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Vacuum-state truncation via the quantum Zeno effect
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In the context of quantum-state engineering we analyze the effect of observation on nonlinear optical n-photon
Fock-state generation. We show that it is possible to truncate the vacuum component from an arbitrary photon
number superposition without modifying its remaining parts. In the course of the full dynamical analysis of the
effect of observation, it is also found that the Zeno and the anti-Zeno effects repeat periodically. We discuss the
close relationship between vacuum-state truncation and so-called “interaction-free” measurement. The proposed
scheme may also be considered a way to generate extremely nonclassical states.
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The engineering of quantum states of an electromagnetic
field is essential to fundamental studies of quantum optics [1,2]
and is also important for the development of optical quantum-
information technologies [3–5]. The quantum-optical-state
engineering method we are interested in here is optical-state
truncation. Pegg, Phillips, and Barnett [6] presented a scheme
to prepare any required superposition of the vacuum and
one-photon states by the choice of a proper measurement after
a beam splitter. Because their scheme is effectively the same
as a physical truncation of the photon number superposition
making up the coherent state involved during the measurement,
they called the device “quantum scissors” [6,7].

In this Brief Report, we present a scheme of quantum
scissors in which only the vacuum component is truncated
from any given photon number superposition state with-
out corrupting the remaining parts: i.e., the transformation∑∞

m=0 αm|m〉 → ∑∞
m=1 αm|m〉, apart from normalization. The

vacuum state has a unique property different from other
photon number states, in that it represents the “absence”
of a photon while the other states (or their superpositions)
represent the “presence” of photons. Considering a physical
measurement using the electromagnetic field as a probe of
the measurement, the absence of a photon may in a sense
correspond to the absence of measurement. Therefore, one
can expect that the presence or absence of photons may
lead to totally different physical effects: “measurement” or
“no measurement.” As a specific example, we consider the
quantum Zeno effect, which refers to the suppression of
the free dynamical evolution of a system when the system
is subject to repeated measurements [8–12]. In the limit of
infinitely frequent or continuous measurements, the observed
system would be locked into its initial state. If the initial probe
state is a superposition of the presence and absence of photons,
then we may expect the total output state of the system and
probe to be a superposition of two different physical effects:
the occurrence and nonoccurrence of the Zeno effect. Thus,
we show that it is possible to effectively truncate the vacuum
component of the probe state by projecting the output state
onto the state of occurrence of the Zeno effect.

The present scheme is also closely related to the so-
called “interaction-free” measurement (IFM) (also known as
“quantum interrogation”), which refers to the determination of
the presence of an object without any photons being scattered
by the object, thereby excluding any disturbance of it [13–20].

If we consider a coherent superposition of the presence and
absence (the vacuum) of a quantum object, the IFM of the
object becomes equivalent to vacuum-state truncation. Thus,
our scheme may be considered a scheme of IFM in which
the inferred object is an electromagnetic field with an IFM
efficiency approaching 100%. On the other hand, Ref. [21]
shows that any state can be converted into a nonclassical one
with maximum nonclassical depth [22], simply by removing
its vacuum component. Therefore the present scheme may also
be considered a way to generate extremely nonclassical states.

We give a detailed description of the vacuum-state trunca-
tion in the following. We first consider the Kilin and Horoshko
(KH) scheme for the generation of a pure Fock state of a
single-mode field via a single-pass parametric interaction in
a nonlinear medium [23]. In the KH scheme, the nonlinear
medium is pumped by a classical coherent field to amplify the
signal mode from the vacuum state into the n-photon Fock state
by the (n + 2)th-order nonlinear interaction. The interaction
Hamiltonian describing this parametric process is

Hn = h̄g√
n!

[
(an + a†n) − 1

n
(a†an+1 + a†n+1a)

]
, (1)

where a† (a) is the photon creation (annihilation) operator
of the signal mode and g is a real coupling parameter that is
related to the nonlinear susceptibilities satisfying the condition
χ (n) = −nχ (n+2). By means of the interaction Hamiltonian,
Eq. (1), the initial vacuum state evolves as

UKH(τ )|0〉a = exp(iHnτ/h̄)|0〉a
= cos(gτ )|0〉a + i sin(gτ )|n〉a. (2)

If the interaction time is chosen as τ = π/2g, the output
state becomes a pure n-photon Fock state. (Note also that
UKH(τ )|n〉a = i sin(gτ )|0〉a + cos(gτ )|n〉a .)

We now discuss the manifestation of the Zeno effect in
the KH scheme. Suppose the system is subject to repeated
measurements at each very short time interval �τ = τ/N with
large N . After the first measurement, the probability of finding
the signal mode in the n-photon state is sin2(g�τ ) ≈ (g�τ )2,
which is very small for large N . The probability of remaining
in the initial vacuum state is cos2(g�τ ) ≈ 1 − (g�τ )2. The
signal field is found in the vacuum state with relatively large
probability at each measurement stage. Thus, the probability
that the signal mode is found in the initial state after all N
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FIG. 1. Proposed scheme of vacuum-state truncation.

repeated measurements is

[cos2(g�τ )]N ≈ 1 − (gτ )2/N. (3)

The signal mode would be locked to the initial vacuum state
with certainty in the limit N → ∞; i.e., each measurement
reduces the signal field into |0〉a and the Zeno effect occurs.

For a full dynamical analysis of the Zeno effect, we consider
a modification of the KH scheme as depicted in Fig. 1. The
KH scheme’s nonlinear medium is now divided into N equal
pieces with the interaction time �τ = τ/N = π/2gN within
each part. Assume that if the pieces are perfectly aligned,
and if the field evolution is not disturbed after each piece,
then the input vacuum state |0〉a in mode a would coherently
evolve into the n-photon Fock state |n〉a as in the original KH
scheme. However, in Fig. 1, we employ the optical Kerr effect
to implement quantum nondemolition (QND) measurement
of the photon number in mode a [24–26]. Modes a and
b are coupled with each other by a series of N nonlinear
Kerr mediums. As is well known in the QND scheme using
the optical Kerr effect [25], the field of two coupled modes
experiences a phase shift proportional to the photon number
of another field. One can determine the photon number without
destroying photons by the measurement of a phase shift
imposed on another field. Thus, a field evolution of the KH
type in mode a would be modified by a dispersive coupling
with mode b.

The unitary operator describing the state evolution within
each of the Kerr mediums is given by

UK = exp(iκa†ab†b), (4)

where a† and b† (a and b) are the creation (annihilation)
operators of the corresponding modes and κ is a coupling
parameter characterizing the Kerr interaction strength. For
convenience, we assume the same interaction strength for
each Kerr medium, and the self-phase modulation effect is
neglected. We suppose the input field state in mode b is an
arbitrary state |�〉b, which can be expanded in terms of the
number states as

|�〉b =
∞∑

m=0

αm|m〉b. (5)

Then, the total initial state of modes a and b is

|	(0)〉 = |0〉a|�〉b. (6)

After the first KH and Kerr mediums, the state evolves as

|	(1)〉 = UKUKH(�τ )|	(0)〉
= [cos(g�τ )|0〉a + ieiκnb†b sin(g�τ )|n〉a]|�〉b.

(7)

We note that when the input state in mode b is a number state,
|�〉b = |m〉b, the phase factor becomes eiκnm. This phase factor
will vanish for κ = 2πl/nm (l = 0,1,2, . . .), which means that
the optical Kerr effect is effectively removed in this case and
the original KH process is recovered. Because our aim is to
find the effect of any possible disturbance imposed by the
QND measurement, we discard this case. That is, we suppose
the coupling parameter is chosen appropriately so that κ �=
2πl/nm.

Thus, this process is repeated N − 1 more times as shown
in Fig. 1. The final output state has the form

|	(N)〉 = UKUKH(�τ )|	(N−1)〉
= [v(b†b)|0〉a + w(b†b)|n〉a]|�〉b, (8)

where v(b†b) and w(b†b) are given by

(
v
w

)
=

(
cos(g�τ ) i sin(g�τ )

ieiκnb†b sin(g�τ ) eiκnb†b cos(g�τ )

)N (
1
0

)
. (9)

After some calculation, we obtain that

v(b†b)

= eiNδ/2

[
−i

(
cos(g�τ ) sin(δ/2)

sin(η)

)
sin(Nη) + cos(Nη)

]
,

(10)

w(b†b) = iei(N+1)δ/2

(
sin(g�τ )

sin(η)

)
sin(Nη), (11)

where δ = κnb†b and η = cos−1[cos(g�τ ) cos(δ/2)]. We can
easily check that |v(b†b)|2 + |w(b†b)|2 = 1. Using Eq. (5), the
output state is written as

|	(N)〉 = α0[cos(Ng�τ )|0〉a + i sin(Ng�τ )|n〉a]|0〉b
+ [v(b†b)|0〉a + w(b†b)|n〉a]|�′〉b, (12)

where the state |�′〉b does not include the vacuum component,
i.e.,

|�′〉b =
∞∑

m=1

αm|m〉b = |�〉b − α0|0〉b. (13)

Since g�τ = π/2N , the first term of Eq. (12) becomes
iα0|n〉a|0〉b, and it corresponds to the isolated dynamics of the
KH procedure. The other term exhibits some modifications of
the KH process induced by the photons in mode b.

In the limit of large N , v(b†b) and w(b†b) become

v(b†b) = 1 −
(

iπ2

8 tan(δ/2)

)
1

N
+ O(N−2), (14)

w(b†b) = iei(N+1)δ/2

(
π sin(Nδ/2)

2 sin(δ/2)

)
1

N
+ O(N−2). (15)

Therefore, we obtain

|	(N)〉 → iα0|n〉a|0〉b + |0〉a|�′〉b as N → ∞. (16)

This entangled state represents the desired correlation between
modes a and b. For a finite number N , the state |�′〉b
is disturbed as a result of the measurements, although the
photon number is conserved in the QND measurements.
However, Eq. (16) indicates that the disturbance imposed
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FIG. 2. Photon emission probabilities (Pn=2) as a function
of N . The input state of mode b is a one-photon Fock state
(squares), a coherent state (circles), and a phase-squeezed state
(triangles). The probabilities approach the value |α0|2 as N becomes
large [Eq. (16)].

on |�′〉b becomes arbitrarily small in the limit of very
frequent measurements. That is, the quantum state of the |�′〉b
component in mode b remains in its initial state while mode
b is correlated with mode a. In terms of quantum scissors, by
projecting the output state, Eq. (16), onto the state |0〉a , one can
truncate only the vacuum component |0〉b in mode b without
corrupting the remaining parts |�′〉b. Note also that if mode b

is initially in the pure |�′〉b state (i.e., α0 = 0), then Fock-state
generation in mode a is always inhibited in the limit N → ∞.
Both modes a and b are locked into their initial states in this
limit, and the Zeno effect occurs.

In Fig. 2 we verify our results by representing the prob-
ability Pn of n-photon Fock state generation in mode a as
a function of N . For an arbitrary state |�〉b, the probability
becomes

Pn = |α0|2 + |w(b†b)|�′〉b|2 = |α0|2 +
∞∑

m=1

|αmw(m)|2,

(17)

which is always less than or equal to 1. We plot the probability
using a numerical calculation of Eq. (17) for when the input
state of mode b is a one-photon Fock state, a coherent state,
and a phase-squeezed state, respectively. We suppose the states
have the same mean photon number of 〈m〉b = 1. For the case
of the phase-squeezed state

|�〉b = eαb†−α∗be
1
2 ε∗b2− 1

2 εb†2 |0〉b, (18)

we choose ε = −0.5 and α = 0.853 498 to make 〈m〉b = 1.
We also suppose n = 2, i.e., two-photon Fock state generation
in mode a, and the Kerr interaction strength κ = 0.2.

As expected, Fig. 2 shows that Pn=2 → |α0|2 in each case
as N → ∞. In addition, interestingly, it shows oscillation; i.e.,
the inhibition and enhancement of photon emission in mode a

is repeated. The enhancement of photon emission by measure-
ment is known as the inverse or anti-Zeno effect [27] and has
been discussed in parametric down-conversion [11,28]. Using
the arguments in Ref. [28], the oscillatory behavior is attributed
to the interference of photon emission probability amplitudes
originating from each part of the KH scheme’s nonlinear
medium. This interference becomes partially destructive (in-
hibition) or constructive (enhancement) according to the phase
mismatch caused by the Kerr interaction. We also note that the
Mandel Q parameter is Q = (〈�2m〉b − 〈m〉b)/〈m〉b = −1
for the one-photon Fock state, Q = 0 for the coherent state,
and Q = 1.670 71 for the super-Poissonian phase-squeezed
state. Obviously, the amplitude of the oscillation is reduced
as the Q-parameter increases. This is because the photon
number fluctuation in mode b results in the fluctuation of
phase mismatch. Thus, in Fig. 2, the one-photon Fock-state
mode b shows the greatest oscillation. From Eq. (15), it can be
seen that, if the input state in mode b is a pure m-photon Fock
state, the period of oscillation is N ≈ 2π/δ0, with δ0 defined
by δ0 = κnm − 2πl (0 � δ0 < 2π ). On the other hand, the
coherence between probability amplitudes decreases as N

increases; i.e., the photon emission events in each part of
the nonlinear medium become more distinguishable as the
accuracy of the measurement increases. Therefore, the overall
behavior is a gradual suppression of photon emission.

In summary, we have presented a scheme of vacuum-state
truncation from an arbitrary photon number superposition
without modifying its remaining parts. The scheme is a direct
consequence of the quantum Zeno effect in nonlinear optical
n-photon Fock-state generation. During the full dynamical
analysis of the effect, we have also found the observation-
induced oscillation in photon emission probabilities. The
proposed scheme can be considered an IFM in which the
inferred object is a light field without the vacuum component
(i.e.,

∑∞
m=1 αm|m〉b). It is interesting to note that one cannot

obtain any further information about the object details by
vacuum-state truncation (or IFM): all one knows is that some
state orthogonal to the vacuum is present. We point out that
the proposed scheme can also be considered a way to generate
extremely nonclassical states.
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