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Detecting mixedness of qutrit systems using the uncertainty relation
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We show that the uncertainty relation as expressed in the Robertson-Schrodinger generalized form can be
used to detect the mixedness of three-level quantum systems in terms of measurable expectation values of
suitably chosen observables when prior knowledge about the basis of the given state is known. In particular, we
demonstrate the existence of observables for which the generalized uncertainty relation is satisfied as an equality
for pure states and a strict inequality for mixed states corresponding to single as well as bipartite systems of
qutrits. Examples of such observables are found for which the magnitude of uncertainty is proportional to the
linear entropy of the system, thereby providing a method for measuring mixedness.
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Introduction. The uncertainty relation lies at the heart of
quantum mechanics, providing one of the first and foremost
points of departure from classical concepts. As originally
formulated by Heisenberg [1], it prohibits certain properties
of quantum systems from being simultaneously well defined.
A generalized form of the uncertainty relation was proposed
by Robertson [2] and Schrodinger [3], and since then,
several other versions of the uncertainty principle have been
suggested. A reformulation takes into account the inevitable
noise and disturbance associated with measurements [4]. The
consideration of state independence has led to the formulation
of entropic versions of the uncertainty principle [5]. A
modification of the entropic uncertainty relation occurs in
the presence of quantum memory associated with quantum
correlations [6]. Another version provides a fine-grained
distinction between the uncertainties inherent in obtaining
possible different outcomes of measurements [7].

In recent years certain important applications of uncertainty
relations have been discovered in the realm of quantum infor-
mation processing. The security of quantum key distribution
protocols is based fundamentally on quantum uncertainty
[8], and the amount of key extractable per state can be
linked to the lower limit of entropic uncertainty [6,9]. The
fine-grained uncertainty relation can be used to determine
the nonlocality of the underlying physical system [7,10].
The uncertainty principle has been used for discrimination
between separable and entangled quantum states [11], and
the Robertson-Schrodinger generalized uncertainty relation
(GUR) has also been applied in this context [12]. In the
present work our motivation is to investigate the role of GUR
in the context of another important property, viz., the purity of
quantum systems.

At the practical level the ubiquitous interaction with the
environment inevitably affects the purity of a quantum system.
A relevant issue for an experimenter is to ascertain whether a
prepared pure state has remained isolated from environmental
interaction. It becomes important to test whether a given
quantum state is pure, in order to use it effectively as a
resource for quantum information processing [13,14]. The
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purity of a given state is also related to the entanglement
of a larger multipartite system of which it may be a part
[15]. The mixedness of states can be characterized by the
property of linear entropy, which is a nonlinear functional of
the quantum state. The linear entropy can be extracted from
the given state by tomography which usually is expensive
in terms of resources and measurements involved. Bypassing
a classical evaluation process, estimation of purity of a
system using quantum networks has been suggested [16].
Discrimination between pure and mixed states by positive
operator valued measurements that amounts to a maximum
confidence discrimination, has also been proposed [17].

In this work we connect the Robertson-Schrodinger GUR
to the property of mixedness of quantum states of discrete
variables. For the case of continuous variable systems there
exist certain pure states for which the uncertainty as quantified
by the GUR is minimized [18], and the connection of purity
with observable quantities of the relevant states have been
found [13]. Here we show that GUR can be used to distinguish
between pure and mixed states of finite dimensional systems.
To set the background we first briefly mention the essential
results for two-level systems. Our focus here is on three-level
systems which are not only of fundamental relevance in laser
physics, but also the properties of which have generated
much recent interest from the perspective of information
processing [19–24]. We show using examples of single and
bipartite class of qutrit states that the GUR can be satisfied
as an equality for pure states while it remains an inequality
for mixed states by the choice of suitable observables. We
prescribe an observational scheme using GUR which can
detect mixedness of qutrit systems unambiguously, requiring
less resources compared to tomography, and is implementable
through the measurement of Hermitian witnesslike operators.

GUR as a witness of mixedness. GUR for any pair of
observables A,B and for any quantum state represented by
the density operator ρ can be written as [2,3]

Q(A,B,ρ) � 0, (1)

where

Q(A,B,ρ) = (�A)2(�B)2 −
∣∣∣∣ 〈[A,B]〉

2

∣∣∣∣
2

−
∣∣∣∣
( 〈{A,B}〉

2
− 〈A〉〈B〉

)∣∣∣∣
2

, (2)
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with (�A)2 and (�B)2 representing the variances of the
observables, A and B, respectively, given by (�A)2 =
(〈A2〉) − (〈A〉)2, (�B)2 = (〈B2〉) − (〈B〉)2, and the square
(curly) brackets representing the standard commutators (an-
ticommutators) of the corresponding operators. The quantity
Q(A,B,ρ) involves the measurable quantities, that is, the
expectation values and variances of the relevant observables
in the state ρ. States of a d-level quantum system are in
one-to-one correspondence with Hermitian, positive semidef-
inite, unit trace operators acting on a d-dimensional Hilbert
space. The defining properties of these density operators
ρ are (i) ρ† = ρ, (ii) ρ � 0, and (iii) tr[ρ] = 1. Pure
states correspond to the further condition ρ2 = ρ, which
is equivalent to the scalar condition tr[ρ2] = 1. Hence, the
complement of the trace condition can be taken as a measure
of mixedness given by the linear entropy defined for a d-level
system as

Sl(ρ) =
(

d

d − 1

)
[1 − tr(ρ2)]. (3)

We now investigate how the quantity Q(A,B,ρ) can act as an
experimentally realizable measure of mixedness of a system.

We first briefly describe the status of GUR with regard to
the purity of qubit states. The density operator for two-level
systems can be expressed in terms of the Pauli matrices. The
state of a single qubit can be written as

ρ(�n) = (I + �n · �σ )

2
, �n ∈ R3. (4)

The positivity of this Hermitian unit trace matrix demands
|�n|2 � 1. It follows that single qubit states are in one-to-one
correspondence with the points on or inside the closed unit
ball centered at the origin of R3. Points on the boundary
correspond to pure states. We show that for a pair of suitably
chosen spin observables, GUR is satisfied as an equality
for the extremal states, that is, the pure states, and as an
inequality for points other than extremals, that is, for the
mixed states. The linear entropy of the state ρ can be written
as Sl(ρ) = (1 − �n2). If we choose spin observables along two
different directions, that is, A = r̂ · �σ and B = t̂ · �σ , then Q

becomes

Q(A,B,ρ) = [1 − (�riti)
2]Sl(ρ). (5)

It thus follows that for r̂ · t̂ = 0, Q coincides with the linear
entropy. For orthogonal spin measurements, the uncertainty
quantified by GUR, Q, and the linear entropy Sl are exactly
same for single-qubit systems. Thus, it turns out that Q = 0 is
both a necessary and sufficient condition for any single-qubit
system to be pure when the pair of observables are qubit spins
along two different directions.

For the treatment of composite systems the states consid-
ered are taken to be polarized along a specific known direction,
say, the z axis forming the Schmidt decomposition basis. In
order to enable Q(A,B,ρ) to be a mixedness measure, A and
B are chosen for the two-qubit case to be of the form

A = (m̂ · �σ 1) ⊗ (n̂ · �σ 2),
(6)

B = (p̂ · �σ 1) ⊗ (q̂ · �σ 2),

where m̂,n̂,p̂,q̂ are unit vectors. For enabling Z(A,B,ρ) to
be used for discerning the purity or mixedness of a given
two-qubit state specified, say, the z axis, the appropriate choice
of observables A and B is found to be that of lying on the
two-dimensional x-y plane (i.e., m̂,n̂,p̂,q̂ are all taken to
be on the x-y plane), normal to the z axis pertaining to the
relevant Schmidt decomposition basis. Then, Q(A,B,ρ) = 0
(i.e., GUR is satisfied as an equality) necessarily holds good
for pure two-qubit states whose individual spin orientations
are all along a given direction (say, the z axis) normal to
which lies the plane on which the observables A and B are
defined. On the other hand, Q(A,B,ρ) > 0 holds good for
most settings of A and B for two-qubit isotropic states, for
the Werner class of states given by ρw = [(1 − p)/4]I + pρs

(ρs is the two-qubit singlet state), as well for other types
of one-parameter two-qubit states which comprise of pure
states whose individual spin orientations are all along the same
given direction normal to the plane on which the observables
A and B are defined. For the case of multipartite systems,
in our purpose the general form of n-qubit observables is
given by

A = r̂1 · �σ ⊗ r̂2 · �σ ⊗ · · · ⊗ r̂n · �σ ,
(7)

B = t̂1 · �σ ⊗ t̂2 · �σ ⊗ · · · ⊗ t̂n · �σ ,

where, r̂i ,t̂i are unit vectors in R3. GUR may be used to
distinguish pure states from mixed ones with the choice
of suitable observables for composite qubit systems, whose
detailed implications will be presented in a separate work.

Three-level systems. The structure of the state space of
the generalized Bloch sphere (�d ) is much richer for d � 3
[25,26]. Qutrit states can be expressed in terms of Gellmann
matrices that are familiar generators of the unimodular unitary
group SU(3) in its defining representation with eight Hermi-
tian, traceless, and orthogonal matrices λj ,j = 1,....,8 satis-
fying tr(λkλl) = 2δkl , and λjλk = (2/3)δjk + djklλl + ifjklλl .
The expansion coefficients fjkl , the structure constants of the
Lie algebra of SU(3), are totally antisymmetric, while djkl are
totally symmetric. Single-qutrit states can be expressed as

ρ(�n) = I + √
3�n · �λ

3
, �n ∈ R8. (8)

The set of all extremals (pure states) of �3 constitute also CP 2,
and can be written as �ext

3 = CP 2 = {�n ∈ R8|�n · �n = 1,�n ∗
�n = �n}, with �n ∗ �n = √

3djklnknl êj . Here êj is the unit vector
belongs to R8. Non-negativity of ρ demands that �n should
satisfy the additional inequality |�n|2 � 1. The boundary ∂�3 of
�3 is characterized by ∂�3 = {�n ∈ R8|3�n · �n − 2�n ∗ �n · �n =
1,�n · �n � 1}, and the state space �3 is given by �3 = {�n ∈
R8|3�n · �n − 2�n ∗ �n · �n � 1,�n · �n � 1}. For two-level systems
the whole boundary of the state space represents pure states,
that is, �ext

2 = ∂�2, while for three-level systems �ext
3 ⊂ ∂�3.

The four-parameter family �ext
3 is sprinkled over the seven-

parameter surface ∂�3 of �3.
The most general type of observables can be written as A =

â · �λ = aiλi , B = b̂ · �λ = biλi , where, �a2
i = 1 and �b2

i =
1. The measurement of qutrit observables composed of the
various λi’s, can be recast in terms of qutrit spin observables,
given by [24], for example, λ1 = (1/

√
2)(Sx + 2{Sz,Sx}), and
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similarly for the other λi’s. The qutrit spins are given by

√
2Sx =

⎛
⎝ 0 1 0

1 0 1
0 1 0

⎞
⎠ ,

√
2Sy =

⎛
⎝ 0 −i 0

i 0 −i

0 i 0

⎞
⎠ ,

Sz =
⎛
⎝ 1 0 0

0 0 0
0 0 −1

⎞
⎠ . (9)

Note that with the choice of A = Â · λ̂ and B = B̂ · λ̂, Q

becomes

Q = (4/9)[1 − (Â · B̂)2] + (4/9)[Â · �n + B̂ · �n
− 2(Â · B̂)(Â ∗ B̂) · �n] + (4/9){(Â · �n)(B̂ · �n)

− [(Â ∗ B̂) · �n]2 + 4(Â · B̂)(Â · �n)(B̂ · �n) − 2(Â · �n)2

− 2(B̂ · �n)2 − 3[(Â ∧ B̂) · �n]2} − (4/9){2(Â · �n)(B̂ · �n)2

+ 2(Â · �n)2(B̂ · �n) − 4[(Â ∗ B̂) · �n](Â · �n)(B̂ · �n)}, (10)

where (Â ∗ B̂)k = √
3dijkAiBj and (Â ∧ B̂)k = fijkAiBj .

From the expression of Q it is clear that it changes if ρ is
changed by some unitary transformation. For such change
of states the norm of �n does not change. Purity/mixedness
property of a state does not change under unitary operations
on the state. Hence, it is desirable for any mixedness measure
to remain invariant under unitary operation. This would be
possible if Q becomes some function of only |�n|2 for a suitable
choice of observables. However, unlike the case of the single
qubit, for the single qutrit Q becomes independent of the linear
and cubic terms of |�n| only for the trivial choice of observables,
that is, Â = B̂, in which case Q becomes zero, whatever be
the state, pure or mixed. Here we employ suitably chosen
observables and a sequence of measurements to turn Q to a
detector of mixedness, that is, Q = 0 for pure states and Q > 0
for mixed states. Note further that, under a basis transformation
λ′

i = UλiU
†, the state becomes ρ ′ = (1/3)(I + √

3�n′ · �λ′) =
U (1/3)(I + √

3�n′ · �λ)U †. Now, for any observable χ ′ in the
prime basis, one has Tr[χ ′ρ ′] = Tr[χ (1/3)(I + √

3�n′ · �λ)].
Thus, any nonvanishing expectation value in the primed basis
cannot vanish in the unprimed one, and vice versa. Hence, in
order to measure in another basis one has to simply choose
observables which are unitary conjugates to the observables
written in terms of standard λ basis. Such observables would
again yield Q = 0 for pure states and Q > 0 for mixed states
in the new basis. Hence, though we have specified our scheme
based on the single-qutrit state in terms of the standard λ

basis [25,26], our scheme remains invariant with regard to the
choice of the basis as long as the knowledge of the specific
basis chosen is available to the experimenter. This means that
the experiment shall involve not only the observables A and
B but also a possibility for simultaneous unitary rotations of
these observables.

In what follows we take up to a three-parameter family of
states from �3 [26] and find that there exist observable pairs
which for pure states exhibit minimum uncertainty, viz., Q =
0. Our scheme runs as follows. Economizing on the number
of measurements required, we take λ3 as A and, sequentially,
the members of any one of the pairs (λ7,λ6),(λ5,λ4),(λ1,λ2)
as B. The significance of such pairing will be clear later. If
two successive measurements taking B from any of the above
pairs yield Q = 0, the state concerned is pure. In contrast, if

FIG. 1. Detection scheme for the purity of single-qutrit states of
up to three parameters. The numbers to the left of the boxes indicate
the number of measurements required corresponding to each of the
horizontal levels.

B taken from all the above pairs sequentially yields Q > 0,
the state is found to be mixed. (see, Fig. 1 for an illustration
of the scheme).

Let us first consider the one-parameter family of single-
qutrit states for which only one of the eight parameters (ni,i =
1, . . . ,8) is nonzero while the remaining seven vanish. The
linear entropy of this class of states is given by

Sl(ρ) = 1 − n2
i . (11)

There exist many pairs of observables which can detect the
mixedness of this class of states unambiguously. For example,
when i = 8, the only pure state of this class is given by n8 =
−1 [26]. Here

Q(λ3,λ7) = Q(λ3,λ6) = (4/9)(2 − n8)(1 + n8). (12)

Hence, Q = 0 only for n8 = −1, but Q > 0 otherwise. Next,
for example when i = 1, one has

Q(λ3,λ7) = Q(λ3,λ6) = Q(λ3,λ5) = Q(λ3,λ4) = 4/9. (13)

It turns out that there is no choice of B from both the
sequential pairs (as depicted in Fig. 1) for which Q = 0.
Similar considerations are valid also for other single-parameter
qutrit states, enabling the detection scheme as given in Fig. 1.

Moving to the two-parameter family of density matrices
(two of the eight parameters n1, . . . ,n8 are nonzero, while
the remaining six vanish), note that in this case there are 28
combinations of different pairs of nonzero parameters, and
these classes belong to one of the four different types of unitary
equivalence classes, viz., circular, parabolic, elliptical, and
triangular [26]. In this case, for example, for states belonging to
the parabolic class, by choosing n3 and n4 to be nonvanishing,
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Q takes the forms

Q(λ3,λ5) = (2/9)(2 +
√

3n3)
(
1 − 2n2

3

) − n2
4/4,

Q(λ3,λ4) = (1/9)
[
4 − 8n2

3 − 4
√

3n3
3 − 11n2

4

+ 2
√

3n3
(
1 + 4n2

4

)]
. (14)

Here pure states occur for (n3,n4) = (1/
√

3, ± √
2/3), leading

to Q = 0, while Q > 0 corresponding to all mixed states, as
is also evident from the expression for the linear entropy given
by

Sl(ρ) = (
1 − n2

3 − n2
4

)
. (15)

Similar considerations apply to other single-qutrit states of
the two-parameter family, enabling the detection of pure
states when two successive measurements with B taken from
sequential pairs (Fig. 1) lead to Q = 0.

Next consider the three-parameter family of qutrit states
where there are seven geometrically distinct and ten unitary
equivalent types of three sections out of 56 standard three
sections. Considering an example of states belonging to the
parabolic geometric shape, Q has the forms

Q(λ3,λ5) = (1/9)
[
4 − 8n2

3 − 4
√

3n3
3 − 3n2

4 − 11n2
5

+ 2
√

3n3
(
1 + 4n2

5

)]
,

Q(λ3,λ4) = (1/9)
[
4 − 8n2

3 − 4
√

3n3
3 − 3n2

5 − 11n2
4

+ 2
√

3n3
(
1 + 4n2

4

)]
. (16)

The linear entropy of this class of states is given by

Sl(ρ) = 1 − n2
3 − n2

4 − n2
5. (17)

When B is chosen from the (λ4,λ5) pair as above, Q turns out to
be zero for pure states given by n3 = 1/

√
3 and n2

4 + n2
5 = 2/3,

and Q is greater than zero for all mixed states. It can be checked
that the purity of all three parameter families of single-qutrit
states can be determined by the scheme depicted in Fig. 1.

Let us now discuss the case of two-qutrit state discrimi-
nation. Here we assume that the states considered are taken
to be polarized along a specific known direction, say, the
z axis forming the Schmidt decomposition basis. A two-
qutrit pure state in the Schmidt form can be written as
|ψ〉 = k1|11〉 + k2|22〉 + k3|33〉, where, k1,k2,k3 are real with
k2

1 + k2
2 + k2

3 = 1, and |1〉, |2〉, and |3〉 are orthonormal unit
vectors in C3. For our purpose a general form of observables
acting on the two-qutrit system is given by A = r̂1 · �λ ⊗ r̂2 · �λ
and B = t̂1 · �λ ⊗ t̂2 · �λ, where r̂1,t̂1,r̂2,t̂2 are unit vectors inR8.
For our purpose it is sufficient to take observables of the form

A = λi ⊗ (cos θ2λi + sin θ2λj ),
(18)

B = (cos θ3λi + sin θ3λj ) ⊗ (cos θ4λi + sin θ4λj ),

where (i,j ) are taken from the pair (1,2),(3,8),(4,5),(6,7),
and θ2,θ3,θ4 are angles between r̂1 and r̂2,t̂1,t̂2, respectively.
With the choice of observables (i = 1,j = 2), the uncertainty
becomes Q(A,B,ρpure) = 4k2

1k
2
2k

2
3 sin(θ2 − θ3 − θ4). Hence,

choosing θ2 − θ3 = θ4, we can make Q = 0 for every pure
state.

Now consider a one-parameter class of two-qutrit mixed
states expressed as

ρm = pρ1 + (1 − p)ρ2, (19)

where ρ1 and ρ2 are arbitrary pure states parametrized as ρ1 =
|ψ1〉〈ψ1| with |ψ1〉 = k1|11〉 + k2|22〉 + k3|33〉 and ρ2 =
|ψ2〉〈ψ2| with |ψ2〉 = k4|11〉 + k5|22〉 + k6|33〉. For such
states the linear entropy is given by

Sl(ρm) = 3
2p(1 − p). (20)

The expression for Q under the condition θ2 − θ3 = θ4

is given by Q(A,B,ρm) = 4k2
1p(1 − p)[1 − k2

6 − 4k2
4k

2
5(1 −

p) cos2(θ3 + θ4)] sin2(θ3), which, when maximized over all
observables in the selected region (i = 1,j = 2), leads to

Q = 4k2
1

(
1 − k2

6

)
p(1 − p). (21)

We observe that the expression for the uncertainty may
coincide with the value of linear entropy for certain choices of
the state parameters. In general, Q always vanishes for pure
states, and remains positive for mixed ones, for k1 �= 0, and
k6 �= 1.

As another example of two-qutrit states, we consider the
popular class of isotropic states that are invariant under the
action of local unitary operations of the form U ⊗ U ∗. Two-
qutrit isotropic states can be written as

ρ = pρi + 1 − p

9
I ⊗ I, (22)

where 0 � p � 1 and ρi = |φ〉〈φ|, with |φi〉 =
(1/

√
3)(|11〉 + |22〉 + |33〉). The linear entropy of this

state is given by

Sl(ρ) = 2
3 (1 − p2) (23)

and our choice of observables leads to Q =
(8/81)(−1 + p){−3 − 3p + 2p2 + (−1 + p) cos(2θ3) + 2p2

cos[2(θ3 + θ4)]}2 sin θ3. Maximizing over all observables in
the selected region we get

Q = 16
81 (1 − p)(1 + 2p), (24)

which is quadratic in the parameter p similar to the linear
entropy and is able to distinguish mixed states from the pure
state (p = 1). It may be noted that for the Werner class of states
that are invariant under the local unitary operations of the form
U ⊗ U , and which differ from the Isotropic class for qutrits,
there exists no pure state for qutrits, a fact that is reflected in
the corresponding expression for Q that turns out to be Q > 0
always.

Measurement prescription. We now outline our suggested
scheme for using the uncertainty relation to determine whether
a given state is pure or mixed, provided the prior knowledge of
the basis is available. The GUR through the scheme discussed
here is able to distinguish between pure and mixed states for
a broad category of two- and three-level systems (see Fig. 2).
For single-party systems, the scheme works for all qubits and
up to a three-parameter family of qutrit states for which the
classification into unitary equivalence classes is available in the
literature [25,26]. For bipartite systems, the scheme has been
shown to work for the mixture of two arbitrary pure states, the
isotropic class, and the Werner class of states as well. There
may, of course, exist other classes of states within the above
categories, for which we are yet to ascertain the viability of
this scheme.

It may be noted here that the limitation of instrumental
precision could make the observed value of Q for pure states

012105-4



DETECTING MIXEDNESS OF QUTRIT SYSTEMS USING . . . PHYSICAL REVIEW A 87, 012105 (2013)

FIG. 2. Family of states that can be distinguished using the
uncertainty relation.

to be a small number instead of exactly zero. In order to take
into account the experimental inaccuracy, a parameter ε may
be introduced in the analysis. For a single-qubit system, by
choosing the measurement settings for A and B as qubit spins
along the z and x directions, respectively, the measured value
of the uncertainty obtained as Q � ε leads to the conclusion
that the given state is mixed. This prescription of determining
mixedness holds for all single-qubit states ρ(�n) = (I+�n·�σ )

2 ,
except those lying in the narrow range 1 � n �

√
1 − 2ε/3,

as determined by putting Q < ε in Eq. (5).
A somewhat more elaborate procedure is required for

qutrits, as may be expected from the richer structure of their
state space. For the case of single qutrits belonging to the one-,
two-, or three-parameter family of states, one has to find Q

taking A = λ3 and B from the (λ6,λ7),(λ4,λ5),(λ1,λ2) pairs in
succession, as depicted in the Fig. 1. If Q < ε for the settings
B corresponding to both members of a same pair measured
in succession, then the state is pure within the limitations of
experimental accuracy. Whenever Q � ε, B is chosen from
the pair vertically below. If there exists no such pair for which
Q < ε, then the state is mixed. In order to maximize the
uncertainty measured by the variable Q, such that Q � ε for
the maximum number of mixed states, the observables need to
be chosen so as to avoid |ai/bi | ≈ 1. Our scheme pictorially
represented in Fig. 1 is able to detect mixedness of single-qutrit
states of up to three parameters.

For the case of two-qutrit states, the measurement of the
observables given by Eq. (18) with the λi’s chosen from the
regions spanned by (λ1,λ2), together with the restriction on
the angle θ3 �= π , suffices to distinguish pure and mixed states.
Such a procedure is able to detect all mixed states within the
margin of experimental accuracy. For example, for the case of
the two-qutrit isotropic states the method would fail only for
states lying in the parameter range

√
1 − 3ε/2 < p < 1.

The determination of mixedness using GUR may require in
certain cases a considerably lesser number of measurements
compared to tomography. In the case of single-qutrit states,
full tomography involves the estimation of eight parameters,
while in our prescription sometimes four measurements may
suffice for detecting the purity of a single-qutrit state. In
Fig. 1, the numbers beside the boxes indicate the numbers of
measurements required to find the various expectation values
including those of (anti-)commutators required to determine Q

using Eq. (2). For instance, the number 4 beside the top box,
means that the four measurements (〈λ3〉,〈λ7〉,〈λ8〉, and〈λ6〉)
are all that is required for the first horizontal level. This follows
from the algebra

〈{λ3,λ7}〉 = −〈λ7〉/2, 〈[λ3,λ7]〉 = 〈λ6〉/2,

〈
λ2

3

〉 = 2

3
I + 1√

3
〈λ8〉,

〈
λ2

7

〉= 2

3
I − 1

2
√

3
〈λ8〉− 1

2
〈λ3〉,

〈[λ3,λ6]〉 = −〈λ7〉/2, 〈{λ3,λ6}〉 = −〈λ6〉/2,

〈
λ2

6

〉 = 2

3
I − 1

2
√

3
〈λ8〉 − 1

2
〈λ3〉. (25)

To proceed vertically down to the next level in Fig. 1, the
number of extra measurements are indicated beside the boxes.
It may be mentioned that in our scheme it does not matter if
any horizontal pair of boxes is interchanged with another pair
at a different level. A maximum of eight measurements thus
suffices to distinguish between pure and mixed states of single
qutrit up to three-parameter families. The maximum number
of measurements required in particular cases may not provide
a significant advantage over tomography, but would still form
an independent check of states with prior knowledge of basis.
The difference in the number of required measurements is
substantially enhanced for composite states. For two qubits,
GUR requires up to 5 measurements compared to 15 required
by tomography for the class of states considered. For the case
of two qutrits the measurement of at most 8 expectation values,
viz., 〈λ1 ⊗ λ1〉, 〈λ1 ⊗ λ2〉, 〈λ2 ⊗ λ1〉, 〈λ2 ⊗ λ2〉, 〈λ3 ⊗ λ3〉,
〈λ3 ⊗ λ8〉, 〈λ8 ⊗ λ3〉, and 〈λ8 ⊗ λ8〉, suffices, using GUR for
the observables defined by Eq. (18). A comparison of the
number of measurements required using GUR with that needed
in tomography is provided in Table I.

Conclusions. We have shown that the Robertson-
Schrodinger uncertainty relation [2,3] is connected to the
property of mixedness of single and bipartite three-level
quantum systems. The generalized uncertainty corresponding
to the measurement of suitable observables vanishes for pure
states and is positive definite for mixed states. Using this
feature we have proposed a scheme to distinguish pure and
mixed states belonging to the classes of all single-qutrit states
up to three parameters, as well as several classes of two-qutrit
states, when prior knowledge of the basis is available. Since
the class of all pure states is not convex, the witnesses
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TABLE I. A comparison between the number of measurements
required in tomography and those required through our method
is shown for the categories of states considered. Using GUR
considerably reduces the number of measurements required for
bipartite systems and with increasing dimension.

System In tomography Using GUR

Single qubit 3 3
Two qubit 15 3–5
Single qutrit 8 4–8
Two Qutrit 80 4–8

proposed here for detecting mixedness do not arise from
the separability criterion that holds for the widely studied
entanglement witnesses [27], as well as the recently proposed
teleportation witnesses [28]. Nonetheless, the same principle
of distinction of categories of quantum states based on the

measurement of expectation values of Hermitian operators is
followed.

A possible implementation of the witnesses proposed
here could be through techniques involving measurement of
two-photon polarization-entangled modes for qutrits [20,22].
The procedure suggested here could be helpful also for the
detection of entanglement, since purity of subsystems is related
to the entanglement of the joint system. The method of detect-
ing mixedness using the uncertainty relation is advantageous
over tomography in terms of the number of measurements
required, significantly for bipartite qutrit systems, which may
have applications in information processing protocols such
as distributed computing [19] and security enhancement of
quantum cryptography [21,22].
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