indeed, both the probability distribution of the
outcomes px and the postmeasurement states ρAx have to be
equal for these two schemes. That is,

px = TrAB[UρA ⊗ ρBU †I ⊗ Px] = TrA[ρA�x], (6)

ρAx = 1

px

TrB[UρA ⊗ ρBU †I ⊗ Px] = 1

px

MxρAM†
x, (7)

where the distribution px and the state ρAx in the first equality
belong to the projective measurement, while those in the last
equality belong to the generalized measurement.

We focus now on the Born rule Eq. (6) in order to evaluate
the operators �x ; after straightforward calculation, we obtain
the elements of the POVM:

�x = S
†
1 TrB[(I ⊗ S0ρBS

†
0)V †(I ⊗ R

†
0PxR0)V ] S1.

Consider now S0ρBS
†
0 and R

†
0PxR0; the operators R0,S0 ∈

L(HB) represent a rotation in the qubit Hilbert space HB .
Since both ρB and Px are not yet defined and depend on some
parameters, we can combine the rotation to them, and we are

left with a transformation from L(HB) to L(HB):

ρB → ρ ′
B = S0ρBS

†
0,

Px → P ′
x = R

†
0PxR0;

i.e., we can neglect this transformation by a suitable
reparametrization of ρ ′

B and P ′
x . Furthermore, we assume

the operator S1 to be the identity (S1 = I). We make this
assumption in order to simplify the research of the canonical
extension. This ansatz will be justified a posteriori: once we
find the Naimark extension, if the probability distribution px

obtained from the extension is equal to the one obtained from
the POVM, then the extension is correct and S1 = I.

Now we have the POVM’s elements obtained by the
canonical extension:

�x = TrB[(I ⊗ ρB)V †(I ⊗ Px)V ], (8)

and these elements have to be equal to those evaluated for the
quantum roulette in exam. Using the Cartan decomposition
on the canonical Naimark extension reduces the number of
parameters to 7 (four from ρB and Px and three from V ).

B. Detection operators for the quantum roulette

The operator R1 is not involved in the definition of the
elements of the POVM, but it is necessary for the evaluation
of the postmeasurement state ρAx . Since the operators R0 and
S0 were absorbed into, respectively, Px and ρB and S1 = I,
then the decomposition of U is U = (R1 ⊗ I)V and the left
part of Eq. (7) becomes

ρAx = 1

px

TrB[(R1 ⊗ I)VρA ⊗ ρBV †(R†
1 ⊗ Px)]

= 1

px

R1TrB[VρA ⊗ ρBV †(I ⊗ Px)]R†
1.

Therefore, the operator R1 describes a residual degree of
freedom in the design of possible postmeasurement states. This
freedom was expected; since when we define a POVM �x , the
postmeasurement states can be evaluated using the detection
operators Mx . These operators are defined as Mx = Ux

√
�x ,

where Ux is a unitary operator. The operator Ux provides the
same freedom given by R1 to the postmeasurement states.

C. The general solution

The problem of finding the canonical Naimark extension
for a given quantum roulette is now basically reduced to the
solution of four equations dependent on seven parameters.
Indeed, the considered roulettes are always in qubit spaces;
hence, the elements of the POVM �x are self-adjoint 2 × 2
operators on the field C and the relation given by Eq. (8)
provides four equations: one from the element �x11 that is real,
two from the element �x12 (the real part and the imaginary
part), and one from the element �x22.

D. Exchange of the parameters

One may wonder if it is possible to look for the canonical
extension when the parameters αi get values from all R. The
Cartan decomposition does not impose restriction on the range
of the components of the class vectors (that is, the parameters
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αi), but we know that each operator in SU(4) is related [via
the equivalence relation Eq. (2)] to a canonical class vector,
whose components lie on the bounded region K ∈ R3. On the
other hand, if we find an extension with αi outside of K , it
is possible to use the three class-preserving operations (shift,
reverse, and swap) to bring back the parameters to K .

Can the parameters be brought back to K after we have
found the canonical extension? This is not possible, unless
we also modify the other objects of the extension. Indeed, if
we have found the extension, then we have defined both αi

and θ,ϕ,α,β. But if the αi are modified by one of the three
class-preserving operations, then also the other parameters are
modified and the state |ωB〉 and the operator Px change. In
fact, the operations are class preserving, so they transform the
operator V into

V → (R1 ⊗ R0)V ′(S1 ⊗ S0),

and the operators R0,S0 ∈ SU(2) modify both the initial state
of HB and the orthogonal projector:

ρB(θ ′,ϕ′) = S0 ρB(θ,ϕ) S
†
0,

Px(α′,β ′) = R
†
0 Px(α,β) R0.

Hence, to transform the αi and keep the correct extension is
necessary to modify ρB and Px .

E. The canonical extension

We now focus on quantum roulettes given by Pauli
operators σi and on their canonical Naimark extension. The
most general quantum roulette of this kind is {σi,zi}i=1,2,3, and
its canonical extension depends on two undefined parameters
(e.g., z1 and z2). Finding the extension for the general roulette
is analytically challenging, and thus we focus on roulettes
involving two Pauli operators.

Let us consider the roulette {{σ1,z},{σ3,1 − z}}, where z

gets values from the interval (0; 1). The POVM’s elements are
given by

�1 = 1

2

(
2 − z z

z z

)
, �−1 = 1

2

(
z −z

−z 2 − z

)
, (9)

and the detection operators are given by Mx = Ux

√
�x ,

x = ±1. Upon expanding them on the Pauli basis, i.e., Mx =
a0 I + a1 σ1 + a2 σ2 + a3 σ3, the coefficients ai are evaluated
using the inner product 〈X,Y 〉 = Tr[XY †]. For the roulette
{{σ1,z},{σ3,1 − z}}, we obtain ai = ai(z) (for i = 0,1,3) and
a2 = 0. In other words, the detection operators of a roulette
involving the Pauli operators σ1 and σ3 have no component on
the missing one, i.e., σ2. This result also holds for the other
roulettes depending on two σ s; e.g., for {{σ2,z},{σ3,1 − z}},
the detection operators Mx have no component by σ1.

The solution for the canonical extension corresponds to the
parameters

α1 = −π, α2 = 0, α3 = arcsin

(
−

√
1

1 − z
2

− 1

)
,

α = arccos(z − 1), β = π, θ = π

2
, ∀ϕ,

where α1,α2,θ,ϕ, and β are in the correct range and we are left
to check whether also α3 and α lie in the correct range. First,

cos α = z − 1, i.e., cos α ∈ (−1; 0); then, α ∈ (π
2 ; π ). Finally,

sin α3 = −√
1

1− z
2

−1, that is, sin α3 ∈ (−1; 0); then α3 ∈ (−π
2 ; 0).

The parameter α3 has to be in [ α1+α2
2 ; 0], and, since α1 = −π

and α2 = 0, its greatest range is [−π
2 ; 0].

The ingredients of the canonical extension are thus the state
|ωB〉 = 1√

2
|0〉 + eiϕ√

2
|1〉, the projectors

P1 = 1

2

(
2 − z

√
z(2 − z)√

z(2 − z) z

)
,

P−1 = I − P1, (10)

and the unitary

V =

⎛⎜⎜⎜⎝
f (z) 0 0 0

0 0 i f ∗(z) 0

0 i f ∗(z) 0 0

0 0 0 f (z)

⎞⎟⎟⎟⎠, (11)

with f (z) =
√√

2−2z
2−z

+ i√
2
z −1

.

In order to obtain the canonical Naimark extension for the
roulettes {{σ1,z},{σ2,1 − z}} and {{σ2,z},{σ3,1 − z}}, we have
to remove our previous assumption S1 = I. In fact, to rotate
a Pauli operator σi by an angle θ we have to use a rotation
operator W = e−i(n·σ )θ , where n is the versor of the direction
around which the rotation is made. Then, to move from a
two-Pauli-operators roulette to another, we need to apply the
correct rotation in order to modify the σi . For example, to
move from {{σ1,z},{σ3,1 − z}} to {{σ2,z},{σ3,1 − z}} we have
to apply the operator W = e−i π

4 σ3 , which changes σ1 into σ2

and leaves σ3 unchanged.
Therefore, the extensions for the other roulettes depending

on two Pauli operators are defined by the same parameters of
the extension for {{σ1,z},{σ3,1 − z}}, but the elements �x are
rotated by the operator W , that is,

�x → W�xW
†.

This means that, while for the first found extension the operator
S1 can be assumed equal to I, for the extensions of the other
roulettes the operator S1 has to be equal to the conjugate
transpose of the rotation operator W . We find that, for the
roulette given by σ2 and σ3, S1 = ei π

4 σ3 , while, for the one
given by σ1 and σ2, S1 = e−i π

4 σ1 .

V. THE STERN-GERLACH APPARATUS
AS A QUANTUM ROULETTE

The so called Stern-Gerlach apparatus allows one to
measure a component (e.g., the component along the z-axis Sz)
of the quantum observable spin, i.e., the intrinsic angular mo-
mentum of a particle. The measurement is usually performed
on a collimated beam of particles (e.g., neutral atoms) sent with
thermal speed into a region of inhomogeneous magnetic field.
Here the particles are deflected by the field in some beams
which, after propagating into the vacuum, are collected by a
screen. The magnetic field is usually assumed to be of the form
B = (B − bz) e3, where z is the coordinate along the z axis, B
is the field in the origin, and b is a constant. Actually, this is an
artificial model, since a field like this one does not respect the
Maxwell equations, as ∇ · B = −b 
= 0. On the other hand,
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we may assume that b � B so that we can neglect the other
components of B. The interaction Hamiltonian is given by
H = (B − bz)σ3 (neglecting the vacuum permittivity), and the
corresponding evolution operator is given by U = e−iτ (B−bz)σ3 ,
where τ is an effective interaction time. Starting from an initial
state which is factorized into a spin and a spatial part, i.e.,
|�〉〉 = (c0|0〉 + c1|1〉) ⊗ |ψ(q)〉, the evolved state is given by

U |�〉〉 = c0|0〉 ⊗ |ψ−(q)〉 + c1|1〉 ⊗ |ψ+(q)〉,
where |ψ±(q)〉 = e±iτ (B−bz)|ψ(q)〉. The evolution is thus cou-
pling the spin and the spatial part. Moving to the momentum
representation

|ψ̃±(p)〉 = ∫
d3q e−iq·p |ψ±(q)〉

= |ψ̃(p ± τbe3)〉,
and tracing out the spin part after the interaction, we have
that the motional degree of freedom after the interaction is
described by the density operator:

�p = |c1|2|ψ̃+(p)〉〈ψ̃+(p)| + |c0|2|ψ̃−(p)〉〈ψ̃−(p)|.
As a consequence the beam is divided in two parts, and it
is possible to perform measurements on a screen placed at a
given distance from the magnetic field, where we can see the
beams as two different spots.

If for some reason the direction of the magnetic field is tilted
we have B = (B − bt) eα , where t is a coordinate along the
new direction and eα = cos α e3 + sin α e⊥, e⊥ denoting any
direction perpendicular to the z axis, say e1. The above analysis
is still valid if we perform the substitution H → (B − bt)σθ ,
where σθ is a Pauli matrix describing a spin component along
a tilted axis. Assuming a rotation along the x axis we have that
σθ corresponds to the rotated operator:

σθ = Uθσ3U
†
θ ,

where Uθ = e−iσ1θ and θ = α/2.

A. The continuous quantum roulette

Usually, the magnetic field of the apparatus is assumed to be
a stable classical quantity. However, in any practical situation
the magnetic field unavoidably fluctuates. In particular, we
focus on Stern-Gerlach apparatuses in which the magnetic field
fluctuates in one dimension around a pre-established direction
and provide a more detailed analysis of nonideal setups
[23,24]. As mentioned above, a measurement of spin made
with a tilted magnetic field corresponds to measure the operator
σθ . If the magnetic field is fluctuating, then we may describe
this situation using a continuous quantum roulette where θ is
randomly fluctuating around the z axis according to a given
probability distribution.

In principle, the magnetic field may fluctuate in any
direction on the z-y plane; i.e., the angle θ takes values between
−π

2 and π
2 . On the other hand, in a realistic situation, the

magnetic field moves away from the pre-established direction
(the z axis, in this case) by a small angle. We thus introduce a
Gaussian probability distribution z(θ ) for the fluctuating values
of θ :

z(θ ) = 1

A
exp

{
− θ2

2�2

}
,

where the normalization A is

A =
∫ π

2

− π
2

exp

{
− θ2

2�2

}
dθ =

√
2π�erf

(
π

2
√

2�

)
.

In order to evaluate the elements of the POVM, which describes
this continuous quantum roulette, we need the projectors on
the eigenspaces of σθ , i.e.,

P1(θ ) =
(

cos2 θ i cos θ sin θ

−i cos θ sin θ sin2 θ

)
,

P−1(θ ) = I − P1(θ ). (12)

Therefore, the elements of the POVM are given by

�x =
∫ π

2

− π
2

z(θ )Px(θ )dθ, (13)

that is the equation equivalent to Eq. (5) in the continuous
case. We can evaluate the elements of the POVM using the
distribution z(θ ) and the projectors Px(θ ) given above, and we
obtain

�1 =
(

1
2 + f (�) 0

0 1
2 − f (�)

)
,

�−1 = I − �1, (14)

where the function f (�) : [0; +∞) → [ 1
2 ; 0) is given by

f (�) =
erf

(
π−i4�2

2
√

2�

) + erf
(

π+i4�2

2
√

2�

)
4e2�2 erf

(
π

2
√

2�

) .

We have f (�) � 1/2 − �2 for vanishing � and f (�) �
1/8�2 for � → ∞.

B. The canonical extension for the continuous roulette

We look for the canonical extension for this roulette in order
to obtain a practicable measurement scheme with the same
behavior (same probability distribution and postmeasurement
states) as the Stern-Gerlach experiment with fluctuating mag-
netic field. A canonical extension may be found, corresponding
to the parameters

α1 = arccos[−2f (�)], α2 = arccos[2f (�)], α3 = 0,

α = π, β = 0, θ = 0, ϕ = 0.

Let consider the parameters α1 and α2; the codomain of
the function f (�) is (0; 1

2 ]. Therefore, if cos α1 = −2f (�),
then cos α1 ∈ (0; −1] and α1 ∈ (−π

2 ; −π ]. Instead, cos α2 =
2f (�), i.e., cos α2 ∈ (0; 1] and α2 ∈ (π

2 ; 0]. Both α1 and α2

depend on the function f , so when we choose a value for f

the two parameters are fixed. For example, when f (�) → 0,
then α1 → −π

2 and α2 → π
2 ; on the other hand, if f (�) = 1

2
then α1 = −π and α2 = 0. The ranges of these two parameters
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are correct, and we have α2 � −α1 ∀ f (�). Finally, since we
have fixed α3 = 0, we have to check whether α1 − α2 � −π ,
and this is the case: as it can be easily checked α1 − α2 = −π

for all � ∈ [0; +∞). The canonical extension is thus given
by the state |ωB〉 = |0〉, the observable σ3 (measured on the
ancilla), and the unitary V ∈ L(HA ⊗ HB):

V = 1

4

3∑
k=0

vk σk ⊗ σk, (15)

v0/3 =
√

1
2 + f (�) ±

√
1
2 − f (�), (16)

�→1� 1 ± �,
(17)

v1/2 = i v0/3.

For a particle with spin up, represented by the pure state
|0〉, the probability distribution of the outcomes is given by
p1 = 1

2 + f (�), p−1 = 1 − p1 and, thus, when such a particle
is measured, there is always a probability that the apparatus
measures the spin down |1〉.

VI. CONCLUSIONS

We have addressed Pauli quantum roulettes and found their
canonical Naimark extensions. The extensions are minimal,
i.e., they involve a single ancilla qubit, and they provide a
concrete model to realize the roulettes without destroying
the signal state, which can be measured again after the
measurement or can be transmitted. Our results provide a
natural framework to describe a measurement scheme in which
the measured observable depends on an external parameter,
which cannot be fully controlled and may fluctuate according
to a given probability distribution. As an illustrative example,
we have applied our results to the description of Stern-Gerlach-
like experiments on a two-level system, taking into account
possible uncertainties in the splitting force.
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