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We study non-Markovianity and information flow for qubits experiencing local dephasing with an Ohmic class
spectrum. We demonstrate the existence of a temperature-dependent critical value of the Ohmicity parameter
s for the onset of non-Markovianity and give a physical interpretation of this phenomenon by linking it to the
form of the reservoir spectrum. We demonstrate that this link holds also for more general spectra. We unveil a
class of initial states for which discord is forever frozen at a positive value. We connect time-invariant discord to
non-Markovianity and propose a physical system in which it could be observed.
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Introduction. Qubits subjected to local purely dephasing
noise are ubiquitous models of open quantum systems, and
they have been studied extensively in the literature. Examples
include dephasing in quantum registers [1–3], ultracold gases
[4,5], quantum metrology protocols [6], quantum biological
systems [7], and dynamical decoupling theory [8]. From a
theoretical point of view the dephasing model is exactly
solvable [1–3], and hence it is an ideal testbed to investigate
one of the most thrilling fields of the theory of open quantum
systems, that of non-Markovian quantum processes [9].

Recently, a great deal of attention has been devoted to the
study of systems whose reduced dynamics is characterized
by memory effects and recoherence phenomena, emerg-
ing from nontrivial correlations with an environment. Such
dynamics is typically called non-Markovian. Memory effects
and non-Markovianity have been shown to be a resource for
quantum technologies [6,10–13] and consequently measures
of non-Markovianity have become important as quantifiers
of this resource [14–16]. Moreover, it has been shown that
non-Markovianity of a quantum probe can indicate a quantum
phase transition occurring in a complex environment, with
which the probe is interacting [17].

Non-Markovian features play an important role in systems
where the frequency spectrum of the environment is structured.
However, a connection between the general form of the spec-
trum and the memory effects in the reduced system dynamics
needs to be elucidated. In this Rapid Communication we
establish this connection by unveiling a necessary condition on
the form of the spectrum to induce non-Markovian dynamics
for a dephasing qubit. We then focus on the widely used Ohmic
class of reservoir spectra and show that the condition is both
necessary and sufficient for these types of spectra. Moreover,
we demonstrate that only super-Ohmic environments can
induce non-Markovian dynamics. This means that even if
the reduced dynamics is exact, and hence no Markovian
approximation has been performed, the time evolution of the
qubit does not present any memory effects or recoherence for
Ohmic and sub-Ohmic spectra.

Non-Markovian dynamics can prolong the existence of
quantum properties, thus delaying the quantum to classical
transition. We present here a striking example of this phe-
nomenon by studying the decay of quantum and classical
correlations in a non-Markovian open quantum system. When

two qubits interact with purely dephasing local environments,
the dynamics of both classical and quantum correlations can
exhibit sudden changes [18–20]; for certain initial conditions
one observes a sudden transition from classical decoherence
(decay of classical correlations) to quantum decoherence
(decay of quantum correlations), which is preceded by a finite
interval of time when quantum discord, a commonly used
measure of quantum correlations [21,22], is frozen to a nonzero
value [19]. This scenario holds for a Markovian model of
noise, that is, when one describes the system by means of a
master equation of Lindblad-Gorini-Kossakowski-Sudarshan
form [23], and it has also been observed for non-Markovian
random telegraph noise [24] and several other physical
models [25].

It is natural to wonder how this transition behaves in the
exact pure dephasing model considered here, and ask what
the role of non-Markovianity is in this process. In this Rapid
Communication we demonstrate that for this model the sudden
transition does not always occur and the quantum correlations
can behave in a time-invariant way, that is, remaining constant
at all times, while the state of the system and all other
dynamical quantities evolve. We present the conditions for
permanently frozen discord and discuss its microscopic origin.
Specifically we point out how time-invariant discord is related
to non-Markovian features of the exact dynamical map.

Non-Markovianity. Let us consider the following micro-
scopic Hamiltonians describing the local interaction of a qubit
and a bosonic reservoir, in units of h̄,

H = ω0σz +
∑

k

ωka
†
kak +

∑
k

σz(gkak + g∗
k a

†
k),

with ω0 the qubit frequency, ωk the frequencies of the reservoir
modes, ak (a†

k) the annihilation (creation) operators, and gk

the coupling constant between each reservoir mode and the
qubit. In the continuum limit

∑
k |gk|2 → ∫

dωJ (ω)δ(ωk −
ω), where J (ω) is the reservoir spectral density. This model
can be solved exactly [1–3]. The master equation for the qubit,
in the interaction picture, is given by

ρ̇ = γ (t)[σzρσz − ρ]/2, (1)

010103-11050-2947/2013/87(1)/010103(5) ©2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.87.010103


RAPID COMMUNICATIONS

P. HAIKKA, T. H. JOHNSON, AND S. MANISCALCO PHYSICAL REVIEW A 87, 010103(R) (2013)

and is time local. If the environment is initially in a thermal
state, the time-dependent dephasing rate takes the form

γ (t) =
∫

dωJ (ω) coth[h̄ω/2kBT ] sin(ωt)/ω, (2)

resulting in the decay of the density matrix off-diagonal
elements ρij (t) = e−�(t)ρij (0), i �= j , with dephasing factor
�(t) = 2

∫ t

0 γ (t ′)dt ′ given by

�(t) = 2
∫ ∞

0
dω J (ω) coth[h̄ω/2kBT ][1 − cos(ωt)]/ω2

≡
∫ ∞

0
dω g(ω,T )[1 − cos(ωt)]. (3)

For this model the non-Markovianity measures based on infor-
mation flow [14], on entanglement with an ancilla [15], and on
Fisher information [16] all predict the same crossover between
Markovian and non-Markovian dynamics. The crossover is
signaled by the onset of periods during which the dephasing
rate is negative or, equivalently, the dephasing factor �(t)
always decreases with time.

To elucidate the origin and physical meaning of non-
Markovianity in dephasing channels we notice that, following
Ref. [2], one can describe the effect of the qubit on its environ-
ment by a displacement operator acting on each environment
mode, with the associated phase conditional on the state of the
qubit. The two-qubit states excite each mode with opposing
phases, leading to a decrease in the overlap between the
states of the mode in each case; this is the physical cause
of decoherence. Destructive interference between excitations
of a mode at different times then leads to recoherences at the
frequency of the mode; it is the balance between these two
effects for different modes, captured exactly by Eq. (3), that
determines whether the dynamics is non-Markovian.

Using Eq. (3), we establish a simple link between the
onset of non-Markovianity and the form of the reservoir
spectrum. As the cosine transform of a convex function is
monotonically increasing, we deduce that a sufficient condi-
tion for Markovianity is that g(ω,T ) is convex or, equivalently,
the nonconvexity of g(ω,T ) is a necessary condition for
non-Markovianity. Physically, a convex g(ω,T ) means that
any recoherence is always outweighed by more decoherence
from lower-frequency modes. As we now show, this condition
helps classify the dynamics for Ohmic-like spectral densities
of the form

J (ω) = ωs

ωs−1
c

e−ω/ωc , (4)

where ωc is the reservoir cutoff frequency. By changing the
s parameter one goes from sub-Ohmic reservoirs (s < 1)
to Ohmic (s = 1) and super-Ohmic (s > 1) reservoirs, respec-
tively. We stress that such engineering of the Ohmicity of the
spectrum is possible when simulating the dephasing model in
trapped ultracold atoms, as demonstrated in Ref. [5]. A closed
analytic expression for the time-dependent dephasing rate can
be found in both the zero T and the high T limit. In the former
case one obtains

γ0(t,s) = ωc[1 + (ωct)
2]−s/2�[s] sin[s arctan(ωct)], (5)

with �[x] the Euler gamma function. For high T , instead,
γHT (t,s) = 2kBT γ0(t,s − 1)/ωc.

Starting from Eq. (5) it is straightforward to prove that
at zero T the dephasing rate takes temporarily negative
values if and only if s > scrit = 2. Hence, memory effects
leading to information backflow and recoherence occur only if
the reservoir spectrum is super-Ohmic with s > 2. Equally,
Eq. (5) leads to scrit = 3 for high T . Moreover, we have
established numerically that scrit increases monotonically with
the temperature until it reaches its maximum value scrit = 3 at
infinite temperature. The existence of a temperature-dependent
critical value of the Ohmicity parameter, ruling the Markovian
to non-Markovian transition, is one of the main results of this
Rapid Communication. We now explain this result in terms of
the reservoir spectrum.

It can be shown analytically that the integrand of Eq. (3) for
the Ohmic class becomes a nonconvex function of ω for s >

scrit for both zero and infinite T . For intermediate temperatures,
numerical investigation also indicates that the value of s

for which the function g(ω,T ) changes from convex to
nonconvex coincides with scrit, implying that the condition on
the nonconvexity of the spectrum is necessary and sufficient for
non-Markovianity at all T . Therefore, not only does convexity
guarantee decoherence always outweighs recoherence, but for
these systems, it is required; this highlights the key role of
the low-frequency part of the spectrum in the occurrence of
information backflow.

Time-invariant discord. For a bipartite state ρAB the
quantum discord Q(ρAB) is defined as the difference between
the total correlations of the system, given by the mutual
information I(ρAB) = S(ρA) + S(ρB) − S(ρAB) with S(ρ) =
−Tr(ρ log ρ) the von Neumann entropy, and the classical cor-
relations C(ρAB) = max	A

[J (	AρAB)] [21,22]. In the latter
expression the maximization is performed over all sets of or-
thogonal projections 	A on state A and J describes the effect of
the projective measurements on the state. In general, the max-
imization procedure makes calculations of the quantum and
classical correlations difficult, however, in this work we focus
on a class of states for which the maximizing measurement is
known and quantum discord has an analytical expression [26].

In Ref. [19] it was shown that if two qubits interact locally
with Markovian dephasing environments, there exist classes
of states for which during an initial time interval 0 < t < t̄

quantum discord remains constant while classical correla-
tions decay. For t > t̄ , on the other hand, quantum discord
decays while classical correlations remain constant. In some
sense this is counterintuitive as we would expect quantum
properties to start decaying before classical properties, since
they are the most sensitive to the deleterious effects of the
environment. This phenomenon, named the sudden transition
from classical to quantum decoherence, was investigated
originally theoretically and experimentally when the qubit
dynamics is described by a Markovian master equation of
the form ρ̇A(B) = γ [σA(B)

j ρA(B)σ
A(B)
j − ρA(B)]/2, with γ > 0

the constant dephasing coefficients, σA(B)
j the Pauli operator in

direction j acting on qubit A(B), and j = x,y,z. For the sake
of concreteness we consider dephasing along the z direction
only. The sudden transition occurs for initial Bell diagonal
states of the form

ρAB = (1 + c)

2
|
±〉〈
±| + (1 − c)

2
|�±〉〈�±|, (6)
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where |
±〉 = (|00〉 ± |11〉)/√2 and |�±〉 = (|01〉 ±
|10〉)/√2 are the four Bell states and |c| < 1. The sudden
transition time is given by t̄ = − ln(|c|)/(2γ ). Therefore, it is
possible to increase the time interval over which the discord
is constant. For increasing values of t̄ , however, the discord
decreases towards its zero value obtained for c = 0.

We now study whether the sudden transition from classical
to quantum decoherence occurs also for the exact model
of dephasing considered here and, if so, the effect of the
reservoir spectrum on the behavior of quantum and classical
correlations. For the initial class of states of Eq. (6) the mutual
information and classical correlations take the form

I[ρAB(t)] =
2∑

j=1

1 + (−1)j c

2
log2[1 + (−1)j c]

+
2∑

j=1

1 + (−1)j e−�(t)

2
log2[1 + (−1)j e−�(t)]

(7)

and

C[ρAB(t)] =
2∑

j=1

1 + (−1)jχ (t)

2
log2[1 + (−1)jχ (t)], (8)

where χ (t) = max{e−�(t),c}, and we have taken c positive for
the sake of simplicity.

From Eqs. (7) and (8) one sees immediately that when
e−�(t) > c the classical correlations decay while the discord,
given by the first term in Eq. (7), remains constant. On the
other hand, if a finite transition time t̄ such that

e−�(t̄) = c (9)

exists, then for t > t̄ the discord starts decaying and the
classical correlations stay constant. Contrary to the Markovian
dephasing model, the transition time t̄ now crucially depends
not only on c but also on the parameter s and on the reservoir
temperature T through �(t).

Figure 1 shows the values of s and t for which condition (9)
is satisfied, for c = 0.1 and T = 0. For a certain range of the
parameter s, Eq. (9) has a solution and accordingly the system
has a sudden transition from classical to quantum decoherence
at time t̄ . Interestingly, we also discover a range of values of
s for which Eq. (9) has no solution and the transition time t̄

does not exist. For these values of s only classical correlations
are affected by noise, leading to classical decoherence, while
discord remains frozen forever. The two different cases are
illustrated in Figs. 1(b) and 1(c), where we plot the classical
correlations and discord for the Ohmic case s = 1 and s = 2.5,
respectively. We stress that the phenomenon of time-invariant
discord is not related to entanglement dynamics: In Figs. 1(b)
and 1(c) we show that for these choices of initial parameters
entanglement dies in a finite, short time ωct ≈ 1 both in the
case when we observe a transition from classical to quantum
decoherence, and when discord is frozen forever.

For the zero T case, the possibility of having time-invariant
discord depends on both the initial state of the two-qubit
system, that is, on the parameter c, and on the parameter s,
describing the structure of the reservoir spectral density. By
looking at the asymptotic long-time limit of condition (9)
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FIG. 1. (Color online) (a) Landscape of correlation dynamics
in the s-t plane, for c = 0.1 and T = 0. Blue (dark gray) areas
denote parameters (t,s) corresponding to quantum decoherence, red
(gray) areas to classical decoherence and the intersection between
the two, marking the values of s and t̄ satisfying Eq. (9), which
defines the transition time t̄ as a function of the reservoir spectrum
parameter s. The smaller figures show discord (solid red line),
classical correlations (dashed black line), and entanglement measured
by concurrence [27] (dotted-dashed blue line) for two specific choices
of s; (b) for s = 1 the system has a sudden transition from quantum
to classical decoherence while for (c) s = 2.5 the discord is frozen
forever. The blue (dark gray) dot in (a) and (b) points the transition
time t̄ for s = 1.

we can define the s and c parameter space for which
time-invariant discord exists. This is shown in Fig. 2. Note
that the value of the frozen discord is Q = (1 + c) log2(1 +
c)/2 + (1 − c) log2(1 − c)/2, which is very small for small
values of c, hence it can be argued that the phenomenon
of time-invariant discord is significant for larger values of
c, roughly corresponding to 2 � s � 3, for example, when
the dynamics is non-Markovian. Increasing the temperature
rapidly destroys the time-invariant discord phenomenon. In the
high-temperature limit, indeed, one cannot find any value of s

and c for which this effect occurs. We show in the following,
however, that there exist realistic physical settings for which
the effect can be observed.

Non-Markovianity and time-invariant discord. Let us now
link the occurrence of time-invariant discord in the two-
qubit dynamics to the form of the reservoir spectrum and
non-Markovianity in the single-qubit dynamics. It is easy to
convince oneself that the time-invariant discord phenomenon
can occur only for reservoir spectra leading to a bounded value
of �(t). This ensures the existence of values of c such that
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FIG. 2. (Color online) The shaded region marks the range of
parameters s and c for which the discord is frozen forever for T = 0.
Outside this region one will always observe a transition from classical
to quantum decoherence.

e�(t) > c for all t , implying that Eq. (9) is never satisfied.
An asymptotic divergence of �(t), on the contrary, allows
for the existence of a transition time t̄ . Such a divergence,
and therefore absence of time-invariant discord, rests on the
divergence of g(ω,T )/ω when ω → 0 occurring for s � 1(2)
at zero (finite) temperature. Similarly, convexity and thus
Markovianity is ensured if g(ω,T ) diverges at low frequencies,
occurring for s � scrit = 2(3). The above demonstrates that
time-invariant discord and non-Markovianity are intimately
related and ultimately rely on the eventual dominance of
recoherence over decoherence; thus both require the suppres-
sion of coupling to low-frequency modes, embodied by the
low-frequency dependences of J (ω) and g(ω,T ).

Finally, we note that a possible experimental setup in
which the time-invariant discord could be observed is an
array of double-well impurities immersed in a Bose-Einstein
condensate, as discussed in Refs. [4,5]. When the impurities
are far apart, that is, the distance D between the impurities is
much greater than the distance L between the two potential
wells forming an impurity, the collisions with the ultracold

gas lead to an effective local pure dephasing model as
the one considered in this Rapid Communication. For the
parameters of Fig. 5 in Ref. [4], with D = 20L, the maximum
value reached by the decoherence factor before attaining its
stationary value is maxt �(t) � 0.058, hence time-invariant
discord occurs for 0 < c � 0.94, that is, for a wide range of
initial states. As the discord increases for increasing values of
c, within this physical system one can freeze discord to values
close to its maximum forever. Moreover, these systems have
proven to be very resistant to the effects of finite temperature
[28], and we therefore expect to find high values of discord
also for realistic temperatures of the order of T = 10–100 nK.

Conclusions. Non-Markovianity reflects the ability of
an open system to regain and retain quantumness, since
previously lost quantum information can partly flow back
into the system and, in some cases, be trapped. As reser-
voir engineering techniques become experimentally feasible,
it is crucial to establish qualitative and quantitative links
between the occurrence of non-Markovianity and the form
of the environmental spectrum. In this Rapid Communication
we have paved the way to these studies by presenting a
necessary condition on the form of the spectrum for the
non-Markovianity of a qubit undergoing pure dephasing. We
have proven that, for the Ohmic class of spectral densities,
the condition is necessary and sufficient, and discovered the
existence of a temperature-dependent critical value of the
Ohmicity parameter for the Markovian to non-Markovian
crossover. For two qubits in locally dephasing environments,
we have unveiled a physical phenomenon, time-invariant
discord, and explored its relation to the non-Markovianity of
the individual dephasing qubits.

Our results shed light on the physical origin of decoherence
in a paradigmatic open quantum systems model. Moreover, as
the model describes the dominant source of noise in several
systems used for quantum technologies, our results may lead
to the implementation of more resistant quantum protocols and
devices.
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