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Long-range interactions between excited helium and alkali-metal atoms
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The dispersion coefficients for the long-range interaction of the first four excited states of He, i.e., He(2 1,3S)
and He(2 1,3P ), with the low-lying states of the alkali-metal atoms Li, Na, K, and Rb are calculated by summing
over the reduced matrix elements of the multipole transition operators. For the interaction between He and Li
the uncertainty of the calculations is 0.1–0.5%. For interactions with other alkali-metal atoms the uncertainty is
1–3% in the coefficient C5, 1–5% in the coefficient C6, and 1–10% in the coefficients C8 and C10. The dispersion
coefficients Cn for the interaction of He(2 1,3S) and He(2 1,3P ) with the ground-state alkali-metal atoms and for
the interaction of He(2 1,3S) with the alkali-metal atoms in their first 2P states are presented in this Brief Report.
The coefficients for other pairs of atomic states are listed in the Supplemental Material.
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Cold and ultracold mixtures of multispecies atoms are an
active topic of research in recent years. Ultracold mixtures
of two atomic species are used to study the elastic and
inelastic collisions between different species. Such mixtures
also make it possible to sympathetically cool one species
through collisional energy exchange with the other species
[1–3]. In addition, weakly bound heteronuclear molecules can
be created [4–6]. Heteronuclear polar molecules have attracted
particular attention because their permanent dipole moments
can be controlled with external fields. They are potential
candidates for quantum simulation, quantum computing, and
quantum metrology [7,8]. Most dual-species experiments
involve combinations of alkali-metal atoms, such as Na-{K,
Rb, Cs} [9], K-{Rb, Cs} [2,6,9], and Rb-Cs [9,10]. Recently, a
few experiments have employed ultracold mixtures of alkali-
metal and metastable noble gas atoms, such as 40Ar∗-87Rb
[11,12] and He∗-87Rb [12–14]. The latter mixture is promising
for creating a dual-species Bose-Einstein condensate by sig-
nificantly suppressing the Penning ionization [13–15], which
causes the trap losses. The loss rate is determined primarily by
the long-range interaction between the He∗ and 87Rb atoms.

There are very few calculations of dispersion coefficients
reported in the literature for the long-range interaction between
low-lying excited states of He and alkali-metal atoms. The
coefficients C6 for the van der Waals interaction between
the He(2 1,3S) metastable states and the ground states of Li,
Na, K, Rb, and Cs have been computed by Bell et al. [16]
by means of the Casimir-Polder formula [17]. Dalgarno and
Victor [18] have improved the calculation by more accurate
representations of the dynamic dipole polarizabilities α1(ω) of
the metastable states. For the alkali-metal atoms, these authors
employ semiempirical representations of α1(ω) [19]. Using
the configuration-interaction plus core-polarization (CICP)
method [20], Spelsberg and Meyer [21] have calculated the
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coefficients C6, C8, and C10 for the interaction between
He(2 1,3S) and the ground states of Li, Na, and K.

In the present work, we compute the dispersion coefficients
for the long-range interaction of the first four excited states of
He, i.e., He(2 1,3S) and He(2 1,3P ), with the low-lying states of
the alkali-metal atoms Li, Na, K, and Rb by summing over the
reduced matrix elements of the multipole transition operators
[22–24]. For the symmetries of diatomic molecules we adopt
the notations of Ref. [24]. Atomic units are used throughout
the following sections.

A systematic formalism has been presented for the calcula-
tions of the long-range interaction between two heteronuclear
atoms in arbitrary atomic states in Ref. [24], treating the
interaction as a perturbation to the isolated atoms. In general,
the long-range interaction between two heteronuclear atoms
can be written in the form

V (R) = −
∞∑

s=1

C2s+4

R2s+4
−

�a+�b−1∑

s=1

C2s+3

R2s+3
− · · · , (1)

where �a and �b represent the quantum numbers of orbital
angular momenta of atoms A and B, respectively; R is the
distance between the two atoms; and Cn are the dispersion
coefficients. The first term arises from the second order
correction to the energy and is always present. The second
term (the first-order correction) occurs only if each atom is in
a state with nonzero angular momentum.

The dispersion coefficients are evaluated for diatomic
molecular states according to the nondegenerate and degener-
ate perturbation theories. For a simple nondegenerate system
where both atoms A and B are spherically symmetric, for
example, C6 can be represented in the form

C6 =
∑

nanb

2|〈ψ0a
‖ ∑

i riC1(r̂i)‖ψna
〉|2

3

×|〈ψ0b
‖∑

j rj C1(r̂j )‖ψnb
〉|2

Ena
+ Enb

− E0a
− E0b

(2)
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where C1(r̂) is the spherical tensor of rank 1; ψ0a
and ψna

are
the wave function of the initial state and the nath intermediate
eigenfunction for the atom A, respectively; E0a

and Ena
are

their corresponding eigenenergies; the sum i runs over all
the electrons in the atom A; the definitions of symbols ψ0b

,
ψnb

, E0b
, Enb

and j for the atom B are similar to those of
their counterpart symbols for the atom A. In the degenerate
case, the zeroth-order wave functions are determined by
diagonalizing the leading term of the first-order correction
in the degenerate space. They are then used to calculate the
dispersion coefficients by summing over intermediate states
represented by atomic physical states and pseudostates.

For atomic He and Li the energy spectra and reduced matrix
elements of the multipole transition operators are the same as
those used for calculating the dispersion coefficients for the
low-lying states of He and Li [25–31]. They were calculated
using Hylleraas basis functions. For a two-electron system, the
basis functions have the form

ri
1 r

j

2 rk
12 e−αr1−βr2YLM

�1�2
(r̂1,r̂2), (3)

TABLE I. Dispersion coefficients for the interaction of He(2 1,3S)
with the n 2S ground states of the alkali-metal atoms. Numbers
in square brackets in the second, third, and fourth columns denote
powers of 10.

System C6 (a.u.) C8 (a.u.) C10 (a.u.)

LiHe(2 1S) 2� 3.504[3] 2.633[5] 3.018[7]
Hylleraas 3.502[3] 2.632[5] 3.016[7]
Ref. [18] 3.500[3]
Ref. [21] 3.495[3] 2.627[5] 2.990[7]
No core effect 3.499[3] 2.628[5] 3.013[7]
NaHe(2 1S) 2� 3.598[3] 3.019[5] 3.606[7]
Ref. [18] 3.660[3]
Ref. [21] 3.574[3] 2.997[5] 3.558[7]
No core effect 3.567[3] 2.994[5] 3.579[7]
KHe(2 1S) 2� 5.984[3] 5.805[5] 7.588[7]
Ref. [18] 5.940[3]
Ref. [21] 5.845[3] 5.690[5] 7.600[7]
No core effect 5.816[3] 5.668[5] 7.439[7]
RbHe(2 1S) 2� 6.509[3] 6.846[5] 9.207[7]
Ref. [18] 6.440[3]
No core effect 6.235[3] 6.614[5] 8.954[7]
LiHe(2 3S) 2,4� 2.090[3] 1.326[5] 1.280[7]
Hylleraas 2.089[3] 1.325[5] 1.279[7]
Ref. [18] 2.090[3]
Ref. [21] 2.083[3] 1.321[5] 1.272[7]
No core effect 2.086[3] 1.323[5] 1.278[7]
NaHe(2 3S) 2,4� 2.178[3] 1.553[5] 1.570[7]
Ref. [18] 2.220[3]
Ref. [21] 2.159[3] 1.540[5] 1.553[7]
No core effect 2.157[3] 1.540[5] 1.560[7]
KHe(2 3S) 2,4� 3.523[3] 3.055[5] 3.485[7]
Ref. [18] 3.480[3]
Ref. [21] 3.419[3] 2.993[5] 3.534[7]
No core effect 3.406[3] 2.983[5] 3.426[7]
RbHe(2 3S) 2,4� 3.832[3] 3.634[5] 4.294[7]
Ref. [18] 3.760[3]
No core effect 3.641[3] 3.512[5] 4.191[7]

TABLE II. Dispersion coefficients for the interaction of He(2 1,3S)
with the first 2P states of the alkali-metal atoms. Numbers in square
brackets denote powers of 10.

System C6 (a.u.) C8 (a.u.) C10 (a.u.)

LiHe(2 1S) 2� 2.048[3] 2.483[6] 2.600[8]
Hylleraas 2.050[3] 2.481[6]
LiHe(2 1S) 2� 2.663[3] 5.222[5] 3.298[7]
Hylleraas 2.663[3] 5.219[5]
NaHe(2 1S) 2� 8.845[3] 5.392[6] 6.368[8]
NaHe(2 1S) 2� 6.364[3] 9.699[5] 5.672[7]
KHe(2 1S) 2� 9.756[3] 7.974[6] 1.219[9]
KHe(2 1S) 2� 9.242[3] 9.847[5] 7.951[7]
RbHe(2 1S) 2� 1.298[4] 1.012[7] 1.652[9]
RbHe(2 1S) 2� 1.174[4] 1.078[6] 9.601[7]
LiHe(2 3S) 2,4� −2.190[3] 1.063[6] 1.230[8]
Hylleraas −2.187[3] 1.062[6]
LiHe(2 3S) 2,4� 7.605[2] 1.571[5] 1.034[7]
Hylleraas 7.611[2] 1.570[5]
NaHe(2 3S) 2,4� 1.969[3] 2.252[6] 3.142[8]
NaHe(2 3S) 2,4� 2.919[3] 2.535[5] 1.804[7]
KHe(2 3S) 2,4� −3.189[3] 3.776[6] 6.189[8]
KHe(2 3S) 2,4� 2.995[3] 3.147[5] 2.696[7]
RbHe(2 3S) 2,4� −3.007[3] 4.801[6] 8.430[8]
RbHe(2 3S) 2,4� 3.851[3] 3.491[5] 3.297[7]

whereYLM
�1�2

(r̂1,r̂2) are the coupled spherical harmonics. Except
for some truncations made to avoid near linear dependence, all
terms with i + j + k � 	 are included, where 	 is an integer.
For the Li atom the basis functions have a similar form:

ri
1 r

j

2 rk
3 rm

12 rn
13 r

p

23 e−αr1−βr2−γ r3YLM
(�1�2)�12,�3

(r̂1,r̂2,r̂3). (4)

The nonlinear parameters α, β, and γ are variationally
optimized by the power method.

The reduced matrix elements of the transition operators
and energy spectra for the alkali-metal atoms have been used
for calculating the dispersion coefficients for the interaction
with ground-state H and He [24]. The spectra of the valence
electrons have been generated by the CICP method with
large mixed Laguerre-type and Slater-type orbital basis sets.
Moreover, the core effect on the valence electrons has been
represented by a semiempirical polarization potential, and
the contribution of the core excitations to the dispersion
coefficients has been estimated by approximate oscillator
strength distributions. For details on the calculations for
alkali-metal atoms the reader is referred to Refs. [24,32–37].

Table I presents the dispersion coefficients for the inter-
action of He(2 1,3S) with the ground-state alkali-metal atoms.
Table II addresses the interaction between He(2 1,3S) and the
first 2P excited states of the alkali-metal atoms, i.e., Li(2 2P ),
Na(3 2P ), K(4 2P ), and Rb(5 2P ) whereas Table III refers to
the interaction between He(2 1,3P ) and the ground-state alkali-
metal atoms. Dispersion coefficients Cn for the interaction
between He(2 1,3S) and the first 2S and 2D excited states of
the alkali-metal atoms and those for the interaction between
He(2 1,3P ) and the first 2P excited states of the alkali-metal
atoms are listed in the Supplemental Material [38].

For the Li atom we calculate the dispersion coefficients
using both the CICP transition data and the transition data
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TABLE III. Dispersion coefficients for the interaction of
He(2 1,3P ) with the ground states of the alkali-metal atoms. Numbers
in square brackets denote powers of 10.

System C6 (a.u.) C8 (a.u.) C10 (a.u.)

LiHe(2 1P )2� 6.123[3] 7.851[5] 1.019[8]
Hylleraas 6.120[3] 7.847[5] 1.018[8]
LiHe(2 1P )2� 2.605[3] 8.148[4] 5.676[6]
Hylleraas 2.604[3] 8.143[4] 5.672[6]
NaHe(2 1P ) 2� 5.981[3] 8.510[5] 1.179[8]
NaHe(2 1P ) 2� 2.633[3] 1.013[5] 7.649[6]
KHe(2 1P ) 2� 1.114[4] 1.543[6] 2.330[8]
KHe(2 1P ) 2� 4.575[3] 2.518[5] 2.200[7]
RbHe(2 1P ) 2� 1.223[4] 1.768[6] 2.772[8]
RbHe(2 1P ) 2� 5.008[3] 3.175[5] 2.887[7]
LiHe(2 3P ) 2,4� 7.153[3] 5.617[5] 6.620[7]
Hylleraas 7.148[3] 5.614[5] 6.616[7]
LiHe(2 3P )2,4� 2.609[3] 6.790[4] 4.464[6]
Hylleraas 2.607[3] 6.785[4] 4.461[6]
NaHe(2 3P ) 2,4� 6.318[3] 6.167[5] 7.754[7]
NaHe(2 3P ) 2,4� 2.452[3] 8.484[4] 6.053[6]
KHe(2 3P ) 2,4� 1.534[4] 1.166[6] 1.571[8]
KHe(2 3P ) 2,4� 5.198[3] 2.193[5] 1.779[7]
RbHe(2 3P ) 2,4� 1.738[4] 1.371[6] 1.887[8]
RbHe(2 3P ) 2,4� 5.833[3] 2.832[5] 2.349[7]

computed by the Hylleraas-type basis functions. For the
Li(2 2S) and Li(3 2S) states the coefficients C6, C8, and C10 are
computed using the correlated basis sets. For the Li(2 2P ) and
Li(3 2D) states the coefficients up to C8 are computed using the
Hylleraas-type basis sets, because only the intermediate states
related to the corresponding dipole and quadrupole transitions
have been generated with the Hylleraas-type basis sets. The
results of Dalgarno and Victor [18] and Spelsberg and Meyer
[21] are also included in Table I for comparison. These four
calculations agree within 0.3% for the Li(2 2S) ground state.
For the He(2 1,3S)-Na(3 2S) system the C6 coefficient calculated
by Dalgarno and Victor [18] is 2% larger than our result.
Moreover, their C6 values are 1% smaller than our values for
the systems He(2 1,3S)-K(4 2S) and He(2 1S)-Rb(5 2S), and 2%
smaller for the He(2 3S)-Rb(5 2S) system.

The effects of core excitations on the dispersion coefficients
are ignored in the calculations of Spelsberg and Meyer [21]. To
enable a comparison, we also list in Table I our Cn values which
exclude contributions of the core excitations. The discrepancy
between the two calculations without core effects is less than
0.5% except for the C10 values for the He(2 1,3S)-K(4 3S)
system. The C10 values of Spelsberg and Meyer are 2–3%
larger than our results for the He(2 1,3S)-K(4 3S) system. This
means that the octupole contributions are overestimated in their
calculations. The overestimation is confirmed by comparing
their values for the static multipole polarizabilities with other
accurate calculations [32,33,39–43] (see Table I in the Sup-
plemental Material [38]). For the static dipole polarizability
of the ground-state K the spread of all four calculations
is within 2.5%, and the four quadrupole polarizabilities are
almost the same. However, the static octupole polarizability of
Spelsberg and Meyer (1.914 × 105 a.u.) is 7.7% larger than the
value obtained by the other three calculations (the CICP data

set, the one-electron model potential approach by Marinescu
et al. [40], and the relativistic many-body perturbation theory
by Porsev and Derevianko [43]). It is also demonstrated
that the core effect becomes more important for heavier
atoms.

The uncertainty of the present calculations can be esti-
mated from the uncertainties of the dispersion coefficients
for interaction of the alkali-metal atoms with the ground
states of H and He [24]. For the systems He(2 1,3S)-Li(2 2S),
He(2 1,3S)-Li(2 2P ), and He(2 3S)-Li(3 2D) [38] the accuracy of
the calculations is 0.1%. For the system He(2 1S)-Li(3 2D) [38],
the C6 values of the Hylleraas and CICP methods deviate
by less than 0.1% and the discrepancy of the C8 values is
0.3%. For the 2� state of the system He(2 1P )-Li(3 2S) [38] the
discrepancy between the two methods is 0.7% for C8. For both
the 2� and 2� states of the system He(2 3P )-Li(3 2S) [38] the
discrepancy of the C8 and C10 values between the two methods
is 2%. For the system He(2 1P )-Li(2 2P ) [38] the two methods
agree within 0.5%. The C6 coefficient deviates between the two
methods by 90% for the second 2,4�+ state of the He(2 3P )-
Li(2 P ) system [38]. The reason for this large difference is that
the negative contribution of −1.530 × 104 a.u. of the dipole
transition pairs He(2 3P )-He(2 3S) and Li(2 2P )-Li(2 2S) as well
as He(2 3P )-He(3 3S) and Li(2 2P )-Li(2 2S) almost cancels the
positive contribution of 1.535 × 104 a.u. of all other dipole
transition pairs. No such strong cancellation occurs for other
dispersion coefficients. Another unexpected feature is that the
C6 coefficient is about 19 times smaller than the corresponding
C5 coefficient. In summary, the results from the Hylleraas-type
calculations are recommended rather than those from the CICP
calculations.

For the long-range interaction between He and other
alkali-metal atoms, the uncertainties are 1–3% for C5, 1–5%
for C6, and 1–10% for C8 and C10. Generally speaking, the
uncertainties of the dispersion coefficients for the ground states
of the alkali-metal atoms are smaller than those for the excited
states, especially in the cases where the He atom is in one of
the He(2 1,3P ) states.

In conclusion, dispersion coefficients have been calculated
for the long-range interaction of the first four excited states of
He, i.e., He(2 1,3S) and He(2 1,3P ), with the low-lying states of
the alkali-metal atoms Li, Na, K, and Rb by summing over the
reduced matrix elements of the multipole transition operators
[22–24]. For He and Li atoms the reduced matrix elements
have been previously generated with Hylleraas-type basis
functions [25–31]. For the alkali-metal atoms the transition
arrays of the valence electrons have been previously computed
by the CICP method, where the effect of core excitations has
been taken into account by approximately constructing the
oscillator strength distributions of the atomic cores [24,32–37].
For systems involving a He metastable state He(2 1,3S) and the
ground state of an alkali-metal atom, our results are more
accurate than previously published values [18,21]. Dispersion
coefficients for systems involving a He(2 1,3P ) state or excited
state of an alkali-metal atom have been computed. These
coefficients enable the construction of accurate long-range
potentials for the corresponding atom-atom collisions.
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